PaperMC/Spigot-API-Patches/Async-Chunks-API.patch
Shane Freeder 08b01ae4df Updated Upstream (Bukkit/CraftBukkit/Spigot)
Upstream has released updates that appears to apply and compile correctly.
This update has not been tested by PaperMC and as with ANY update, please do your own testing

Warning: this commit contains more mapping changes from upstream, As always, ensure that you
have working backups and test this build before deployment; Developers working on paper will,
yet again, need to delete their work/Minecraft/1.13.2 folder

Bukkit Changes:
7fca5fd4 SPIGOT-4558: Preserve user order in the face of copied defaults in configurations
15c9b1eb Ignore spurious slot IDs sent by client, e.g. in enchanting tables
5d2a10c5 SPIGOT-3747: Add API for force loaded chunks
d6dd2bb3 SPIGOT-3538: Add getHitBlockFace for ProjectileHitEvent
771db4aa SPIGOT-794: Call EntityPlaceEvent for Minecart placement
55462509 Add InventoryView#getSlotType
2f3ce5b6 Remove EntityTransformEvent and CustomItemTagContainer from draft API
f04ad7b6 Make ProjectileLaunchEvent extend EntitySpawnEvent
ccb85808 Define EntitySpawnEvent
b8cc3ebe Add PlayerItemDamageEvent
184a495d Ease ClassLoader Deadlocks Where Possible
11ac4728 Expand Boolean Prompt Values in Conversation API
aae62d51 Added getAllSessionData() to the Conversation API.
9290ff91 Add InventoryView#getInventory API
995e530f Add API to get / set base arrow damage

CraftBukkit Changes:
c4a67eed SPIGOT-4556: Fix plugins closing inventory during drop events
5be2ddcb Replace version constants with methods to prevent compiler inlining
a5b9c7b3 Use API method to create offset command completions
2bc7d1df SPIGOT-3747: Add API for force loaded chunks
a408f375 SPIGOT-3538: Add getHitBlockFace for ProjectileHitEvent
b54b9409 SPIGOT-2864: Make Arrow / Item setTicksLived behave like FallingBlock
79ded7a8 SPIGOT-1811: Death message not shown on respawn screen
b4a4f15d SPIGOT-943: InventoryCloseEvent called on death regardless of open inventory
0afed592 SPIGOT-794: Call EntityPlaceEvent for Minecart placement
2b2d084a Add InventoryView#getSlotType
01a9959a Do not use deprecated ItemSpawnEvent constructor
9642498d SPIGOT-4547: Call EntitySpawnEvent as general spawn fallback event
963f4a5f Add PlayerItemDamageEvent
63db0445 Add API to get / set base arrow damage
531c25d7 Add CraftMagicNumbers.MAPPINGS_VERSION for use by NMS plugins
d05c8b14 Mappings Update
bd36e200 SPIGOT-4551: Ignore invalid attribute modifier slots

Spigot Changes:
518206a1 Remove redundant trove depend
1959ad21 MC-11211,SPIGOT-4552: Fix placing double slabs at y = 255
29ab5e43 SPIGOT-3661: Allow arguments in restart-script
7cc46316 SPIGOT-852: Growth modifiers for beetroots, potatoes, carrots
82e117e1 Squelch "fatal: Resolve operation not in progress" message
0a1a68e7 Mappings Update & Patch Rebuild
2019-01-01 03:15:55 +00:00

400 lines
No EOL
17 KiB
Diff

From 0000000000000000000000000000000000000000 Mon Sep 17 00:00:00 2001
From: Aikar <aikar@aikar.co>
Date: Mon, 29 Feb 2016 17:43:33 -0600
Subject: [PATCH] Async Chunks API
Adds API's to load or generate chunks asynchronously.
Also adds utility methods to Entity to teleport asynchronously.
diff --git a/src/main/java/org/bukkit/World.java b/src/main/java/org/bukkit/World.java
index deabd400..92688252 100644
--- a/src/main/java/org/bukkit/World.java
+++ b/src/main/java/org/bukkit/World.java
@@ -0,0 +0,0 @@ public interface World extends PluginMessageRecipient, Metadatable {
public default Chunk getChunkAt(long chunkKey) {
return getChunkAt((int) chunkKey, (int) (chunkKey >> 32));
}
+
+ /**
+ * This is the Legacy API before Java 8 was supported. Java 8 Consumer is provided,
+ * as well as future support
+ *
+ * Used by {@link World#getChunkAtAsync(Location,ChunkLoadCallback)} methods
+ * to request a {@link Chunk} to be loaded, with this callback receiving
+ * the chunk when it is finished.
+ *
+ * This callback will be executed on synchronously on the main thread.
+ *
+ * Timing and order this callback is fired is intentionally not defined and
+ * and subject to change.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ */
+ @Deprecated
+ public static interface ChunkLoadCallback extends java.util.function.Consumer<Chunk> {
+ public void onLoad(Chunk chunk);
+
+ // backwards compat to old api
+ @Override
+ default void accept(Chunk chunk) {
+ onLoad(chunk);
+ }
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param x Chunk X-coordinate of the chunk - (world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - (world coordinate / 16)
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(int x, int z, ChunkLoadCallback cb) {
+ getChunkAtAsync(x, z, true).thenAccept(cb::onLoad);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param loc Location of the chunk
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(Location loc, ChunkLoadCallback cb) {
+ getChunkAtAsync(loc, true).thenAccept(cb::onLoad);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link ChunkLoadCallback} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @deprecated Use either the Future or the Consumer based methods
+ * @param block Block to get the containing chunk from
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ @Deprecated
+ public default void getChunkAtAsync(Block block, ChunkLoadCallback cb) {
+ getChunkAtAsync(block, true).thenAccept(cb::onLoad);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - (world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - (world coordinate / 16)
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(int x, int z, java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(x, z, true).thenAccept(cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - (world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - (world coordinate / 16)
+ * @param gen Should we generate a chunk if it doesn't exists or not
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(int x, int z, boolean gen, java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(x, z, gen).thenAccept(cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param loc Location of the chunk
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(Location loc, java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync((int)loc.getX() >> 4, (int)Math.floor(loc.getZ()) >> 4, true, cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given {@link Location}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param loc Location of the chunk
+ * @param gen Should the chunk generate
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(Location loc, boolean gen, java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync((int)loc.getX() >> 4, (int)Math.floor(loc.getZ()) >> 4, gen, cb);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param block Block to get the containing chunk from
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(Block block, java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true, cb);
+ }
+
+ /**
+ * Requests {@link Chunk} to be loaded that contains the given {@link Block}
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The {@link java.util.function.Consumer} will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param block Block to get the containing chunk from
+ * @param gen Should the chunk generate
+ * @param cb Callback to receive the chunk when it is loaded.
+ * will be executed synchronously
+ */
+ public default void getChunkAtAsync(Block block, boolean gen, java.util.function.Consumer<Chunk> cb) {
+ getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen, cb);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(Location loc) {
+ return getChunkAtAsync((int)loc.getX() >> 4, (int)Math.floor(loc.getZ()) >> 4, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param loc Location to load the corresponding chunk from
+ * @param gen Should the chunk generate
+ * @return Future that will resolve when the chunk is loaded
+ */
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(Location loc, boolean gen) {
+ return getChunkAtAsync((int)loc.getX() >> 4, (int)Math.floor(loc.getZ()) >> 4, gen);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @return Future that will resolve when the chunk is loaded
+ */
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(Block block) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ * @param block Block to load the corresponding chunk from
+ * @param gen Should the chunk generate
+ * @return Future that will resolve when the chunk is loaded
+ */
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(Block block, boolean gen) {
+ return getChunkAtAsync(block.getX() >> 4, block.getZ() >> 4, gen);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x X Coord
+ * @param z Z Coord
+ * @return Future that will resolve when the chunk is loaded
+ */
+ public default java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(int x, int z) {
+ return getChunkAtAsync(x, z, true);
+ }
+
+ /**
+ * Requests a {@link Chunk} to be loaded at the given coordinates
+ *
+ * This method makes no guarantee on how fast the chunk will load,
+ * and will return the chunk to the callback at a later time.
+ *
+ * You should use this method if you need a chunk but do not need it
+ * immediately, and you wish to let the server control the speed
+ * of chunk loads, keeping performance in mind.
+ *
+ * The future will always be executed synchronously
+ * on the main Server Thread.
+ *
+ * @param x Chunk X-coordinate of the chunk - (world coordinate / 16)
+ * @param z Chunk Z-coordinate of the chunk - (world coordinate / 16)
+ * @param gen Should we generate a chunk if it doesn't exists or not
+ * @return Future that will resolve when the chunk is loaded
+ */
+ public java.util.concurrent.CompletableFuture<Chunk> getChunkAtAsync(int x, int z, boolean gen);
// Paper end
/**
diff --git a/src/main/java/org/bukkit/entity/Entity.java b/src/main/java/org/bukkit/entity/Entity.java
index 2dd7a03c..59787c47 100644
--- a/src/main/java/org/bukkit/entity/Entity.java
+++ b/src/main/java/org/bukkit/entity/Entity.java
@@ -0,0 +0,0 @@ public interface Entity extends Metadatable, CommandSender, Nameable {
*/
public boolean teleport(Entity destination, TeleportCause cause);
+ // Paper start
+ /**
+ * Loads/Generates(in 1.13+) the Chunk asynchronously, and then teleports the entity when the chunk is ready.
+ * @param loc Location to teleport to
+ * @return A future that will be completed with the result of the teleport
+ */
+ public default java.util.concurrent.CompletableFuture<Boolean> teleportAsync(Location loc) {
+ return teleportAsync(loc, TeleportCause.PLUGIN);
+ }
+ /**
+ * Loads/Generates(in 1.13+) the Chunk asynchronously, and then teleports the entity when the chunk is ready.
+ * @param loc Location to teleport to
+ * @param cause Reason for teleport
+ * @return A future that will be completed with the result of the teleport
+ */
+ public default java.util.concurrent.CompletableFuture<Boolean> teleportAsync(Location loc, TeleportCause cause) {
+ java.util.concurrent.CompletableFuture<Boolean> future = new java.util.concurrent.CompletableFuture<>();
+ loc.getWorld().getChunkAtAsync(loc).thenAccept((chunk) -> future.complete(teleport(loc, cause)));
+ return future;
+ }
+ // Paper end
+
/**
* Returns a list of entities within a bounding box centered around this
* entity
--