mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-20 15:54:49 +01:00
465 lines
14 KiB
C
465 lines
14 KiB
C
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
||
|
* All rights reserved.
|
||
|
*
|
||
|
* This package is an SSL implementation written
|
||
|
* by Eric Young (eay@cryptsoft.com).
|
||
|
* The implementation was written so as to conform with Netscapes SSL.
|
||
|
*
|
||
|
* This library is free for commercial and non-commercial use as long as
|
||
|
* the following conditions are aheared to. The following conditions
|
||
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
||
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
||
|
* included with this distribution is covered by the same copyright terms
|
||
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
||
|
*
|
||
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
||
|
* the code are not to be removed.
|
||
|
* If this package is used in a product, Eric Young should be given attribution
|
||
|
* as the author of the parts of the library used.
|
||
|
* This can be in the form of a textual message at program startup or
|
||
|
* in documentation (online or textual) provided with the package.
|
||
|
*
|
||
|
* Redistribution and use in source and binary forms, with or without
|
||
|
* modification, are permitted provided that the following conditions
|
||
|
* are met:
|
||
|
* 1. Redistributions of source code must retain the copyright
|
||
|
* notice, this list of conditions and the following disclaimer.
|
||
|
* 2. Redistributions in binary form must reproduce the above copyright
|
||
|
* notice, this list of conditions and the following disclaimer in the
|
||
|
* documentation and/or other materials provided with the distribution.
|
||
|
* 3. All advertising materials mentioning features or use of this software
|
||
|
* must display the following acknowledgement:
|
||
|
* "This product includes cryptographic software written by
|
||
|
* Eric Young (eay@cryptsoft.com)"
|
||
|
* The word 'cryptographic' can be left out if the rouines from the library
|
||
|
* being used are not cryptographic related :-).
|
||
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
||
|
* the apps directory (application code) you must include an acknowledgement:
|
||
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
||
|
*
|
||
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
||
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
||
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
||
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
||
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
||
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
||
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
||
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
||
|
* SUCH DAMAGE.
|
||
|
*
|
||
|
* The licence and distribution terms for any publically available version or
|
||
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
||
|
* copied and put under another distribution licence
|
||
|
* [including the GNU Public Licence.]. */
|
||
|
|
||
|
#include <openssl/cast.h>
|
||
|
#include <openssl/cipher.h>
|
||
|
#include <openssl/obj.h>
|
||
|
|
||
|
#if defined(OPENSSL_WINDOWS)
|
||
|
OPENSSL_MSVC_PRAGMA(warning(push, 3))
|
||
|
#include <intrin.h>
|
||
|
OPENSSL_MSVC_PRAGMA(warning(pop))
|
||
|
#endif
|
||
|
|
||
|
#include "../../crypto/internal.h"
|
||
|
#include "internal.h"
|
||
|
#include "../macros.h"
|
||
|
|
||
|
|
||
|
void CAST_ecb_encrypt(const uint8_t *in, uint8_t *out, const CAST_KEY *ks,
|
||
|
int enc) {
|
||
|
uint32_t d[2];
|
||
|
|
||
|
n2l(in, d[0]);
|
||
|
n2l(in, d[1]);
|
||
|
if (enc) {
|
||
|
CAST_encrypt(d, ks);
|
||
|
} else {
|
||
|
CAST_decrypt(d, ks);
|
||
|
}
|
||
|
l2n(d[0], out);
|
||
|
l2n(d[1], out);
|
||
|
}
|
||
|
|
||
|
#if defined(OPENSSL_WINDOWS) && defined(_MSC_VER)
|
||
|
#define ROTL(a, n) (_lrotl(a, n))
|
||
|
#else
|
||
|
#define ROTL(a, n) ((((a) << (n)) | ((a) >> ((-(n))&31))) & 0xffffffffL)
|
||
|
#endif
|
||
|
|
||
|
#define E_CAST(n, key, L, R, OP1, OP2, OP3) \
|
||
|
{ \
|
||
|
uint32_t a, b, c, d; \
|
||
|
t = (key[n * 2] OP1 R) & 0xffffffff; \
|
||
|
t = ROTL(t, (key[n * 2 + 1])); \
|
||
|
a = CAST_S_table0[(t >> 8) & 0xff]; \
|
||
|
b = CAST_S_table1[(t)&0xff]; \
|
||
|
c = CAST_S_table2[(t >> 24) & 0xff]; \
|
||
|
d = CAST_S_table3[(t >> 16) & 0xff]; \
|
||
|
L ^= (((((a OP2 b)&0xffffffffL)OP3 c) & 0xffffffffL)OP1 d) & 0xffffffffL; \
|
||
|
}
|
||
|
|
||
|
void CAST_encrypt(uint32_t *data, const CAST_KEY *key) {
|
||
|
uint32_t l, r, t;
|
||
|
const uint32_t *k;
|
||
|
|
||
|
k = &key->data[0];
|
||
|
l = data[0];
|
||
|
r = data[1];
|
||
|
|
||
|
E_CAST(0, k, l, r, +, ^, -);
|
||
|
E_CAST(1, k, r, l, ^, -, +);
|
||
|
E_CAST(2, k, l, r, -, +, ^);
|
||
|
E_CAST(3, k, r, l, +, ^, -);
|
||
|
E_CAST(4, k, l, r, ^, -, +);
|
||
|
E_CAST(5, k, r, l, -, +, ^);
|
||
|
E_CAST(6, k, l, r, +, ^, -);
|
||
|
E_CAST(7, k, r, l, ^, -, +);
|
||
|
E_CAST(8, k, l, r, -, +, ^);
|
||
|
E_CAST(9, k, r, l, +, ^, -);
|
||
|
E_CAST(10, k, l, r, ^, -, +);
|
||
|
E_CAST(11, k, r, l, -, +, ^);
|
||
|
|
||
|
if (!key->short_key) {
|
||
|
E_CAST(12, k, l, r, +, ^, -);
|
||
|
E_CAST(13, k, r, l, ^, -, +);
|
||
|
E_CAST(14, k, l, r, -, +, ^);
|
||
|
E_CAST(15, k, r, l, +, ^, -);
|
||
|
}
|
||
|
|
||
|
data[1] = l & 0xffffffffL;
|
||
|
data[0] = r & 0xffffffffL;
|
||
|
}
|
||
|
|
||
|
void CAST_decrypt(uint32_t *data, const CAST_KEY *key) {
|
||
|
uint32_t l, r, t;
|
||
|
const uint32_t *k;
|
||
|
|
||
|
k = &key->data[0];
|
||
|
l = data[0];
|
||
|
r = data[1];
|
||
|
|
||
|
if (!key->short_key) {
|
||
|
E_CAST(15, k, l, r, +, ^, -);
|
||
|
E_CAST(14, k, r, l, -, +, ^);
|
||
|
E_CAST(13, k, l, r, ^, -, +);
|
||
|
E_CAST(12, k, r, l, +, ^, -);
|
||
|
}
|
||
|
|
||
|
E_CAST(11, k, l, r, -, +, ^);
|
||
|
E_CAST(10, k, r, l, ^, -, +);
|
||
|
E_CAST(9, k, l, r, +, ^, -);
|
||
|
E_CAST(8, k, r, l, -, +, ^);
|
||
|
E_CAST(7, k, l, r, ^, -, +);
|
||
|
E_CAST(6, k, r, l, +, ^, -);
|
||
|
E_CAST(5, k, l, r, -, +, ^);
|
||
|
E_CAST(4, k, r, l, ^, -, +);
|
||
|
E_CAST(3, k, l, r, +, ^, -);
|
||
|
E_CAST(2, k, r, l, -, +, ^);
|
||
|
E_CAST(1, k, l, r, ^, -, +);
|
||
|
E_CAST(0, k, r, l, +, ^, -);
|
||
|
|
||
|
data[1] = l & 0xffffffffL;
|
||
|
data[0] = r & 0xffffffffL;
|
||
|
}
|
||
|
|
||
|
void CAST_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const CAST_KEY *ks, uint8_t *iv, int enc) {
|
||
|
uint32_t tin0, tin1;
|
||
|
uint32_t tout0, tout1, xor0, xor1;
|
||
|
size_t l = length;
|
||
|
uint32_t tin[2];
|
||
|
|
||
|
if (enc) {
|
||
|
n2l(iv, tout0);
|
||
|
n2l(iv, tout1);
|
||
|
iv -= 8;
|
||
|
while (l >= 8) {
|
||
|
n2l(in, tin0);
|
||
|
n2l(in, tin1);
|
||
|
tin0 ^= tout0;
|
||
|
tin1 ^= tout1;
|
||
|
tin[0] = tin0;
|
||
|
tin[1] = tin1;
|
||
|
CAST_encrypt(tin, ks);
|
||
|
tout0 = tin[0];
|
||
|
tout1 = tin[1];
|
||
|
l2n(tout0, out);
|
||
|
l2n(tout1, out);
|
||
|
l -= 8;
|
||
|
}
|
||
|
if (l != 0) {
|
||
|
n2ln(in, tin0, tin1, l);
|
||
|
tin0 ^= tout0;
|
||
|
tin1 ^= tout1;
|
||
|
tin[0] = tin0;
|
||
|
tin[1] = tin1;
|
||
|
CAST_encrypt(tin, ks);
|
||
|
tout0 = tin[0];
|
||
|
tout1 = tin[1];
|
||
|
l2n(tout0, out);
|
||
|
l2n(tout1, out);
|
||
|
}
|
||
|
l2n(tout0, iv);
|
||
|
l2n(tout1, iv);
|
||
|
} else {
|
||
|
n2l(iv, xor0);
|
||
|
n2l(iv, xor1);
|
||
|
iv -= 8;
|
||
|
while (l >= 8) {
|
||
|
n2l(in, tin0);
|
||
|
n2l(in, tin1);
|
||
|
tin[0] = tin0;
|
||
|
tin[1] = tin1;
|
||
|
CAST_decrypt(tin, ks);
|
||
|
tout0 = tin[0] ^ xor0;
|
||
|
tout1 = tin[1] ^ xor1;
|
||
|
l2n(tout0, out);
|
||
|
l2n(tout1, out);
|
||
|
xor0 = tin0;
|
||
|
xor1 = tin1;
|
||
|
l -= 8;
|
||
|
}
|
||
|
if (l != 0) {
|
||
|
n2l(in, tin0);
|
||
|
n2l(in, tin1);
|
||
|
tin[0] = tin0;
|
||
|
tin[1] = tin1;
|
||
|
CAST_decrypt(tin, ks);
|
||
|
tout0 = tin[0] ^ xor0;
|
||
|
tout1 = tin[1] ^ xor1;
|
||
|
l2nn(tout0, tout1, out, l);
|
||
|
xor0 = tin0;
|
||
|
xor1 = tin1;
|
||
|
}
|
||
|
l2n(xor0, iv);
|
||
|
l2n(xor1, iv);
|
||
|
}
|
||
|
tin0 = tin1 = tout0 = tout1 = xor0 = xor1 = 0;
|
||
|
tin[0] = tin[1] = 0;
|
||
|
}
|
||
|
|
||
|
#define CAST_exp(l, A, a, n) \
|
||
|
A[n / 4] = l; \
|
||
|
a[n + 3] = (l)&0xff; \
|
||
|
a[n + 2] = (l >> 8) & 0xff; \
|
||
|
a[n + 1] = (l >> 16) & 0xff; \
|
||
|
a[n + 0] = (l >> 24) & 0xff;
|
||
|
#define S4 CAST_S_table4
|
||
|
#define S5 CAST_S_table5
|
||
|
#define S6 CAST_S_table6
|
||
|
#define S7 CAST_S_table7
|
||
|
|
||
|
void CAST_set_key(CAST_KEY *key, size_t len, const uint8_t *data) {
|
||
|
uint32_t x[16];
|
||
|
uint32_t z[16];
|
||
|
uint32_t k[32];
|
||
|
uint32_t X[4], Z[4];
|
||
|
uint32_t l, *K;
|
||
|
size_t i;
|
||
|
|
||
|
for (i = 0; i < 16; i++) {
|
||
|
x[i] = 0;
|
||
|
}
|
||
|
|
||
|
if (len > 16) {
|
||
|
len = 16;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < len; i++) {
|
||
|
x[i] = data[i];
|
||
|
}
|
||
|
|
||
|
if (len <= 10) {
|
||
|
key->short_key = 1;
|
||
|
} else {
|
||
|
key->short_key = 0;
|
||
|
}
|
||
|
|
||
|
K = &k[0];
|
||
|
X[0] = ((x[0] << 24) | (x[1] << 16) | (x[2] << 8) | x[3]) & 0xffffffffL;
|
||
|
X[1] = ((x[4] << 24) | (x[5] << 16) | (x[6] << 8) | x[7]) & 0xffffffffL;
|
||
|
X[2] = ((x[8] << 24) | (x[9] << 16) | (x[10] << 8) | x[11]) & 0xffffffffL;
|
||
|
X[3] = ((x[12] << 24) | (x[13] << 16) | (x[14] << 8) | x[15]) & 0xffffffffL;
|
||
|
|
||
|
for (;;) {
|
||
|
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
|
||
|
CAST_exp(l, Z, z, 0);
|
||
|
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
|
||
|
CAST_exp(l, Z, z, 4);
|
||
|
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
|
||
|
CAST_exp(l, Z, z, 8);
|
||
|
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
|
||
|
CAST_exp(l, Z, z, 12);
|
||
|
|
||
|
K[0] = S4[z[8]] ^ S5[z[9]] ^ S6[z[7]] ^ S7[z[6]] ^ S4[z[2]];
|
||
|
K[1] = S4[z[10]] ^ S5[z[11]] ^ S6[z[5]] ^ S7[z[4]] ^ S5[z[6]];
|
||
|
K[2] = S4[z[12]] ^ S5[z[13]] ^ S6[z[3]] ^ S7[z[2]] ^ S6[z[9]];
|
||
|
K[3] = S4[z[14]] ^ S5[z[15]] ^ S6[z[1]] ^ S7[z[0]] ^ S7[z[12]];
|
||
|
|
||
|
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
|
||
|
CAST_exp(l, X, x, 0);
|
||
|
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
|
||
|
CAST_exp(l, X, x, 4);
|
||
|
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
|
||
|
CAST_exp(l, X, x, 8);
|
||
|
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
|
||
|
CAST_exp(l, X, x, 12);
|
||
|
|
||
|
K[4] = S4[x[3]] ^ S5[x[2]] ^ S6[x[12]] ^ S7[x[13]] ^ S4[x[8]];
|
||
|
K[5] = S4[x[1]] ^ S5[x[0]] ^ S6[x[14]] ^ S7[x[15]] ^ S5[x[13]];
|
||
|
K[6] = S4[x[7]] ^ S5[x[6]] ^ S6[x[8]] ^ S7[x[9]] ^ S6[x[3]];
|
||
|
K[7] = S4[x[5]] ^ S5[x[4]] ^ S6[x[10]] ^ S7[x[11]] ^ S7[x[7]];
|
||
|
|
||
|
l = X[0] ^ S4[x[13]] ^ S5[x[15]] ^ S6[x[12]] ^ S7[x[14]] ^ S6[x[8]];
|
||
|
CAST_exp(l, Z, z, 0);
|
||
|
l = X[2] ^ S4[z[0]] ^ S5[z[2]] ^ S6[z[1]] ^ S7[z[3]] ^ S7[x[10]];
|
||
|
CAST_exp(l, Z, z, 4);
|
||
|
l = X[3] ^ S4[z[7]] ^ S5[z[6]] ^ S6[z[5]] ^ S7[z[4]] ^ S4[x[9]];
|
||
|
CAST_exp(l, Z, z, 8);
|
||
|
l = X[1] ^ S4[z[10]] ^ S5[z[9]] ^ S6[z[11]] ^ S7[z[8]] ^ S5[x[11]];
|
||
|
CAST_exp(l, Z, z, 12);
|
||
|
|
||
|
K[8] = S4[z[3]] ^ S5[z[2]] ^ S6[z[12]] ^ S7[z[13]] ^ S4[z[9]];
|
||
|
K[9] = S4[z[1]] ^ S5[z[0]] ^ S6[z[14]] ^ S7[z[15]] ^ S5[z[12]];
|
||
|
K[10] = S4[z[7]] ^ S5[z[6]] ^ S6[z[8]] ^ S7[z[9]] ^ S6[z[2]];
|
||
|
K[11] = S4[z[5]] ^ S5[z[4]] ^ S6[z[10]] ^ S7[z[11]] ^ S7[z[6]];
|
||
|
|
||
|
l = Z[2] ^ S4[z[5]] ^ S5[z[7]] ^ S6[z[4]] ^ S7[z[6]] ^ S6[z[0]];
|
||
|
CAST_exp(l, X, x, 0);
|
||
|
l = Z[0] ^ S4[x[0]] ^ S5[x[2]] ^ S6[x[1]] ^ S7[x[3]] ^ S7[z[2]];
|
||
|
CAST_exp(l, X, x, 4);
|
||
|
l = Z[1] ^ S4[x[7]] ^ S5[x[6]] ^ S6[x[5]] ^ S7[x[4]] ^ S4[z[1]];
|
||
|
CAST_exp(l, X, x, 8);
|
||
|
l = Z[3] ^ S4[x[10]] ^ S5[x[9]] ^ S6[x[11]] ^ S7[x[8]] ^ S5[z[3]];
|
||
|
CAST_exp(l, X, x, 12);
|
||
|
|
||
|
K[12] = S4[x[8]] ^ S5[x[9]] ^ S6[x[7]] ^ S7[x[6]] ^ S4[x[3]];
|
||
|
K[13] = S4[x[10]] ^ S5[x[11]] ^ S6[x[5]] ^ S7[x[4]] ^ S5[x[7]];
|
||
|
K[14] = S4[x[12]] ^ S5[x[13]] ^ S6[x[3]] ^ S7[x[2]] ^ S6[x[8]];
|
||
|
K[15] = S4[x[14]] ^ S5[x[15]] ^ S6[x[1]] ^ S7[x[0]] ^ S7[x[13]];
|
||
|
if (K != k) {
|
||
|
break;
|
||
|
}
|
||
|
K += 16;
|
||
|
}
|
||
|
|
||
|
for (i = 0; i < 16; i++) {
|
||
|
key->data[i * 2] = k[i];
|
||
|
key->data[i * 2 + 1] = ((k[i + 16]) + 16) & 0x1f;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The input and output encrypted as though 64bit cfb mode is being used. The
|
||
|
// extra state information to record how much of the 64bit block we have used
|
||
|
// is contained in *num.
|
||
|
void CAST_cfb64_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
||
|
const CAST_KEY *schedule, uint8_t *ivec, int *num,
|
||
|
int enc) {
|
||
|
uint32_t v0, v1, t;
|
||
|
int n = *num;
|
||
|
size_t l = length;
|
||
|
uint32_t ti[2];
|
||
|
uint8_t *iv, c, cc;
|
||
|
|
||
|
iv = ivec;
|
||
|
if (enc) {
|
||
|
while (l--) {
|
||
|
if (n == 0) {
|
||
|
n2l(iv, v0);
|
||
|
ti[0] = v0;
|
||
|
n2l(iv, v1);
|
||
|
ti[1] = v1;
|
||
|
CAST_encrypt((uint32_t *)ti, schedule);
|
||
|
iv = ivec;
|
||
|
t = ti[0];
|
||
|
l2n(t, iv);
|
||
|
t = ti[1];
|
||
|
l2n(t, iv);
|
||
|
iv = ivec;
|
||
|
}
|
||
|
c = *(in++) ^ iv[n];
|
||
|
*(out++) = c;
|
||
|
iv[n] = c;
|
||
|
n = (n + 1) & 0x07;
|
||
|
}
|
||
|
} else {
|
||
|
while (l--) {
|
||
|
if (n == 0) {
|
||
|
n2l(iv, v0);
|
||
|
ti[0] = v0;
|
||
|
n2l(iv, v1);
|
||
|
ti[1] = v1;
|
||
|
CAST_encrypt((uint32_t *)ti, schedule);
|
||
|
iv = ivec;
|
||
|
t = ti[0];
|
||
|
l2n(t, iv);
|
||
|
t = ti[1];
|
||
|
l2n(t, iv);
|
||
|
iv = ivec;
|
||
|
}
|
||
|
cc = *(in++);
|
||
|
c = iv[n];
|
||
|
iv[n] = cc;
|
||
|
*(out++) = c ^ cc;
|
||
|
n = (n + 1) & 0x07;
|
||
|
}
|
||
|
}
|
||
|
v0 = v1 = ti[0] = ti[1] = t = c = cc = 0;
|
||
|
*num = n;
|
||
|
}
|
||
|
|
||
|
static int cast_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
||
|
const uint8_t *iv, int enc) {
|
||
|
CAST_KEY *cast_key = ctx->cipher_data;
|
||
|
CAST_set_key(cast_key, ctx->key_len, key);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int cast_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
CAST_KEY *cast_key = ctx->cipher_data;
|
||
|
|
||
|
while (len >= CAST_BLOCK) {
|
||
|
CAST_ecb_encrypt(in, out, cast_key, ctx->encrypt);
|
||
|
in += CAST_BLOCK;
|
||
|
out += CAST_BLOCK;
|
||
|
len -= CAST_BLOCK;
|
||
|
}
|
||
|
assert(len == 0);
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int cast_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
||
|
size_t len) {
|
||
|
CAST_KEY *cast_key = ctx->cipher_data;
|
||
|
CAST_cbc_encrypt(in, out, len, cast_key, ctx->iv, ctx->encrypt);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static const EVP_CIPHER cast5_ecb = {
|
||
|
NID_cast5_ecb, CAST_BLOCK,
|
||
|
CAST_KEY_LENGTH, CAST_BLOCK /* iv_len */,
|
||
|
sizeof(CAST_KEY), EVP_CIPH_ECB_MODE | EVP_CIPH_VARIABLE_LENGTH,
|
||
|
NULL /* app_data */, cast_init_key,
|
||
|
cast_ecb_cipher, NULL /* cleanup */,
|
||
|
NULL /* ctrl */,
|
||
|
};
|
||
|
|
||
|
static const EVP_CIPHER cast5_cbc = {
|
||
|
NID_cast5_cbc, CAST_BLOCK,
|
||
|
CAST_KEY_LENGTH, CAST_BLOCK /* iv_len */,
|
||
|
sizeof(CAST_KEY), EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH,
|
||
|
NULL /* app_data */, cast_init_key,
|
||
|
cast_cbc_cipher, NULL /* cleanup */,
|
||
|
NULL /* ctrl */,
|
||
|
};
|
||
|
|
||
|
const EVP_CIPHER *EVP_cast5_ecb(void) { return &cast5_ecb; }
|
||
|
|
||
|
const EVP_CIPHER *EVP_cast5_cbc(void) { return &cast5_cbc; }
|