Telegram-Android/TMessagesProj/jni/exoplayer/libFLAC/fixed_intrin_ssse3.c

244 lines
11 KiB
C
Raw Normal View History

2018-07-30 09:07:02 +07:00
/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000-2009 Josh Coalson
* Copyright (C) 2011-2016 Xiph.Org Foundation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "private/cpu.h"
#ifndef FLAC__INTEGER_ONLY_LIBRARY
#ifndef FLAC__NO_ASM
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
#include "private/fixed.h"
#ifdef FLAC__SSSE3_SUPPORTED
#include <tmmintrin.h> /* SSSE3 */
#include <math.h>
#include "private/macros.h"
#include "share/compat.h"
#include "FLAC/assert.h"
#ifdef FLAC__CPU_IA32
#define m128i_to_i64(dest, src) _mm_storel_epi64((__m128i*)&dest, src)
#else
#define m128i_to_i64(dest, src) dest = _mm_cvtsi128_si64(src)
#endif
FLAC__SSE_TARGET("ssse3")
uint32_t FLAC__fixed_compute_best_predictor_intrin_ssse3(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
{
FLAC__uint32 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
uint32_t i, order;
__m128i total_err0, total_err1, total_err2;
{
FLAC__int32 itmp;
__m128i last_error;
last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0
itmp = data[-2];
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1
itmp -= data[-3];
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2
itmp -= data[-3] - data[-4];
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3
total_err0 = total_err1 = _mm_setzero_si128();
for(i = 0; i < data_len; i++) {
__m128i err0, err1;
err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0
err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0
#if 1 /* OPT_SSE */
err1 = _mm_sub_epi32(err1, last_error);
last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2
err1 = _mm_sub_epi32(err1, last_error);
last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1
err1 = _mm_sub_epi32(err1, last_error);
last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
#else
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
#endif
last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3
err0 = _mm_abs_epi32(err0);
err1 = _mm_abs_epi32(err1);
total_err0 = _mm_add_epi32(total_err0, err0); // 0 0 0 te0
total_err1 = _mm_add_epi32(total_err1, err1); // te1 te2 te3 te4
}
}
total_error_0 = _mm_cvtsi128_si32(total_err0);
total_err2 = total_err1; // te1 te2 te3 te4
total_err1 = _mm_srli_si128(total_err1, 8); // 0 0 te1 te2
total_error_4 = _mm_cvtsi128_si32(total_err2);
total_error_2 = _mm_cvtsi128_si32(total_err1);
total_err2 = _mm_srli_si128(total_err2, 4); // 0 te1 te2 te3
total_err1 = _mm_srli_si128(total_err1, 4); // 0 0 0 te1
total_error_3 = _mm_cvtsi128_si32(total_err2);
total_error_1 = _mm_cvtsi128_si32(total_err1);
/* prefer higher order */
if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
order = 0;
else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
order = 1;
else if(total_error_2 < flac_min(total_error_3, total_error_4))
order = 2;
else if(total_error_3 < total_error_4)
order = 3;
else
order = 4;
/* Estimate the expected number of bits per residual signal sample. */
/* 'total_error*' is linearly related to the variance of the residual */
/* signal, so we use it directly to compute E(|x|) */
FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
return order;
}
FLAC__SSE_TARGET("ssse3")
uint32_t FLAC__fixed_compute_best_predictor_wide_intrin_ssse3(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1])
{
FLAC__uint64 total_error_0, total_error_1, total_error_2, total_error_3, total_error_4;
uint32_t i, order;
__m128i total_err0, total_err1, total_err3;
{
FLAC__int32 itmp;
__m128i last_error, zero = _mm_setzero_si128();
last_error = _mm_cvtsi32_si128(data[-1]); // 0 0 0 le0
itmp = data[-2];
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 0 le0 le1
itmp -= data[-3];
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // 0 le0 le1 le2
itmp -= data[-3] - data[-4];
last_error = _mm_shuffle_epi32(last_error, _MM_SHUFFLE(2,1,0,0));
last_error = _mm_sub_epi32(last_error, _mm_cvtsi32_si128(itmp)); // le0 le1 le2 le3
total_err0 = total_err1 = total_err3 = _mm_setzero_si128();
for(i = 0; i < data_len; i++) {
__m128i err0, err1;
err0 = _mm_cvtsi32_si128(data[i]); // 0 0 0 e0
err1 = _mm_shuffle_epi32(err0, _MM_SHUFFLE(0,0,0,0)); // e0 e0 e0 e0
#if 1 /* OPT_SSE */
err1 = _mm_sub_epi32(err1, last_error);
last_error = _mm_srli_si128(last_error, 4); // 0 le0 le1 le2
err1 = _mm_sub_epi32(err1, last_error);
last_error = _mm_srli_si128(last_error, 4); // 0 0 le0 le1
err1 = _mm_sub_epi32(err1, last_error);
last_error = _mm_srli_si128(last_error, 4); // 0 0 0 le0
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
#else
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 8)); // le0 le1 le2+le0 le3+le1
last_error = _mm_add_epi32(last_error, _mm_srli_si128(last_error, 4)); // le0 le1+le0 le2+le0+le1 le3+le1+le2+le0
err1 = _mm_sub_epi32(err1, last_error); // e1 e2 e3 e4
#endif
last_error = _mm_alignr_epi8(err0, err1, 4); // e0 e1 e2 e3
err0 = _mm_abs_epi32(err0);
err1 = _mm_abs_epi32(err1); // |e1| |e2| |e3| |e4|
total_err0 = _mm_add_epi64(total_err0, err0); // 0 te0
err0 = _mm_unpacklo_epi32(err1, zero); // 0 |e3| 0 |e4|
err1 = _mm_unpackhi_epi32(err1, zero); // 0 |e1| 0 |e2|
total_err3 = _mm_add_epi64(total_err3, err0); // te3 te4
total_err1 = _mm_add_epi64(total_err1, err1); // te1 te2
}
}
m128i_to_i64(total_error_0, total_err0);
m128i_to_i64(total_error_4, total_err3);
m128i_to_i64(total_error_2, total_err1);
total_err3 = _mm_srli_si128(total_err3, 8); // 0 te3
total_err1 = _mm_srli_si128(total_err1, 8); // 0 te1
m128i_to_i64(total_error_3, total_err3);
m128i_to_i64(total_error_1, total_err1);
/* prefer higher order */
if(total_error_0 < flac_min(flac_min(flac_min(total_error_1, total_error_2), total_error_3), total_error_4))
order = 0;
else if(total_error_1 < flac_min(flac_min(total_error_2, total_error_3), total_error_4))
order = 1;
else if(total_error_2 < flac_min(total_error_3, total_error_4))
order = 2;
else if(total_error_3 < total_error_4)
order = 3;
else
order = 4;
/* Estimate the expected number of bits per residual signal sample. */
/* 'total_error*' is linearly related to the variance of the residual */
/* signal, so we use it directly to compute E(|x|) */
FLAC__ASSERT(data_len > 0 || total_error_0 == 0);
FLAC__ASSERT(data_len > 0 || total_error_1 == 0);
FLAC__ASSERT(data_len > 0 || total_error_2 == 0);
FLAC__ASSERT(data_len > 0 || total_error_3 == 0);
FLAC__ASSERT(data_len > 0 || total_error_4 == 0);
residual_bits_per_sample[0] = (float)((total_error_0 > 0) ? log(M_LN2 * (double)total_error_0 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[1] = (float)((total_error_1 > 0) ? log(M_LN2 * (double)total_error_1 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[2] = (float)((total_error_2 > 0) ? log(M_LN2 * (double)total_error_2 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[3] = (float)((total_error_3 > 0) ? log(M_LN2 * (double)total_error_3 / (double)data_len) / M_LN2 : 0.0);
residual_bits_per_sample[4] = (float)((total_error_4 > 0) ? log(M_LN2 * (double)total_error_4 / (double)data_len) / M_LN2 : 0.0);
return order;
}
#endif /* FLAC__SSSE3_SUPPORTED */
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
#endif /* FLAC__NO_ASM */
#endif /* FLAC__INTEGER_ONLY_LIBRARY */