Telegram-Android/TMessagesProj/jni/libwebp/utils/quant_levels_dec.c

280 lines
8.6 KiB
C
Raw Normal View History

2015-01-02 23:15:07 +01:00
// Copyright 2013 Google Inc. All Rights Reserved.
//
// Use of this source code is governed by a BSD-style license
// that can be found in the COPYING file in the root of the source
// tree. An additional intellectual property rights grant can be found
// in the file PATENTS. All contributing project authors may
// be found in the AUTHORS file in the root of the source tree.
// -----------------------------------------------------------------------------
//
// Implement gradient smoothing: we replace a current alpha value by its
// surrounding average if it's close enough (that is: the change will be less
// than the minimum distance between two quantized level).
// We use sliding window for computing the 2d moving average.
//
// Author: Skal (pascal.massimino@gmail.com)
#include "./quant_levels_dec.h"
#include <string.h> // for memset
#include "./utils.h"
// #define USE_DITHERING // uncomment to enable ordered dithering (not vital)
#define FIX 16 // fix-point precision for averaging
#define LFIX 2 // extra precision for look-up table
#define LUT_SIZE ((1 << (8 + LFIX)) - 1) // look-up table size
#if defined(USE_DITHERING)
#define DFIX 4 // extra precision for ordered dithering
#define DSIZE 4 // dithering size (must be a power of two)
// cf. http://en.wikipedia.org/wiki/Ordered_dithering
static const uint8_t kOrderedDither[DSIZE][DSIZE] = {
{ 0, 8, 2, 10 }, // coefficients are in DFIX fixed-point precision
{ 12, 4, 14, 6 },
{ 3, 11, 1, 9 },
{ 15, 7, 13, 5 }
};
#else
#define DFIX 0
#endif
typedef struct {
int width_, height_; // dimension
int row_; // current input row being processed
uint8_t* src_; // input pointer
uint8_t* dst_; // output pointer
int radius_; // filter radius (=delay)
int scale_; // normalization factor, in FIX bits precision
void* mem_; // all memory
// various scratch buffers
uint16_t* start_;
uint16_t* cur_;
uint16_t* end_;
uint16_t* top_;
uint16_t* average_;
// input levels distribution
int num_levels_; // number of quantized levels
int min_, max_; // min and max level values
int min_level_dist_; // smallest distance between two consecutive levels
int16_t* correction_; // size = 1 + 2*LUT_SIZE -> ~4k memory
} SmoothParams;
//------------------------------------------------------------------------------
#define CLIP_MASK (int)(~0U << (8 + DFIX))
static WEBP_INLINE uint8_t clip_8b(int v) {
return (!(v & CLIP_MASK)) ? (uint8_t)(v >> DFIX) : (v < 0) ? 0u : 255u;
}
// vertical accumulation
static void VFilter(SmoothParams* const p) {
const uint8_t* src = p->src_;
const int w = p->width_;
uint16_t* const cur = p->cur_;
const uint16_t* const top = p->top_;
uint16_t* const out = p->end_;
uint16_t sum = 0; // all arithmetic is modulo 16bit
int x;
for (x = 0; x < w; ++x) {
uint16_t new_value;
sum += src[x];
new_value = top[x] + sum;
out[x] = new_value - cur[x]; // vertical sum of 'r' pixels.
cur[x] = new_value;
}
// move input pointers one row down
p->top_ = p->cur_;
p->cur_ += w;
if (p->cur_ == p->end_) p->cur_ = p->start_; // roll-over
// We replicate edges, as it's somewhat easier as a boundary condition.
// That's why we don't update the 'src' pointer on top/bottom area:
if (p->row_ >= 0 && p->row_ < p->height_ - 1) {
p->src_ += p->width_;
}
}
// horizontal accumulation. We use mirror replication of missing pixels, as it's
// a little easier to implement (surprisingly).
static void HFilter(SmoothParams* const p) {
const uint16_t* const in = p->end_;
uint16_t* const out = p->average_;
const uint32_t scale = p->scale_;
const int w = p->width_;
const int r = p->radius_;
int x;
for (x = 0; x <= r; ++x) { // left mirroring
const uint16_t delta = in[x + r - 1] + in[r - x];
out[x] = (delta * scale) >> FIX;
}
for (; x < w - r; ++x) { // bulk middle run
const uint16_t delta = in[x + r] - in[x - r - 1];
out[x] = (delta * scale) >> FIX;
}
for (; x < w; ++x) { // right mirroring
const uint16_t delta =
2 * in[w - 1] - in[2 * w - 2 - r - x] - in[x - r - 1];
out[x] = (delta * scale) >> FIX;
}
}
// emit one filtered output row
static void ApplyFilter(SmoothParams* const p) {
const uint16_t* const average = p->average_;
const int w = p->width_;
const int16_t* const correction = p->correction_;
#if defined(USE_DITHERING)
const uint8_t* const dither = kOrderedDither[p->row_ % DSIZE];
#endif
uint8_t* const dst = p->dst_;
int x;
for (x = 0; x < w; ++x) {
const int v = dst[x];
if (v < p->max_ && v > p->min_) {
const int c = (v << DFIX) + correction[average[x] - (v << LFIX)];
#if defined(USE_DITHERING)
dst[x] = clip_8b(c + dither[x % DSIZE]);
#else
dst[x] = clip_8b(c);
#endif
}
}
p->dst_ += w; // advance output pointer
}
//------------------------------------------------------------------------------
// Initialize correction table
static void InitCorrectionLUT(int16_t* const lut, int min_dist) {
// The correction curve is:
// f(x) = x for x <= threshold2
// f(x) = 0 for x >= threshold1
// and a linear interpolation for range x=[threshold2, threshold1]
// (along with f(-x) = -f(x) symmetry).
// Note that: threshold2 = 3/4 * threshold1
const int threshold1 = min_dist << LFIX;
const int threshold2 = (3 * threshold1) >> 2;
const int max_threshold = threshold2 << DFIX;
const int delta = threshold1 - threshold2;
int i;
for (i = 1; i <= LUT_SIZE; ++i) {
int c = (i <= threshold2) ? (i << DFIX)
: (i < threshold1) ? max_threshold * (threshold1 - i) / delta
: 0;
c >>= LFIX;
lut[+i] = +c;
lut[-i] = -c;
}
lut[0] = 0;
}
static void CountLevels(const uint8_t* const data, int size,
SmoothParams* const p) {
int i, last_level;
uint8_t used_levels[256] = { 0 };
p->min_ = 255;
p->max_ = 0;
for (i = 0; i < size; ++i) {
const int v = data[i];
if (v < p->min_) p->min_ = v;
if (v > p->max_) p->max_ = v;
used_levels[v] = 1;
}
// Compute the mininum distance between two non-zero levels.
p->min_level_dist_ = p->max_ - p->min_;
last_level = -1;
for (i = 0; i < 256; ++i) {
if (used_levels[i]) {
++p->num_levels_;
if (last_level >= 0) {
const int level_dist = i - last_level;
if (level_dist < p->min_level_dist_) {
p->min_level_dist_ = level_dist;
}
}
last_level = i;
}
}
}
// Initialize all params.
static int InitParams(uint8_t* const data, int width, int height,
int radius, SmoothParams* const p) {
const int R = 2 * radius + 1; // total size of the kernel
const size_t size_scratch_m = (R + 1) * width * sizeof(*p->start_);
const size_t size_m = width * sizeof(*p->average_);
const size_t size_lut = (1 + 2 * LUT_SIZE) * sizeof(*p->correction_);
const size_t total_size = size_scratch_m + size_m + size_lut;
uint8_t* mem = (uint8_t*)WebPSafeMalloc(1U, total_size);
if (mem == NULL) return 0;
p->mem_ = (void*)mem;
p->start_ = (uint16_t*)mem;
p->cur_ = p->start_;
p->end_ = p->start_ + R * width;
p->top_ = p->end_ - width;
memset(p->top_, 0, width * sizeof(*p->top_));
mem += size_scratch_m;
p->average_ = (uint16_t*)mem;
mem += size_m;
p->width_ = width;
p->height_ = height;
p->src_ = data;
p->dst_ = data;
p->radius_ = radius;
p->scale_ = (1 << (FIX + LFIX)) / (R * R); // normalization constant
p->row_ = -radius;
// analyze the input distribution so we can best-fit the threshold
CountLevels(data, width * height, p);
// correction table
p->correction_ = ((int16_t*)mem) + LUT_SIZE;
InitCorrectionLUT(p->correction_, p->min_level_dist_);
return 1;
}
static void CleanupParams(SmoothParams* const p) {
WebPSafeFree(p->mem_);
}
int WebPDequantizeLevels(uint8_t* const data, int width, int height,
int strength) {
const int radius = 4 * strength / 100;
if (strength < 0 || strength > 100) return 0;
if (data == NULL || width <= 0 || height <= 0) return 0; // bad params
if (radius > 0) {
SmoothParams p;
memset(&p, 0, sizeof(p));
if (!InitParams(data, width, height, radius, &p)) return 0;
if (p.num_levels_ > 2) {
for (; p.row_ < p.height_; ++p.row_) {
VFilter(&p); // accumulate average of input
// Need to wait few rows in order to prime the filter,
// before emitting some output.
if (p.row_ >= p.radius_) {
HFilter(&p);
ApplyFilter(&p);
}
}
}
CleanupParams(&p);
}
return 1;
}