PaperMC/paper-api/src/main/java/org/bukkit/Vector.java
Bukkit/Spigot 38b76fb99e Improved Vector with more methods and more Javadocs.
By: sk89q <the.sk89q@gmail.com>
2011-01-03 13:49:40 -08:00

614 lines
13 KiB
Java

package org.bukkit;
import java.util.Random;
/**
* Represents a mutable vector. Because the components of Vectors are mutable,
* storing Vectors long term may be dangerous if passing code modifies the
* Vector later. If you want to keep around a Vector, it may be wise to call
* <code>clone()</code> in order to get a copy.
*
* @author sk89q
*/
public class Vector implements Cloneable {
private static final long serialVersionUID = -2657651106777219169L;
private static Random random = new Random();
/**
* Threshold for fuzzy equals().
*/
private static final double epsilon = 0.000001;
protected double x;
protected double y;
protected double z;
/**
* Construct the vector with all components as 0.
*/
public Vector() {
this.x = 0;
this.y = 0;
this.z = 0;
}
/**
* Construct the vector with provided integer components.
*
* @param x
* @param y
* @param z
*/
public Vector(int x, int y, int z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Construct the vector with provided double components.
*
* @param x
* @param y
* @param z
*/
public Vector(double x, double y, double z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Construct the vector with provided float components.
*
* @param x
* @param y
* @param z
*/
public Vector(float x, float y, float z) {
this.x = x;
this.y = y;
this.z = z;
}
/**
* Adds the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector add(Vector vec) {
x += vec.x;
y += vec.y;
z += vec.z;
return this;
}
/**
* Subtracts the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector subtract(Vector vec) {
x -= vec.x;
y -= vec.y;
z -= vec.z;
return this;
}
/**
* Multiplies the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector multiply(Vector vec) {
x *= vec.x;
y *= vec.y;
z *= vec.z;
return this;
}
/**
* Divides the vector by another.
*
* @param vec
* @return the same vector
*/
public Vector divide(Vector vec) {
x /= vec.x;
y /= vec.y;
z /= vec.z;
return this;
}
/**
* Gets the magnitude of the vector, defined as sqrt(x^2+y^2+z^2). The value
* of this method is not cached and uses a costly square-root function, so
* do not repeatedly call this method to get the vector's magnitude. NaN
* will be returned if the inner result of the sqrt() function overflows,
* which will be caused if the length is too long.
*
* @return the magnitude
*/
public double length() {
return Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2) + Math.pow(z, 2));
}
/**
* Gets the magnitude of the vector squared.
*
* @return the magnitude
*/
public double lengthSquared() {
return Math.pow(x, 2) + Math.pow(y, 2) + Math.pow(z, 2);
}
/**
* Get the distance between this vector and another. The value
* of this method is not cached and uses a costly square-root function, so
* do not repeatedly call this method to get the vector's magnitude. NaN
* will be returned if the inner result of the sqrt() function overflows,
* which will be caused if the distance is too long.
*
* @return the distance
*/
public double distance(Vector o) {
return Math.sqrt(Math.pow(x - o.x, 2) + Math.pow(y - o.y, 2)
+ Math.pow(z - o.z, 2));
}
/**
* Get the squared distance between this vector and another.
*
* @return the distance
*/
public double distanceSquared(Vector o) {
return Math.pow(x - o.x, 2) + Math.pow(y - o.y, 2)
+ Math.pow(z - o.z, 2);
}
/**
* Gets the angle between this vector and another in radians.
*
* @param other
* @return angle in radians
*/
public float angle(Vector other) {
double dot = dot(other) / (length() * other.length());
return (float)Math.acos(dot);
}
/**
* Sets this vector to the midpoint between this vector and another.
*
* @param other
* @return this same vector (now a midpoint)
*/
public Vector midpoint(Vector other) {
x = (x + other.x) / 2;
y = (y + other.y) / 2;
z = (z + other.z) / 2;
return this;
}
/**
* Gets a new midpoint vector between this vector and another.
*
* @param other
* @return a new midpoint vector
*/
public Vector getMidpoint(Vector other) {
x = (x + other.x) / 2;
y = (y + other.y) / 2;
z = (z + other.z) / 2;
return new Vector(x, y, z);
}
/**
* Performs scalar multiplication, multiplying all components with a scalar.
*
* @param m
* @return the same vector
*/
public Vector multiply(int m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Performs scalar multiplication, multiplying all components with a scalar.
*
* @param m
* @return the same vector
*/
public Vector multiply(double m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Performs scalar multiplication, multiplying all components with a scalar.
*
* @param m
* @return the same vector
*/
public Vector multiply(float m) {
x *= m;
y *= m;
z *= m;
return this;
}
/**
* Calculates the dot product of this vector with another. The dot product
* is defined as x1*x2+y1*y2+z1*z2. The returned value is a scalar.
*
* @param other
* @return dot product
*/
public double dot(Vector other) {
return x * other.x + y * other.y + z * other.z;
}
/**
* Calculates the cross product of this vector with another. The cross
* product is defined as:
*
* x = y1 * z2 - y2 * z1<br/>
* y = z1 * x2 - z2 * x1<br/>
* z = x1 * y2 - x2 * y1
*
* @param o
* @return the same vector
*/
public Vector crossProduct(Vector o) {
double newX = y * o.z - o.y * z;
double newY = z * o.x - o.z * x;
double newZ = x * o.y - o.x * y;
x = newX;
y = newY;
z = newZ;
return this;
}
/**
* Converts this vector to a unit vector (a vector with length of 1).
*
* @return the same vector
*/
public Vector normalize() {
double length = length();
x /= length;
y /= length;
z /= length;
return this;
}
/**
* Zero this vector's components.
*
* @return the same vector
*/
public Vector zero() {
x = 0;
y = 0;
z = 0;
return this;
}
/**
* Returns whether this vector is in an axis-aligned bounding box.
* The minimum and maximum vectors given must be truly the minimum and
* maximum X, Y and Z components.
*
* @param min
* @param max
* @return whether this vector is in the AABB
*/
public boolean isInAABB(Vector min, Vector max) {
return x >= min.x && x <= max.x
&& y >= min.y && y <= max.y
&& z >= min.z && z <= max.z;
}
/**
* Returns whether this vector is within a sphere.
*
* @param origin
* @param radius
* @return whether this vector is in the sphere
*/
public boolean isInSphere(Vector origin, double radius) {
return (Math.pow(origin.x - x, 2)
+ Math.pow(origin.y - y, 2)
+ Math.pow(origin.z - z, 2))
<= Math.pow(radius, 2);
}
/**
* Gets the X component.
*
* @return
*/
public double getX() {
return x;
}
/**
* Gets the floored value of the X component, indicating the block that
* this vector is contained with.
*
* @return block X
*/
public int getBlockX() {
return (int)Math.floor(x);
}
/**
* Gets the Y component.
*
* @return
*/
public double getY() {
return y;
}
/**
* Gets the floored value of the Y component, indicating the block that
* this vector is contained with.
*
* @return block y
*/
public int getBlockY() {
return (int)Math.floor(y);
}
/**
* Gets the Z component.
*
* @return
*/
public double getZ() {
return z;
}
/**
* Gets the floored value of the Z component, indicating the block that
* this vector is contained with.
*
* @return block z
*/
public int getBlockZ() {
return (int)Math.floor(z);
}
/**
* Set the X component.
*
* @param x
* @return x
*/
public Vector setX(int x) {
this.x = x;
return this;
}
/**
* Set the X component.
*
* @param x
* @return x
*/
public Vector setX(double x) {
this.x = x;
return this;
}
/**
* Set the X component.
*
* @param x
* @return x
*/
public Vector setX(float x) {
this.x = x;
return this;
}
/**
* Set the Y component.
*
* @param y
* @return y
*/
public Vector setY(int y) {
this.y = y;
return this;
}
/**
* Set the Y component.
*
* @param y
* @return y
*/
public Vector setY(double y) {
this.y = y;
return this;
}
/**
* Set the Y component.
*
* @param y
* @return y
*/
public Vector setY(float y) {
this.y = y;
return this;
}
/**
* Set the Z component.
*
* @param z
* @return z
*/
public Vector setZ(int z) {
this.z = z;
return this;
}
/**
* Set the Z component.
*
* @param z
* @return z
*/
public Vector setZ(double z) {
this.z = z;
return this;
}
/**
* Set the Z component.
*
* @param z
* @return z
*/
public Vector setZ(float z) {
this.z = z;
return this;
}
/**
* Checks to see if two objects are equal.
*
* Only two Vectors can ever return true. This method uses a fuzzy match
* to account for floating point errors. The epsilon can be retrieved
* with epsilon.
*/
@Override
public boolean equals(Object obj) {
if (!(obj instanceof Vector)) {
return false;
}
Vector other = (Vector)obj;
return Math.abs(x - other.x) < epsilon
&& Math.abs(y - other.y) < epsilon
&& Math.abs(z - other.z) < epsilon;
}
/**
* Returns a hash code for this vector. Due to floating point errors, this
* hash code should not be used in hash tables of any sort.
*
* @return hash code
*/
@Override
public int hashCode() {
return ((int)Double.doubleToLongBits(x) >> 13) ^
((int)Double.doubleToLongBits(y) >> 7) ^
(int)Double.doubleToLongBits(z);
}
/**
* Get a new vector.
*
* @return vector
*/
@Override
public Vector clone() {
return new Vector(x, y, z);
}
/**
* Returns this vector's components as x,y,z.
*
*/
@Override
public String toString() {
return x + "," + y + "," + z;
}
/**
* Gets a Location version of this vector with yaw and pitch being 0.
*
* @param world
* @return the location
*/
public Location toLocation(World world) {
return new Location(world, x, y, z);
}
/**
* Gets a Location version of this vector.
*
* @param world
* @return the location
*/
public Location toLocation(World world, float yaw, float pitch) {
return new Location(world, x, y, z, yaw, pitch);
}
/**
* Get the threshold used for equals().
*
* @return
*/
public static double getEpsilon() {
return epsilon;
}
/**
* Gets the minimum components of two vectors.
*
* @param v1
* @param v2
* @return minimum
*/
public static Vector getMinimum(Vector v1, Vector v2) {
return new Vector(
Math.min(v1.x, v2.x),
Math.min(v1.y, v2.y),
Math.min(v1.z, v2.z));
}
/**
* Gets the maximum components of two vectors.
*
* @param v1
* @param v2
* @return maximum
*/
public static Vector getMaximum(Vector v1, Vector v2) {
return new Vector(
Math.max(v1.x, v2.x),
Math.max(v1.y, v2.y),
Math.max(v1.z, v2.z));
}
/**
* Gets a random vector with components having a random value between
* 0 and 1.
*
* @return
*/
public static Vector getRandom() {
return new Vector(
random.nextDouble(),
random.nextDouble(),
random.nextDouble());
}
}