Telegram-Android/TMessagesProj/jni/boringssl/tool/server.cc

363 lines
11 KiB
C++
Raw Normal View History

2019-12-31 14:08:08 +01:00
/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/base.h>
#include <memory>
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/ssl.h>
#include "internal.h"
#include "transport_common.h"
static const struct argument kArguments[] = {
{
"-accept", kRequiredArgument,
"The port of the server to bind on; eg 45102",
},
{
"-cipher", kOptionalArgument,
"An OpenSSL-style cipher suite string that configures the offered "
"ciphers",
},
{
"-curves", kOptionalArgument,
"An OpenSSL-style ECDH curves list that configures the offered curves",
},
{
"-max-version", kOptionalArgument,
"The maximum acceptable protocol version",
},
{
"-min-version", kOptionalArgument,
"The minimum acceptable protocol version",
},
{
"-key", kOptionalArgument,
"PEM-encoded file containing the private key. A self-signed "
"certificate is generated at runtime if this argument is not provided.",
},
{
"-cert", kOptionalArgument,
"PEM-encoded file containing the leaf certificate and optional "
"certificate chain. This is taken from the -key argument if this "
"argument is not provided.",
},
{
"-ocsp-response", kOptionalArgument, "OCSP response file to send",
},
{
"-loop", kBooleanArgument,
"The server will continue accepting new sequential connections.",
},
{
"-early-data", kBooleanArgument, "Allow early data",
},
{
"-www", kBooleanArgument,
"The server will print connection information in response to a "
"HTTP GET request.",
},
{
"-debug", kBooleanArgument,
"Print debug information about the handshake",
},
{
"-require-any-client-cert", kBooleanArgument,
"The server will require a client certificate.",
},
{
"-jdk11-workaround", kBooleanArgument,
"Enable the JDK 11 workaround",
},
{
"", kOptionalArgument, "",
},
};
static bool LoadOCSPResponse(SSL_CTX *ctx, const char *filename) {
ScopedFILE f(fopen(filename, "rb"));
std::vector<uint8_t> data;
if (f == nullptr ||
!ReadAll(&data, f.get())) {
fprintf(stderr, "Error reading %s.\n", filename);
return false;
}
if (!SSL_CTX_set_ocsp_response(ctx, data.data(), data.size())) {
return false;
}
return true;
}
static bssl::UniquePtr<EVP_PKEY> MakeKeyPairForSelfSignedCert() {
bssl::UniquePtr<EC_KEY> ec_key(EC_KEY_new_by_curve_name(NID_X9_62_prime256v1));
if (!ec_key || !EC_KEY_generate_key(ec_key.get())) {
fprintf(stderr, "Failed to generate key pair.\n");
return nullptr;
}
bssl::UniquePtr<EVP_PKEY> evp_pkey(EVP_PKEY_new());
if (!evp_pkey || !EVP_PKEY_assign_EC_KEY(evp_pkey.get(), ec_key.release())) {
fprintf(stderr, "Failed to assign key pair.\n");
return nullptr;
}
return evp_pkey;
}
static bssl::UniquePtr<X509> MakeSelfSignedCert(EVP_PKEY *evp_pkey,
const int valid_days) {
bssl::UniquePtr<X509> x509(X509_new());
uint32_t serial;
RAND_bytes(reinterpret_cast<uint8_t*>(&serial), sizeof(serial));
ASN1_INTEGER_set(X509_get_serialNumber(x509.get()), serial >> 1);
X509_gmtime_adj(X509_get_notBefore(x509.get()), 0);
X509_gmtime_adj(X509_get_notAfter(x509.get()), 60 * 60 * 24 * valid_days);
X509_NAME* subject = X509_get_subject_name(x509.get());
X509_NAME_add_entry_by_txt(subject, "C", MBSTRING_ASC,
reinterpret_cast<const uint8_t *>("US"), -1, -1,
0);
X509_NAME_add_entry_by_txt(subject, "O", MBSTRING_ASC,
reinterpret_cast<const uint8_t *>("BoringSSL"), -1,
-1, 0);
X509_set_issuer_name(x509.get(), subject);
if (!X509_set_pubkey(x509.get(), evp_pkey)) {
fprintf(stderr, "Failed to set public key.\n");
return nullptr;
}
if (!X509_sign(x509.get(), evp_pkey, EVP_sha256())) {
fprintf(stderr, "Failed to sign certificate.\n");
return nullptr;
}
return x509;
}
static void InfoCallback(const SSL *ssl, int type, int value) {
switch (type) {
case SSL_CB_HANDSHAKE_START:
fprintf(stderr, "Handshake started.\n");
break;
case SSL_CB_HANDSHAKE_DONE:
fprintf(stderr, "Handshake done.\n");
break;
case SSL_CB_ACCEPT_LOOP:
fprintf(stderr, "Handshake progress: %s\n", SSL_state_string_long(ssl));
break;
}
}
static FILE *g_keylog_file = nullptr;
static void KeyLogCallback(const SSL *ssl, const char *line) {
fprintf(g_keylog_file, "%s\n", line);
fflush(g_keylog_file);
}
static bool HandleWWW(SSL *ssl) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
if (!bio) {
fprintf(stderr, "Cannot create BIO for response\n");
return false;
}
BIO_puts(bio.get(), "HTTP/1.0 200 OK\r\nContent-Type: text/plain\r\n\r\n");
PrintConnectionInfo(bio.get(), ssl);
char request[4];
size_t request_len = 0;
while (request_len < sizeof(request)) {
int ssl_ret =
SSL_read(ssl, request + request_len, sizeof(request) - request_len);
if (ssl_ret <= 0) {
int ssl_err = SSL_get_error(ssl, ssl_ret);
PrintSSLError(stderr, "Error while reading", ssl_err, ssl_ret);
return false;
}
request_len += static_cast<size_t>(ssl_ret);
}
// Assume simple HTTP request, print status.
if (memcmp(request, "GET ", 4) == 0) {
const uint8_t *response;
size_t response_len;
if (BIO_mem_contents(bio.get(), &response, &response_len)) {
SSL_write(ssl, response, response_len);
}
}
return true;
}
bool Server(const std::vector<std::string> &args) {
if (!InitSocketLibrary()) {
return false;
}
std::map<std::string, std::string> args_map;
if (!ParseKeyValueArguments(&args_map, args, kArguments)) {
PrintUsage(kArguments);
return false;
}
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
const char *keylog_file = getenv("SSLKEYLOGFILE");
if (keylog_file) {
g_keylog_file = fopen(keylog_file, "a");
if (g_keylog_file == nullptr) {
perror("fopen");
return false;
}
SSL_CTX_set_keylog_callback(ctx.get(), KeyLogCallback);
}
// Server authentication is required.
if (args_map.count("-key") != 0) {
std::string key = args_map["-key"];
if (!SSL_CTX_use_PrivateKey_file(ctx.get(), key.c_str(),
SSL_FILETYPE_PEM)) {
fprintf(stderr, "Failed to load private key: %s\n", key.c_str());
return false;
}
const std::string &cert =
args_map.count("-cert") != 0 ? args_map["-cert"] : key;
if (!SSL_CTX_use_certificate_chain_file(ctx.get(), cert.c_str())) {
fprintf(stderr, "Failed to load cert chain: %s\n", cert.c_str());
return false;
}
} else {
bssl::UniquePtr<EVP_PKEY> evp_pkey = MakeKeyPairForSelfSignedCert();
if (!evp_pkey) {
return false;
}
bssl::UniquePtr<X509> cert =
MakeSelfSignedCert(evp_pkey.get(), 365 /* valid_days */);
if (!cert) {
return false;
}
if (!SSL_CTX_use_PrivateKey(ctx.get(), evp_pkey.get())) {
fprintf(stderr, "Failed to set private key.\n");
return false;
}
if (!SSL_CTX_use_certificate(ctx.get(), cert.get())) {
fprintf(stderr, "Failed to set certificate.\n");
return false;
}
}
if (args_map.count("-cipher") != 0 &&
!SSL_CTX_set_strict_cipher_list(ctx.get(), args_map["-cipher"].c_str())) {
fprintf(stderr, "Failed setting cipher list\n");
return false;
}
if (args_map.count("-curves") != 0 &&
!SSL_CTX_set1_curves_list(ctx.get(), args_map["-curves"].c_str())) {
fprintf(stderr, "Failed setting curves list\n");
return false;
}
uint16_t max_version = TLS1_3_VERSION;
if (args_map.count("-max-version") != 0 &&
!VersionFromString(&max_version, args_map["-max-version"])) {
fprintf(stderr, "Unknown protocol version: '%s'\n",
args_map["-max-version"].c_str());
return false;
}
if (!SSL_CTX_set_max_proto_version(ctx.get(), max_version)) {
return false;
}
if (args_map.count("-min-version") != 0) {
uint16_t version;
if (!VersionFromString(&version, args_map["-min-version"])) {
fprintf(stderr, "Unknown protocol version: '%s'\n",
args_map["-min-version"].c_str());
return false;
}
if (!SSL_CTX_set_min_proto_version(ctx.get(), version)) {
return false;
}
}
if (args_map.count("-ocsp-response") != 0 &&
!LoadOCSPResponse(ctx.get(), args_map["-ocsp-response"].c_str())) {
fprintf(stderr, "Failed to load OCSP response: %s\n", args_map["-ocsp-response"].c_str());
return false;
}
if (args_map.count("-early-data") != 0) {
SSL_CTX_set_early_data_enabled(ctx.get(), 1);
}
if (args_map.count("-debug") != 0) {
SSL_CTX_set_info_callback(ctx.get(), InfoCallback);
}
if (args_map.count("-require-any-client-cert") != 0) {
SSL_CTX_set_verify(
ctx.get(), SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT, nullptr);
SSL_CTX_set_cert_verify_callback(
ctx.get(), [](X509_STORE_CTX *store, void *arg) -> int { return 1; },
nullptr);
}
Listener listener;
if (!listener.Init(args_map["-accept"])) {
return false;
}
bool result = true;
do {
int sock = -1;
if (!listener.Accept(&sock)) {
return false;
}
BIO *bio = BIO_new_socket(sock, BIO_CLOSE);
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
SSL_set_bio(ssl.get(), bio, bio);
if (args_map.count("-jdk11-workaround") != 0) {
SSL_set_jdk11_workaround(ssl.get(), 1);
}
int ret = SSL_accept(ssl.get());
if (ret != 1) {
int ssl_err = SSL_get_error(ssl.get(), ret);
PrintSSLError(stderr, "Error while connecting", ssl_err, ret);
result = false;
continue;
}
fprintf(stderr, "Connected.\n");
bssl::UniquePtr<BIO> bio_stderr(BIO_new_fp(stderr, BIO_NOCLOSE));
PrintConnectionInfo(bio_stderr.get(), ssl.get());
if (args_map.count("-www") != 0) {
result = HandleWWW(ssl.get());
} else {
result = TransferData(ssl.get(), sock);
}
} while (args_map.count("-loop") != 0);
return result;
}