mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-23 00:41:55 +01:00
86 lines
2.6 KiB
C++
86 lines
2.6 KiB
C++
|
/*
|
||
|
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
|
||
|
*
|
||
|
* Use of this source code is governed by a BSD-style license
|
||
|
* that can be found in the LICENSE file in the root of the source
|
||
|
* tree. An additional intellectual property rights grant can be found
|
||
|
* in the file PATENTS. All contributing project authors may
|
||
|
* be found in the AUTHORS file in the root of the source tree.
|
||
|
*/
|
||
|
#include "rtc_base/random.h"
|
||
|
|
||
|
#include <math.h>
|
||
|
|
||
|
#include "rtc_base/checks.h"
|
||
|
#include "rtc_base/numerics/safe_conversions.h"
|
||
|
|
||
|
namespace webrtc {
|
||
|
|
||
|
Random::Random(uint64_t seed) {
|
||
|
RTC_DCHECK(seed != 0x0ull);
|
||
|
state_ = seed;
|
||
|
}
|
||
|
|
||
|
uint32_t Random::Rand(uint32_t t) {
|
||
|
// Casting the output to 32 bits will give an almost uniform number.
|
||
|
// Pr[x=0] = (2^32-1) / (2^64-1)
|
||
|
// Pr[x=k] = 2^32 / (2^64-1) for k!=0
|
||
|
// Uniform would be Pr[x=k] = 2^32 / 2^64 for all 32-bit integers k.
|
||
|
uint32_t x = NextOutput();
|
||
|
// If x / 2^32 is uniform on [0,1), then x / 2^32 * (t+1) is uniform on
|
||
|
// the interval [0,t+1), so the integer part is uniform on [0,t].
|
||
|
uint64_t result = x * (static_cast<uint64_t>(t) + 1);
|
||
|
result >>= 32;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
uint32_t Random::Rand(uint32_t low, uint32_t high) {
|
||
|
RTC_DCHECK(low <= high);
|
||
|
return Rand(high - low) + low;
|
||
|
}
|
||
|
|
||
|
int32_t Random::Rand(int32_t low, int32_t high) {
|
||
|
RTC_DCHECK(low <= high);
|
||
|
const int64_t low_i64{low};
|
||
|
return rtc::dchecked_cast<int32_t>(
|
||
|
Rand(rtc::dchecked_cast<uint32_t>(high - low_i64)) + low_i64);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
float Random::Rand<float>() {
|
||
|
double result = NextOutput() - 1;
|
||
|
result = result / 0xFFFFFFFFFFFFFFFEull;
|
||
|
return static_cast<float>(result);
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
double Random::Rand<double>() {
|
||
|
double result = NextOutput() - 1;
|
||
|
result = result / 0xFFFFFFFFFFFFFFFEull;
|
||
|
return result;
|
||
|
}
|
||
|
|
||
|
template <>
|
||
|
bool Random::Rand<bool>() {
|
||
|
return Rand(0, 1) == 1;
|
||
|
}
|
||
|
|
||
|
double Random::Gaussian(double mean, double standard_deviation) {
|
||
|
// Creating a Normal distribution variable from two independent uniform
|
||
|
// variables based on the Box-Muller transform, which is defined on the
|
||
|
// interval (0, 1]. Note that we rely on NextOutput to generate integers
|
||
|
// in the range [1, 2^64-1]. Normally this behavior is a bit frustrating,
|
||
|
// but here it is exactly what we need.
|
||
|
const double kPi = 3.14159265358979323846;
|
||
|
double u1 = static_cast<double>(NextOutput()) / 0xFFFFFFFFFFFFFFFFull;
|
||
|
double u2 = static_cast<double>(NextOutput()) / 0xFFFFFFFFFFFFFFFFull;
|
||
|
return mean + standard_deviation * sqrt(-2 * log(u1)) * cos(2 * kPi * u2);
|
||
|
}
|
||
|
|
||
|
double Random::Exponential(double lambda) {
|
||
|
double uniform = Rand<double>();
|
||
|
return -log(uniform) / lambda;
|
||
|
}
|
||
|
|
||
|
} // namespace webrtc
|