PaperMC/Spigot-API-Patches/0132-Async-Chunks-API.patch
Aikar c0d07c1b67
Updated Upstream (Bukkit/CraftBukkit/Spigot)
Upstream has released updates that appears to apply and compile correctly.
This update has not been tested by PaperMC and as with ANY update, please do your own testing

Bukkit Changes:
f009c3dd SPIGOT-5810, SPIGOT-5835: 'Better' handling of Player.isOnGround
e677c370 Update ECJ version
5058a35d SPIGOT-5860: Item.setItemStack should be NotNull

CraftBukkit Changes:
d77f4d9b SPIGOT-5810, SPIGOT-5835: 'Better' handling of Player.isOnGround
53c95627 SPIGOT-5865: Piglin does not trigger EntityPickupItemEvent
2ab04d24 Update ECJ version
7884e079 SPIGOT-5868: Blocks do not tick in custom nether / end
2a848286 SPIGOT-5863: Don't check colour in scoreboard length validation
f2cbce30 SPIGOT-5866: Beehive unknown TargetReason

Spigot Changes:
ad703da0 SPIGOT-5870: /plugins "website" field shows "version"
1a27cfd8 #98: Improve output of /plugins command using text components
732d5bab Disable checkstyle in Spigot blocks
0199a9a6 #97: Add Memory Usage to Ticks Per Second Command.
33ea98fc SPIGOT-5858: NPE: Joining the server with an invalid dimension
2020-06-27 21:54:05 -04:00

519 lines
22 KiB
Diff

From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Aikar <aikar@aikar.co>
Date: Mon, 29 Feb 2016 17:43:33 -0600
Subject: [PATCH] Async Chunks API
Adds API's to load or generate chunks asynchronously.
Also adds utility methods to Entity to teleport asynchronously.
diff --git a/src/main/java/org/bukkit/World.java b/src/main/java/org/bukkit/World.java
index fe8b255aeb46e30d0a954dcd0e3e6ac29b4fd33d..eef7750fdebb4fbd156d729e4cc87f7b3d0a2ad4 100644
--- a/src/main/java/org/bukkit/World.java
+++ b/src/main/java/org/bukkit/World.java
@@ -221,6 +221,467 @@ public interface World extends PluginMessageRecipient, Metadatable {
public default Chunk getChunkAt(long chunkKey) {
return getChunkAt((int) chunkKey, (int) (chunkKey >> 32));
}
+
+ /**
+ * This is the Legacy API before Java 8 was supported. Java 8 Consumer is provided,
+ * as well as future support
+ *
+ * Used by {@link World#getChunkAtAsync(Location,ChunkLoadCallback)} methods
+ * to request a {@link Chunk} to be loaded, with this callback receiving
+ * the chunk when it is finished.
+ *
+ * This callback will be executed on synchronously on the main thread.
+ *
+ * Timing and order this callback is fired is intentionally not defined and
+ * and subject to change.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ */
+ @Deprecated
+ public static interface ChunkLoadCallback extends java.util.function.Consumer<Chunk> {
+ public void onLoad(@NotNull Chunk chunk);
+
+ // backwards compat to old api
+ @Override
+ default void accept(@NotNull Chunk chunk) {
+ onLoad(chunk);
+ }
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param x Chunk X-coordinate of the chunk - (world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - (world coordinate / 16)
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(int x, int z, @NotNull ChunkLoadCallback cb) {
+ getChunkAtAsync(x, z, true).thenAccept(cb::onLoad);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param loc Location of the chunk
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(@NotNull Location loc, @NotNull ChunkLoadCallback cb) {
+ getChunkAtAsync(loc, true).thenAccept(cb::onLoad);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param block Block to get the containing chunk from
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(@NotNull Block block, @NotNull ChunkLoadCallback cb) {
+ getChunkAtAsync(block, true).thenAccept(cb::onLoad);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - (world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - (world coordinate / 16)
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(int x, int z, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(x, z, true).thenAccept(cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - (world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - (world coordinate / 16)
+ * @param gen Should we generate a chunk if it doesn't exists or not
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(int x, int z, boolean gen, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(x, z, gen).thenAccept(cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param loc Location of the chunk
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(@NotNull Location loc, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, true, cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param loc Location of the chunk
+ * @param gen Should the chunk generate
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(@NotNull Location loc, boolean gen, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, gen, cb);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param block Block to get the containing chunk from
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(@NotNull Block block, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true, cb);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param block Block to get the containing chunk from
+ * @param gen Should the chunk generate
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(@NotNull Block block, boolean gen, @NotNull java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen, cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(@NotNull Location loc) {
+ return getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @param gen Should the chunk generate
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(@NotNull Location loc, boolean gen) {
+ return getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, gen);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(@NotNull Block block) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @param gen Should the chunk generate
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(@NotNull Block block, boolean gen) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x X Coord
+ * @param z Z Coord
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(int x, int z) {
+ return getChunkAtAsync(x, z, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - (world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - (world coordinate / 16)
+ * @param gen Should we generate a chunk if it doesn't exists or not
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(int x, int z, boolean gen) {
+ return getChunkAtAsync(x, z, gen, false);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(@NotNull Location loc) {
+ return getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, true, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @param gen Should the chunk generate
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(@NotNull Location loc, boolean gen) {
+ return getChunkAtAsync((int)Math.floor(loc.getX()) >> 4, (int)Math.floor(loc.getZ()) >> 4, gen, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(@NotNull Block block) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @param gen Should the chunk generate
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(@NotNull Block block, boolean gen) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x X Coord
+ * @param z Z Coord
+ * @return Future that will resolve when the chunk is loaded
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsyncUrgently(int x, int z) {
+ return getChunkAtAsync(x, z, true, true);
+ }
+
+ @NotNull
+ java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(int x, int z, boolean gen, boolean urgent);
// Paper end
/**
diff --git a/src/main/java/org/bukkit/entity/Entity.java b/src/main/java/org/bukkit/entity/Entity.java
index f3dc2f7f45bea1a91171339a5d19461735845aee..4a7b4112192f317b2feed9dfa7713155183578b6 100644
--- a/src/main/java/org/bukkit/entity/Entity.java
+++ b/src/main/java/org/bukkit/entity/Entity.java
@@ -156,6 +156,33 @@ public interface Entity extends Metadatable, CommandSender, Nameable, Persistent
*/
public boolean teleport(@NotNull Entity destination, @NotNull TeleportCause cause);
+ // Paper start
+ /**
+ * Loads/Generates(in 1.13+) the Chunk asynchronously, and then teleports the entity when the chunk is ready.
+ * @param loc Location to teleport to
+ * @return A future that will be completed with the result of the teleport
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Boolean> teleportAsync(@NotNull Location loc) {
+ return teleportAsync(loc, TeleportCause.PLUGIN);
+ }
+ /**
+ * Loads/Generates(in 1.13+) the Chunk asynchronously, and then teleports the entity when the chunk is ready.
+ * @param loc Location to teleport to
+ * @param cause Reason for teleport
+ * @return A future that will be completed with the result of the teleport
+ */
+ @NotNull
+ public default java.util.concurrent.CompletableFuture<Boolean> teleportAsync(@NotNull Location loc, @NotNull TeleportCause cause) {
+ java.util.concurrent.CompletableFuture<Boolean> future = new java.util.concurrent.CompletableFuture<>();
+ loc.getWorld().getChunkAtAsyncUrgently(loc).thenAccept((chunk) -> future.complete(teleport(loc, cause))).exceptionally(ex -> {
+ future.completeExceptionally(ex);
+ return null;
+ });
+ return future;
+ }
+ // Paper end
+
/**
* Returns a list of entities within a bounding box centered around this
* entity