Telegram-Android/TMessagesProj/jni/voip/webrtc/base/debug/activity_tracker.h

1369 lines
54 KiB
C
Raw Normal View History

2020-08-14 19:58:22 +03:00
// Copyright 2016 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Activity tracking provides a low-overhead method of collecting information
// about the state of the application for analysis both while it is running
// and after it has terminated unexpectedly. Its primary purpose is to help
// locate reasons the browser becomes unresponsive by providing insight into
// what all the various threads and processes are (or were) doing.
#ifndef BASE_DEBUG_ACTIVITY_TRACKER_H_
#define BASE_DEBUG_ACTIVITY_TRACKER_H_
// std::atomic is undesired due to performance issues when used as global
// variables. There are no such instances here. This module uses the
// PersistentMemoryAllocator which also uses std::atomic and is written
// by the same author.
#include <atomic>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "base/atomicops.h"
#include "base/base_export.h"
#include "base/callback.h"
#include "base/compiler_specific.h"
#include "base/gtest_prod_util.h"
#include "base/location.h"
#include "base/memory/shared_memory_mapping.h"
#include "base/metrics/persistent_memory_allocator.h"
#include "base/process/process_handle.h"
#include "base/sequenced_task_runner.h"
#include "base/strings/string_piece.h"
#include "base/strings/utf_string_conversions.h"
#include "base/threading/platform_thread.h"
#include "base/threading/thread_local.h"
namespace base {
struct PendingTask;
class FilePath;
class Lock;
class PlatformThreadHandle;
class Process;
class WaitableEvent;
namespace debug {
class ThreadActivityTracker;
enum : int {
// The maximum number of call-stack addresses stored per activity. This
// cannot be changed without also changing the version number of the
// structure. See kTypeIdActivityTracker in GlobalActivityTracker.
kActivityCallStackSize = 10,
};
// A class for keeping all information needed to verify that a structure is
// associated with a given process.
struct OwningProcess {
OwningProcess();
~OwningProcess();
// Initializes structure with the current process id and the current time.
// These can uniquely identify a process. A unique non-zero data_id will be
// set making it possible to tell using atomic reads if the data has changed.
void Release_Initialize(int64_t pid = 0);
// Explicitly sets the process ID.
void SetOwningProcessIdForTesting(int64_t pid, int64_t stamp);
// Gets the associated process ID, in native form, and the creation timestamp
// from memory without loading the entire structure for analysis. This will
// return false if no valid process ID is available.
static bool GetOwningProcessId(const void* memory,
int64_t* out_id,
int64_t* out_stamp);
// SHA1(base::debug::OwningProcess): Increment this if structure changes!
static constexpr uint32_t kPersistentTypeId = 0xB1179672 + 1;
// Expected size for 32/64-bit check by PersistentMemoryAllocator.
static constexpr size_t kExpectedInstanceSize = 24;
std::atomic<uint32_t> data_id;
uint32_t padding;
int64_t process_id;
int64_t create_stamp;
};
// The data associated with an activity is dependent upon the activity type.
// This union defines all of the various fields. All fields must be explicitly
// sized types to ensure no interoperability problems between 32-bit and
// 64-bit systems.
union ActivityData {
// Expected size for 32/64-bit check.
// TODO(bcwhite): VC2015 doesn't allow statics in unions. Fix when it does.
// static constexpr size_t kExpectedInstanceSize = 8;
// Generic activities don't have any defined structure.
struct {
uint32_t id; // An arbitrary identifier used for association.
int32_t info; // An arbitrary value used for information purposes.
} generic;
struct {
uint64_t sequence_id; // The sequence identifier of the posted task.
} task;
struct {
uint64_t lock_address; // The memory address of the lock object.
} lock;
struct {
uint64_t event_address; // The memory address of the event object.
} event;
struct {
int64_t thread_id; // A unique identifier for a thread within a process.
} thread;
struct {
int64_t process_id; // A unique identifier for a process.
} process;
struct {
uint32_t code; // An "exception code" number.
} exception;
// These methods create an ActivityData object from the appropriate
// parameters. Objects of this type should always be created this way to
// ensure that no fields remain unpopulated should the set of recorded
// fields change. They're defined inline where practical because they
// reduce to loading a small local structure with a few values, roughly
// the same as loading all those values into parameters.
static ActivityData ForGeneric(uint32_t id, int32_t info) {
ActivityData data;
data.generic.id = id;
data.generic.info = info;
return data;
}
static ActivityData ForTask(uint64_t sequence) {
ActivityData data;
data.task.sequence_id = sequence;
return data;
}
static ActivityData ForLock(const void* lock) {
ActivityData data;
data.lock.lock_address = reinterpret_cast<uintptr_t>(lock);
return data;
}
static ActivityData ForEvent(const void* event) {
ActivityData data;
data.event.event_address = reinterpret_cast<uintptr_t>(event);
return data;
}
static ActivityData ForThread(const PlatformThreadHandle& handle);
static ActivityData ForThread(const int64_t id) {
ActivityData data;
data.thread.thread_id = id;
return data;
}
static ActivityData ForProcess(const int64_t id) {
ActivityData data;
data.process.process_id = id;
return data;
}
static ActivityData ForException(const uint32_t code) {
ActivityData data;
data.exception.code = code;
return data;
}
};
// A "null" activity-data that can be passed to indicate "do not change".
extern const ActivityData kNullActivityData;
// A helper class that is used for managing memory allocations within a
// persistent memory allocator. Instances of this class are NOT thread-safe.
// Use from a single thread or protect access with a lock.
class BASE_EXPORT ActivityTrackerMemoryAllocator {
public:
using Reference = PersistentMemoryAllocator::Reference;
// Creates a instance for allocating objects of a fixed |object_type|, a
// corresponding |object_free| type, and the |object_size|. An internal
// cache of the last |cache_size| released references will be kept for
// quick future fetches. If |make_iterable| then allocated objects will
// be marked "iterable" in the allocator.
ActivityTrackerMemoryAllocator(PersistentMemoryAllocator* allocator,
uint32_t object_type,
uint32_t object_free_type,
size_t object_size,
size_t cache_size,
bool make_iterable);
~ActivityTrackerMemoryAllocator();
// Gets a reference to an object of the configured type. This can return
// a null reference if it was not possible to allocate the memory.
Reference GetObjectReference();
// Returns an object to the "free" pool.
void ReleaseObjectReference(Reference ref);
// Helper function to access an object allocated using this instance.
template <typename T>
T* GetAsObject(Reference ref) {
return allocator_->GetAsObject<T>(ref);
}
// Similar to GetAsObject() but converts references to arrays of objects.
template <typename T>
T* GetAsArray(Reference ref, size_t count) {
return allocator_->GetAsArray<T>(ref, object_type_, count);
}
// The current "used size" of the internal cache, visible for testing.
size_t cache_used() const { return cache_used_; }
private:
PersistentMemoryAllocator* const allocator_;
const uint32_t object_type_;
const uint32_t object_free_type_;
const size_t object_size_;
const size_t cache_size_;
const bool make_iterable_;
// An iterator for going through persistent memory looking for free'd objects.
PersistentMemoryAllocator::Iterator iterator_;
// The cache of released object memories.
std::unique_ptr<Reference[]> cache_values_;
size_t cache_used_;
DISALLOW_COPY_AND_ASSIGN(ActivityTrackerMemoryAllocator);
};
// This structure is the full contents recorded for every activity pushed
// onto the stack. The |activity_type| indicates what is actually stored in
// the |data| field. All fields must be explicitly sized types to ensure no
// interoperability problems between 32-bit and 64-bit systems.
struct Activity {
// SHA1(base::debug::Activity): Increment this if structure changes!
static constexpr uint32_t kPersistentTypeId = 0x99425159 + 1;
// Expected size for 32/64-bit check. Update this if structure changes!
static constexpr size_t kExpectedInstanceSize =
48 + 8 * kActivityCallStackSize;
// The type of an activity on the stack. Activities are broken into
// categories with the category ID taking the top 4 bits and the lower
// bits representing an action within that category. This combination
// makes it easy to "switch" based on the type during analysis.
enum Type : uint8_t {
// This "null" constant is used to indicate "do not change" in calls.
ACT_NULL = 0,
// Task activities involve callbacks posted to a thread or thread-pool
// using the PostTask() method or any of its friends.
ACT_TASK = 1 << 4,
ACT_TASK_RUN = ACT_TASK,
// Lock activities involve the acquisition of "mutex" locks.
ACT_LOCK = 2 << 4,
ACT_LOCK_ACQUIRE = ACT_LOCK,
ACT_LOCK_RELEASE,
// Event activities involve operations on a WaitableEvent.
ACT_EVENT = 3 << 4,
ACT_EVENT_WAIT = ACT_EVENT,
ACT_EVENT_SIGNAL,
// Thread activities involve the life management of threads.
ACT_THREAD = 4 << 4,
ACT_THREAD_START = ACT_THREAD,
ACT_THREAD_JOIN,
// Process activities involve the life management of processes.
ACT_PROCESS = 5 << 4,
ACT_PROCESS_START = ACT_PROCESS,
ACT_PROCESS_WAIT,
// Exception activities indicate the occurence of something unexpected.
ACT_EXCEPTION = 14 << 4,
// Generic activities are user defined and can be anything.
ACT_GENERIC = 15 << 4,
// These constants can be used to separate the category and action from
// a combined activity type.
ACT_CATEGORY_MASK = 0xF << 4,
ACT_ACTION_MASK = 0xF
};
// Internal representation of time. During collection, this is in "ticks"
// but when returned in a snapshot, it is "wall time".
int64_t time_internal;
// The address that pushed the activity onto the stack as a raw number.
uint64_t calling_address;
// The address that is the origin of the activity if it not obvious from
// the call stack. This is useful for things like tasks that are posted
// from a completely different thread though most activities will leave
// it null.
uint64_t origin_address;
// Array of program-counters that make up the top of the call stack.
// Despite the fixed size, this list is always null-terminated. Entries
// after the terminator have no meaning and may or may not also be null.
// The list will be completely empty if call-stack collection is not
// enabled.
uint64_t call_stack[kActivityCallStackSize];
// Reference to arbitrary user data within the persistent memory segment
// and a unique identifier for it.
uint32_t user_data_ref;
uint32_t user_data_id;
// The (enumerated) type of the activity. This defines what fields of the
// |data| record are valid.
uint8_t activity_type;
// Padding to ensure that the next member begins on a 64-bit boundary
// even on 32-bit builds which ensures inter-operability between CPU
// architectures. New fields can be taken from this space.
uint8_t padding[7];
// Information specific to the |activity_type|.
ActivityData data;
static void FillFrom(Activity* activity,
const void* program_counter,
const void* origin,
Type type,
const ActivityData& data);
};
// This class manages arbitrary user data that can be associated with activities
// done by a thread by supporting key/value pairs of any type. This can provide
// additional information during debugging. It is also used to store arbitrary
// global data. All updates must be done from the same thread though other
// threads can read it concurrently if they create new objects using the same
// memory. For a thread-safe version, see ThreadSafeUserData later on.
class BASE_EXPORT ActivityUserData {
public:
// List of known value type. REFERENCE types must immediately follow the non-
// external types.
enum ValueType : uint8_t {
END_OF_VALUES = 0,
RAW_VALUE,
RAW_VALUE_REFERENCE,
STRING_VALUE,
STRING_VALUE_REFERENCE,
CHAR_VALUE,
BOOL_VALUE,
SIGNED_VALUE,
UNSIGNED_VALUE,
};
class BASE_EXPORT TypedValue {
public:
TypedValue();
TypedValue(const TypedValue& other);
~TypedValue();
ValueType type() const { return type_; }
// These methods return the extracted value in the correct format.
StringPiece Get() const;
StringPiece GetString() const;
bool GetBool() const;
char GetChar() const;
int64_t GetInt() const;
uint64_t GetUint() const;
// These methods return references to process memory as originally provided
// to corresponding Set calls. USE WITH CAUTION! There is no guarantee that
// the referenced memory is assessible or useful. It's possible that:
// - the memory was free'd and reallocated for a different purpose
// - the memory has been released back to the OS
// - the memory belongs to a different process's address space
// Dereferencing the returned StringPiece when the memory is not accessible
// will cause the program to SEGV!
StringPiece GetReference() const;
StringPiece GetStringReference() const;
private:
friend class ActivityUserData;
ValueType type_ = END_OF_VALUES;
uint64_t short_value_; // Used to hold copy of numbers, etc.
std::string long_value_; // Used to hold copy of raw/string data.
StringPiece ref_value_; // Used to hold reference to external data.
};
using Snapshot = std::map<std::string, TypedValue>;
// Initialize the object either as a "sink" that just accepts and discards
// data or an active one that writes to a given (zeroed) memory block.
ActivityUserData();
ActivityUserData(void* memory, size_t size, int64_t pid = 0);
virtual ~ActivityUserData();
// Gets the unique ID number for this user data. If this changes then the
// contents have been overwritten by another thread. The return value is
// always non-zero unless it's actually just a data "sink".
uint32_t id() const {
return header_ ? header_->owner.data_id.load(std::memory_order_relaxed) : 0;
}
// Writes a |value| (as part of a key/value pair) that will be included with
// the activity in any reports. The same |name| can be written multiple times
// with each successive call overwriting the previously stored |value|. For
// raw and string values, the maximum size of successive writes is limited by
// the first call. The length of "name" is limited to 255 characters.
//
// This information is stored on a "best effort" basis. It may be dropped if
// the memory buffer is full or the associated activity is beyond the maximum
// recording depth.
//
// Some methods return pointers to the stored value that can be further
// modified using normal std::atomic operations without having to go through
// this interface, thus avoiding the relatively expensive name lookup.
// ==> Use std::memory_order_relaxed as the "order" parameter to atomic ops.
// Remember that the return value will be nullptr if the value could not
// be stored!
void Set(StringPiece name, const void* memory, size_t size) {
Set(name, RAW_VALUE, memory, size);
}
void SetString(StringPiece name, StringPiece value) {
Set(name, STRING_VALUE, value.data(), value.length());
}
void SetString(StringPiece name, StringPiece16 value) {
SetString(name, UTF16ToUTF8(value));
}
std::atomic<bool>* SetBool(StringPiece name, bool value) {
char cvalue = value ? 1 : 0;
void* addr = Set(name, BOOL_VALUE, &cvalue, sizeof(cvalue));
return reinterpret_cast<std::atomic<bool>*>(addr);
}
std::atomic<char>* SetChar(StringPiece name, char value) {
void* addr = Set(name, CHAR_VALUE, &value, sizeof(value));
return reinterpret_cast<std::atomic<char>*>(addr);
}
std::atomic<int64_t>* SetInt(StringPiece name, int64_t value) {
void* addr = Set(name, SIGNED_VALUE, &value, sizeof(value));
return reinterpret_cast<std::atomic<int64_t>*>(addr);
}
std::atomic<uint64_t>* SetUint(StringPiece name, uint64_t value) {
void* addr = Set(name, UNSIGNED_VALUE, &value, sizeof(value));
return reinterpret_cast<std::atomic<uint64_t>*>(addr);
}
// These function as above but don't actually copy the data into the
// persistent memory. They store unaltered pointers along with a size. These
// can be used in conjuction with a memory dump to find certain large pieces
// of information.
void SetReference(StringPiece name, const void* memory, size_t size) {
SetReference(name, RAW_VALUE_REFERENCE, memory, size);
}
void SetStringReference(StringPiece name, StringPiece value) {
SetReference(name, STRING_VALUE_REFERENCE, value.data(), value.length());
}
// Creates a snapshot of the key/value pairs contained within. The returned
// data will be fixed, independent of whatever changes afterward. There is
// some protection against concurrent modification. This will return false
// if the data is invalid or if a complete overwrite of the contents is
// detected.
bool CreateSnapshot(Snapshot* output_snapshot) const;
// Gets the base memory address used for storing data.
const void* GetBaseAddress() const;
// Explicitly sets the process ID.
void SetOwningProcessIdForTesting(int64_t pid, int64_t stamp);
// Gets the associated process ID, in native form, and the creation timestamp
// from tracker memory without loading the entire structure for analysis. This
// will return false if no valid process ID is available.
static bool GetOwningProcessId(const void* memory,
int64_t* out_id,
int64_t* out_stamp);
protected:
virtual void* Set(StringPiece name,
ValueType type,
const void* memory,
size_t size);
private:
FRIEND_TEST_ALL_PREFIXES(ActivityTrackerTest, UserDataTest);
enum : size_t { kMemoryAlignment = sizeof(uint64_t) };
// A structure that defines the structure header in memory.
struct MemoryHeader {
MemoryHeader();
~MemoryHeader();
OwningProcess owner; // Information about the creating process.
};
// Header to a key/value record held in persistent memory.
struct FieldHeader {
FieldHeader();
~FieldHeader();
std::atomic<uint8_t> type; // Encoded ValueType
uint8_t name_size; // Length of "name" key.
std::atomic<uint16_t> value_size; // Actual size of of the stored value.
uint16_t record_size; // Total storage of name, value, header.
};
// A structure used to reference data held outside of persistent memory.
struct ReferenceRecord {
uint64_t address;
uint64_t size;
};
// This record is used to hold known value is a map so that they can be
// found and overwritten later.
struct ValueInfo {
ValueInfo();
ValueInfo(ValueInfo&&);
~ValueInfo();
StringPiece name; // The "key" of the record.
ValueType type; // The type of the value.
void* memory; // Where the "value" is held.
std::atomic<uint16_t>* size_ptr; // Address of the actual size of value.
size_t extent; // The total storage of the value,
}; // typically rounded up for alignment.
void SetReference(StringPiece name,
ValueType type,
const void* memory,
size_t size);
// Loads any data already in the memory segment. This allows for accessing
// records created previously. If this detects that the underlying data has
// gone away (cleared by another thread/process), it will invalidate all the
// data in this object and turn it into simple "sink" with no values to
// return.
void ImportExistingData() const;
// A map of all the values within the memory block, keyed by name for quick
// updates of the values. This is "mutable" because it changes on "const"
// objects even when the actual data values can't change.
mutable std::map<StringPiece, ValueInfo> values_;
// Information about the memory block in which new data can be stored. These
// are "mutable" because they change even on "const" objects that are just
// skipping already set values.
mutable char* memory_;
mutable size_t available_;
// A pointer to the memory header for this instance.
MemoryHeader* const header_;
// These hold values used when initially creating the object. They are
// compared against current header values to check for outside changes.
const uint32_t orig_data_id;
const int64_t orig_process_id;
const int64_t orig_create_stamp;
DISALLOW_COPY_AND_ASSIGN(ActivityUserData);
};
// This class manages tracking a stack of activities for a single thread in
// a persistent manner, implementing a bounded-size stack in a fixed-size
// memory allocation. In order to support an operational mode where another
// thread is analyzing this data in real-time, atomic operations are used
// where necessary to guarantee a consistent view from the outside.
//
// This class is not generally used directly but instead managed by the
// GlobalActivityTracker instance and updated using Scoped*Activity local
// objects.
class BASE_EXPORT ThreadActivityTracker {
public:
using ActivityId = uint32_t;
// This structure contains all the common information about the thread so
// it doesn't have to be repeated in every entry on the stack. It is defined
// and used completely within the .cc file.
struct Header;
// This structure holds a copy of all the internal data at the moment the
// "snapshot" operation is done. It is disconnected from the live tracker
// so that continued operation of the thread will not cause changes here.
struct BASE_EXPORT Snapshot {
// Explicit constructor/destructor are needed because of complex types
// with non-trivial default constructors and destructors.
Snapshot();
~Snapshot();
// The name of the thread as set when it was created. The name may be
// truncated due to internal length limitations.
std::string thread_name;
// The timestamp at which this process was created.
int64_t create_stamp;
// The process and thread IDs. These values have no meaning other than
// they uniquely identify a running process and a running thread within
// that process. Thread-IDs can be re-used across different processes
// and both can be re-used after the process/thread exits.
int64_t process_id = 0;
int64_t thread_id = 0;
// The current stack of activities that are underway for this thread. It
// is limited in its maximum size with later entries being left off.
std::vector<Activity> activity_stack;
// The current total depth of the activity stack, including those later
// entries not recorded in the |activity_stack| vector.
uint32_t activity_stack_depth = 0;
// The last recorded "exception" activity.
Activity last_exception;
};
// This is the base class for having the compiler manage an activity on the
// tracker's stack. It does nothing but call methods on the passed |tracker|
// if it is not null, making it safe (and cheap) to create these objects
// even if activity tracking is not enabled.
class BASE_EXPORT ScopedActivity {
public:
ScopedActivity(ThreadActivityTracker* tracker,
const void* program_counter,
const void* origin,
Activity::Type type,
const ActivityData& data);
~ScopedActivity();
// Indicates if this activity is actually being recorded. It may not be if
// (a) activity tracking is not enabled globally or
// (b) there was insufficient stack space to hold it.
bool IsRecorded();
// Changes some basic metadata about the activity.
void ChangeTypeAndData(Activity::Type type, const ActivityData& data);
protected:
// The thread tracker to which this object reports. It can be null if
// activity tracking is not (yet) enabled.
ThreadActivityTracker* const tracker_;
// An identifier that indicates a specific activity on the stack.
ActivityId activity_id_;
private:
DISALLOW_COPY_AND_ASSIGN(ScopedActivity);
};
// A ThreadActivityTracker runs on top of memory that is managed externally.
// It must be large enough for the internal header and a few Activity
// blocks. See SizeForStackDepth().
ThreadActivityTracker(void* base, size_t size);
virtual ~ThreadActivityTracker();
// Indicates that an activity has started from a given |origin| address in
// the code, though it can be null if the creator's address is not known.
// The |type| and |data| describe the activity. |program_counter| should be
// the result of GetProgramCounter() where push is called. Returned is an
// ID that can be used to adjust the pushed activity.
ActivityId PushActivity(const void* program_counter,
const void* origin,
Activity::Type type,
const ActivityData& data);
// An inlined version of the above that gets the program counter where it
// is called.
ALWAYS_INLINE
ActivityId PushActivity(const void* origin,
Activity::Type type,
const ActivityData& data) {
return PushActivity(GetProgramCounter(), origin, type, data);
}
// Changes the activity |type| and |data| of the top-most entry on the stack.
// This is useful if the information has changed and it is desireable to
// track that change without creating a new stack entry. If the type is
// ACT_NULL or the data is kNullActivityData then that value will remain
// unchanged. The type, if changed, must remain in the same category.
// Changing both is not atomic so a snapshot operation could occur between
// the update of |type| and |data| or between update of |data| fields.
void ChangeActivity(ActivityId id,
Activity::Type type,
const ActivityData& data);
// Indicates that an activity has completed.
void PopActivity(ActivityId id);
// Indicates if an activity is actually being recorded.
bool IsRecorded(ActivityId id);
// Sets the user-data information for an activity.
std::unique_ptr<ActivityUserData> GetUserData(
ActivityId id,
ActivityTrackerMemoryAllocator* allocator);
// Returns if there is true use-data associated with a given ActivityId since
// it's possible than any returned object is just a sink.
bool HasUserData(ActivityId id);
// Release the user-data information for an activity.
void ReleaseUserData(ActivityId id,
ActivityTrackerMemoryAllocator* allocator);
// Save an exception. |origin| is the location of the exception.
void RecordExceptionActivity(const void* program_counter,
const void* origin,
Activity::Type type,
const ActivityData& data);
// Returns whether the current data is valid or not. It is not valid if
// corruption has been detected in the header or other data structures.
bool IsValid() const;
// Gets a copy of the tracker contents for analysis. Returns false if a
// snapshot was not possible, perhaps because the data is not valid; the
// contents of |output_snapshot| are undefined in that case. The current
// implementation does not support concurrent snapshot operations.
bool CreateSnapshot(Snapshot* output_snapshot) const;
// Gets the base memory address used for storing data.
const void* GetBaseAddress();
// Access the "data version" value so tests can determine if an activity
// was pushed and popped in a single call.
uint32_t GetDataVersionForTesting();
// Explicitly sets the process ID.
void SetOwningProcessIdForTesting(int64_t pid, int64_t stamp);
// Gets the associated process ID, in native form, and the creation timestamp
// from tracker memory without loading the entire structure for analysis. This
// will return false if no valid process ID is available.
static bool GetOwningProcessId(const void* memory,
int64_t* out_id,
int64_t* out_stamp);
// Calculates the memory size required for a given stack depth, including
// the internal header structure for the stack.
static size_t SizeForStackDepth(int stack_depth);
private:
friend class ActivityTrackerTest;
bool CalledOnValidThread();
std::unique_ptr<ActivityUserData> CreateUserDataForActivity(
Activity* activity,
ActivityTrackerMemoryAllocator* allocator);
Header* const header_; // Pointer to the Header structure.
Activity* const stack_; // The stack of activities.
#if DCHECK_IS_ON()
// The ActivityTracker is thread bound, and will be invoked across all the
// sequences that run on the thread. A ThreadChecker does not work here, as it
// asserts on running in the same sequence each time.
const PlatformThreadRef thread_id_; // The thread this instance is bound to.
#endif
const uint32_t stack_slots_; // The total number of stack slots.
bool valid_ = false; // Tracks whether the data is valid or not.
DISALLOW_COPY_AND_ASSIGN(ThreadActivityTracker);
};
// The global tracker manages all the individual thread trackers. Memory for
// the thread trackers is taken from a PersistentMemoryAllocator which allows
// for the data to be analyzed by a parallel process or even post-mortem.
class BASE_EXPORT GlobalActivityTracker {
public:
// Type identifiers used when storing in persistent memory so they can be
// identified during extraction; the first 4 bytes of the SHA1 of the name
// is used as a unique integer. A "version number" is added to the base
// so that, if the structure of that object changes, stored older versions
// will be safely ignored. These are public so that an external process
// can recognize records of this type within an allocator.
enum : uint32_t {
kTypeIdActivityTracker = 0x5D7381AF + 4, // SHA1(ActivityTracker) v4
kTypeIdUserDataRecord = 0x615EDDD7 + 3, // SHA1(UserDataRecord) v3
kTypeIdGlobalLogMessage = 0x4CF434F9 + 1, // SHA1(GlobalLogMessage) v1
kTypeIdProcessDataRecord = kTypeIdUserDataRecord + 0x100,
kTypeIdActivityTrackerFree = ~kTypeIdActivityTracker,
kTypeIdUserDataRecordFree = ~kTypeIdUserDataRecord,
kTypeIdProcessDataRecordFree = ~kTypeIdProcessDataRecord,
};
// An enumeration of common process life stages. All entries are given an
// explicit number so they are known and remain constant; this allows for
// cross-version analysis either locally or on a server.
enum ProcessPhase : int {
// The phases are generic and may have meaning to the tracker.
PROCESS_PHASE_UNKNOWN = 0,
PROCESS_LAUNCHED = 1,
PROCESS_LAUNCH_FAILED = 2,
PROCESS_EXITED_CLEANLY = 10,
PROCESS_EXITED_WITH_CODE = 11,
// Add here whatever is useful for analysis.
PROCESS_SHUTDOWN_STARTED = 100,
PROCESS_MAIN_LOOP_STARTED = 101,
};
// A callback made when a process exits to allow immediate analysis of its
// data. Note that the system may reuse the |process_id| so when fetching
// records it's important to ensure that what is returned was created before
// the |exit_stamp|. Movement of |process_data| information is allowed.
using ProcessExitCallback =
RepeatingCallback<void(int64_t process_id,
int64_t exit_stamp,
int exit_code,
ProcessPhase exit_phase,
std::string&& command_line,
ActivityUserData::Snapshot&& process_data)>;
// This structure contains information about a loaded module, as shown to
// users of the tracker.
struct BASE_EXPORT ModuleInfo {
ModuleInfo();
ModuleInfo(ModuleInfo&& rhs);
ModuleInfo(const ModuleInfo& rhs);
~ModuleInfo();
ModuleInfo& operator=(ModuleInfo&& rhs);
ModuleInfo& operator=(const ModuleInfo& rhs);
// Information about where and when the module was loaded/unloaded.
bool is_loaded = false; // Was the last operation a load or unload?
uintptr_t address = 0; // Address of the last load operation.
int64_t load_time = 0; // Time of last change; set automatically.
// Information about the module itself. These never change no matter how
// many times a module may be loaded and unloaded.
size_t size = 0; // The size of the loaded module.
uint32_t timestamp = 0; // Opaque "timestamp" for the module.
uint32_t age = 0; // Opaque "age" for the module.
uint8_t identifier[16]; // Opaque identifier (GUID, etc.) for the module.
std::string file; // The full path to the file. (UTF-8)
std::string debug_file; // The full path to the debug file.
};
// This is a thin wrapper around the thread-tracker's ScopedActivity that
// allows thread-safe access to data values. It is safe to use even if
// activity tracking is not enabled.
class BASE_EXPORT ScopedThreadActivity
: public ThreadActivityTracker::ScopedActivity {
public:
ScopedThreadActivity(const void* program_counter,
const void* origin,
Activity::Type type,
const ActivityData& data,
bool lock_allowed);
~ScopedThreadActivity();
// Returns an object for manipulating user data.
ActivityUserData& user_data();
private:
// Gets (or creates) a tracker for the current thread. If locking is not
// allowed (because a lock is being tracked which would cause recursion)
// then the attempt to create one if none found will be skipped. Once
// the tracker for this thread has been created for other reasons, locks
// will be tracked. The thread-tracker uses locks.
static ThreadActivityTracker* GetOrCreateTracker(bool lock_allowed) {
GlobalActivityTracker* global_tracker = Get();
if (!global_tracker)
return nullptr;
if (lock_allowed)
return global_tracker->GetOrCreateTrackerForCurrentThread();
else
return global_tracker->GetTrackerForCurrentThread();
}
// An object that manages additional user data, created only upon request.
std::unique_ptr<ActivityUserData> user_data_;
DISALLOW_COPY_AND_ASSIGN(ScopedThreadActivity);
};
~GlobalActivityTracker();
// Creates a global tracker using a given persistent-memory |allocator| and
// providing the given |stack_depth| to each thread tracker it manages. The
// created object is activated so tracking will begin immediately upon return.
// The |process_id| can be zero to get it from the OS but is taken for testing
// purposes.
static void CreateWithAllocator(
std::unique_ptr<PersistentMemoryAllocator> allocator,
int stack_depth,
int64_t process_id);
#if !defined(OS_NACL)
// Like above but internally creates an allocator around a disk file with
// the specified |size| at the given |file_path|. Any existing file will be
// overwritten. The |id| and |name| are arbitrary and stored in the allocator
// for reference by whatever process reads it. Returns true if successful.
static bool CreateWithFile(const FilePath& file_path,
size_t size,
uint64_t id,
StringPiece name,
int stack_depth);
#endif // !defined(OS_NACL)
// Like above but internally creates an allocator using local heap memory of
// the specified size. This is used primarily for unit tests. The |process_id|
// can be zero to get it from the OS but is taken for testing purposes.
static bool CreateWithLocalMemory(size_t size,
uint64_t id,
StringPiece name,
int stack_depth,
int64_t process_id);
// Like above but internally creates an allocator using a shared-memory
// segment that is already mapped into the local memory space.
static bool CreateWithSharedMemory(base::WritableSharedMemoryMapping mapping,
uint64_t id,
StringPiece name,
int stack_depth);
// Gets the global activity-tracker or null if none exists.
static GlobalActivityTracker* Get() {
return reinterpret_cast<GlobalActivityTracker*>(
subtle::Acquire_Load(&g_tracker_));
}
// Sets the global activity-tracker for testing purposes.
static void SetForTesting(std::unique_ptr<GlobalActivityTracker> tracker);
// This access to the persistent allocator is only for testing; it extracts
// the global tracker completely. All tracked threads must exit before
// calling this. Tracking for the current thread will be automatically
// stopped.
static std::unique_ptr<GlobalActivityTracker> ReleaseForTesting();
// Convenience method for determining if a global tracker is active.
static bool IsEnabled() { return Get() != nullptr; }
// Gets the persistent-memory-allocator in which data is stored. Callers
// can store additional records here to pass more information to the
// analysis process.
PersistentMemoryAllocator* allocator() { return allocator_.get(); }
// Gets the thread's activity-tracker if it exists. This is inline for
// performance reasons and it uses thread-local-storage (TLS) so that there
// is no significant lookup time required to find the one for the calling
// thread. Ownership remains with the global tracker.
ThreadActivityTracker* GetTrackerForCurrentThread() {
// It is not safe to use TLS once TLS has been destroyed.
if (base::ThreadLocalStorage::HasBeenDestroyed())
return nullptr;
return this_thread_tracker_.Get();
}
// Gets the thread's activity-tracker or creates one if none exists. This
// is inline for performance reasons. Ownership remains with the global
// tracker.
ThreadActivityTracker* GetOrCreateTrackerForCurrentThread() {
ThreadActivityTracker* tracker = GetTrackerForCurrentThread();
if (tracker)
return tracker;
return CreateTrackerForCurrentThread();
}
// Creates an activity-tracker for the current thread.
ThreadActivityTracker* CreateTrackerForCurrentThread();
// Releases the activity-tracker for the current thread (for testing only).
void ReleaseTrackerForCurrentThreadForTesting();
// Sets a task-runner that can be used for background work.
void SetBackgroundTaskRunner(
const scoped_refptr<SequencedTaskRunner>& runner);
// Sets an optional callback to be called when a process exits.
void SetProcessExitCallback(ProcessExitCallback callback);
// Manages process lifetimes. These are called by the process that launched
// and reaped the subprocess, not the subprocess itself. If it is expensive
// to generate the parameters, Get() the global tracker and call these
// conditionally rather than using the static versions.
void RecordProcessLaunch(ProcessId process_id,
const FilePath::StringType& cmd);
void RecordProcessLaunch(ProcessId process_id,
const FilePath::StringType& exe,
const FilePath::StringType& args);
void RecordProcessExit(ProcessId process_id, int exit_code);
static void RecordProcessLaunchIfEnabled(ProcessId process_id,
const FilePath::StringType& cmd) {
GlobalActivityTracker* tracker = Get();
if (tracker)
tracker->RecordProcessLaunch(process_id, cmd);
}
static void RecordProcessLaunchIfEnabled(ProcessId process_id,
const FilePath::StringType& exe,
const FilePath::StringType& args) {
GlobalActivityTracker* tracker = Get();
if (tracker)
tracker->RecordProcessLaunch(process_id, exe, args);
}
static void RecordProcessExitIfEnabled(ProcessId process_id, int exit_code) {
GlobalActivityTracker* tracker = Get();
if (tracker)
tracker->RecordProcessExit(process_id, exit_code);
}
// Sets the "phase" of the current process, useful for knowing what it was
// doing when it last reported.
void SetProcessPhase(ProcessPhase phase);
static void SetProcessPhaseIfEnabled(ProcessPhase phase) {
GlobalActivityTracker* tracker = Get();
if (tracker)
tracker->SetProcessPhase(phase);
}
// Records a log message. The current implementation does NOT recycle these
// only store critical messages such as FATAL ones.
void RecordLogMessage(StringPiece message);
static void RecordLogMessageIfEnabled(StringPiece message) {
GlobalActivityTracker* tracker = Get();
if (tracker)
tracker->RecordLogMessage(message);
}
// Records a module load/unload event. This is safe to call multiple times
// even with the same information.
void RecordModuleInfo(const ModuleInfo& info);
static void RecordModuleInfoIfEnabled(const ModuleInfo& info) {
GlobalActivityTracker* tracker = Get();
if (tracker)
tracker->RecordModuleInfo(info);
}
// Record exception information for the current thread.
ALWAYS_INLINE
void RecordException(const void* origin, uint32_t code) {
return RecordExceptionImpl(GetProgramCounter(), origin, code);
}
void RecordException(const void* pc, const void* origin, uint32_t code);
// Marks the tracked data as deleted.
void MarkDeleted();
// Gets the process ID used for tracking. This is typically the same as what
// the OS thinks is the current process but can be overridden for testing.
int64_t process_id() { return process_id_; }
// Accesses the process data record for storing arbitrary key/value pairs.
// Updates to this are thread-safe.
ActivityUserData& process_data() { return process_data_; }
private:
friend class GlobalActivityAnalyzer;
friend class ScopedThreadActivity;
friend class ActivityTrackerTest;
enum : int {
// The maximum number of threads that can be tracked within a process. If
// more than this number run concurrently, tracking of new ones may cease.
kMaxThreadCount = 100,
kCachedThreadMemories = 10,
kCachedUserDataMemories = 10,
};
// A wrapper around ActivityUserData that is thread-safe and thus can be used
// in the global scope without the requirement of being called from only one
// thread.
class ThreadSafeUserData : public ActivityUserData {
public:
ThreadSafeUserData(void* memory, size_t size, int64_t pid = 0);
~ThreadSafeUserData() override;
private:
void* Set(StringPiece name,
ValueType type,
const void* memory,
size_t size) override;
Lock data_lock_;
DISALLOW_COPY_AND_ASSIGN(ThreadSafeUserData);
};
// State of a module as stored in persistent memory. This supports a single
// loading of a module only. If modules are loaded multiple times at
// different addresses, only the last will be recorded and an unload will
// not revert to the information of any other addresses.
struct BASE_EXPORT ModuleInfoRecord {
// SHA1(ModuleInfoRecord): Increment this if structure changes!
static constexpr uint32_t kPersistentTypeId = 0x05DB5F41 + 1;
// Expected size for 32/64-bit check by PersistentMemoryAllocator.
static constexpr size_t kExpectedInstanceSize =
OwningProcess::kExpectedInstanceSize + 56;
// The atomic unfortunately makes this a "complex" class on some compilers
// and thus requires an out-of-line constructor & destructor even though
// they do nothing.
ModuleInfoRecord();
~ModuleInfoRecord();
OwningProcess owner; // The process that created this record.
uint64_t address; // The base address of the module.
uint64_t load_time; // Time of last load/unload.
uint64_t size; // The size of the module in bytes.
uint32_t timestamp; // Opaque timestamp of the module.
uint32_t age; // Opaque "age" associated with the module.
uint8_t identifier[16]; // Opaque identifier for the module.
std::atomic<uint32_t> changes; // Number load/unload actions.
uint16_t pickle_size; // The size of the following pickle.
uint8_t loaded; // Flag if module is loaded or not.
char pickle[1]; // Other strings; may allocate larger.
// Decodes/encodes storage structure from more generic info structure.
bool DecodeTo(GlobalActivityTracker::ModuleInfo* info,
size_t record_size) const;
static ModuleInfoRecord* CreateFrom(
const GlobalActivityTracker::ModuleInfo& info,
PersistentMemoryAllocator* allocator);
// Updates the core information without changing the encoded strings. This
// is useful when a known module changes state (i.e. new load or unload).
bool UpdateFrom(const GlobalActivityTracker::ModuleInfo& info);
private:
DISALLOW_COPY_AND_ASSIGN(ModuleInfoRecord);
};
// A thin wrapper around the main thread-tracker that keeps additional
// information that the global tracker needs to handle joined threads.
class ManagedActivityTracker : public ThreadActivityTracker {
public:
ManagedActivityTracker(PersistentMemoryAllocator::Reference mem_reference,
void* base,
size_t size);
~ManagedActivityTracker() override;
// The reference into persistent memory from which the thread-tracker's
// memory was created.
const PersistentMemoryAllocator::Reference mem_reference_;
// The physical address used for the thread-tracker's memory.
void* const mem_base_;
private:
DISALLOW_COPY_AND_ASSIGN(ManagedActivityTracker);
};
// Creates a global tracker using a given persistent-memory |allocator| and
// providing the given |stack_depth| to each thread tracker it manages. The
// created object is activated so tracking has already started upon return.
// The |process_id| can be zero to get it from the OS but is taken for testing
// purposes.
GlobalActivityTracker(std::unique_ptr<PersistentMemoryAllocator> allocator,
int stack_depth,
int64_t process_id);
// Returns the memory used by an activity-tracker managed by this class.
// It is called during the destruction of a ManagedActivityTracker object.
void ReturnTrackerMemory(ManagedActivityTracker* tracker);
// Records exception information.
void RecordExceptionImpl(const void* pc, const void* origin, uint32_t code);
// Releases the activity-tracker associcated with thread. It is called
// automatically when a thread is joined and thus there is nothing more to
// be tracked. |value| is a pointer to a ManagedActivityTracker.
static void OnTLSDestroy(void* value);
// Does process-exit work. This can be run on any thread.
void CleanupAfterProcess(int64_t process_id,
int64_t exit_stamp,
int exit_code,
std::string&& command_line);
// The persistent-memory allocator from which the memory for all trackers
// is taken.
std::unique_ptr<PersistentMemoryAllocator> allocator_;
// The size (in bytes) of memory required by a ThreadActivityTracker to
// provide the stack-depth requested during construction.
const size_t stack_memory_size_;
// The process-id of the current process. This is kept as a member variable,
// defined during initialization, for testing purposes.
const int64_t process_id_;
// The activity tracker for the currently executing thread.
ThreadLocalOwnedPointer<ThreadActivityTracker> this_thread_tracker_;
// The number of thread trackers currently active.
std::atomic<int> thread_tracker_count_;
// A caching memory allocator for thread-tracker objects.
ActivityTrackerMemoryAllocator thread_tracker_allocator_;
Lock thread_tracker_allocator_lock_;
// A caching memory allocator for user data attached to activity data.
ActivityTrackerMemoryAllocator user_data_allocator_;
Lock user_data_allocator_lock_;
// An object for holding arbitrary key value pairs with thread-safe access.
ThreadSafeUserData process_data_;
// A map of global module information, keyed by module path.
std::map<const std::string, ModuleInfoRecord*> modules_;
Lock modules_lock_;
// The active global activity tracker.
static subtle::AtomicWord g_tracker_;
// A lock that is used to protect access to the following fields.
Lock global_tracker_lock_;
// The collection of processes being tracked and their command-lines.
std::map<int64_t, std::string> known_processes_;
// A task-runner that can be used for doing background processing.
scoped_refptr<SequencedTaskRunner> background_task_runner_;
// A callback performed when a subprocess exits, including its exit-code
// and the phase it was in when that occurred. This will be called via
// the |background_task_runner_| if one is set or whatever thread reaped
// the process otherwise.
ProcessExitCallback process_exit_callback_;
DISALLOW_COPY_AND_ASSIGN(GlobalActivityTracker);
};
// Record entry in to and out of an arbitrary block of code.
class BASE_EXPORT ScopedActivity
: public GlobalActivityTracker::ScopedThreadActivity {
public:
// Track activity at the specified FROM_HERE location for an arbitrary
// 4-bit |action|, an arbitrary 32-bit |id|, and 32-bits of arbitrary
// |info|. None of these values affect operation; they're all purely
// for association and analysis. To have unique identifiers across a
// diverse code-base, create the number by taking the first 8 characters
// of the hash of the activity being tracked.
//
// For example:
// Tracking method: void MayNeverExit(uint32_t foo) {...}
// echo -n "MayNeverExit" | sha1sum => e44873ccab21e2b71270da24aa1...
//
// void MayNeverExit(int32_t foo) {
// base::debug::ScopedActivity track_me(0, 0xE44873CC, foo);
// ...
// }
ALWAYS_INLINE
ScopedActivity(uint8_t action, uint32_t id, int32_t info)
: ScopedActivity(GetProgramCounter(), action, id, info) {}
ScopedActivity(Location from_here, uint8_t action, uint32_t id, int32_t info)
: ScopedActivity(from_here.program_counter(), action, id, info) {}
ScopedActivity() : ScopedActivity(0, 0, 0) {}
// Changes the |action| and/or |info| of this activity on the stack. This
// is useful for tracking progress through a function, updating the action
// to indicate "milestones" in the block (max 16 milestones: 0-15) or the
// info to reflect other changes. Changing both is not atomic so a snapshot
// operation could occur between the update of |action| and |info|.
void ChangeAction(uint8_t action);
void ChangeInfo(int32_t info);
void ChangeActionAndInfo(uint8_t action, int32_t info);
private:
// Constructs the object using a passed-in program-counter.
ScopedActivity(const void* program_counter,
uint8_t action,
uint32_t id,
int32_t info);
// A copy of the ID code so it doesn't have to be passed by the caller when
// changing the |info| field.
uint32_t id_;
DISALLOW_COPY_AND_ASSIGN(ScopedActivity);
};
// These "scoped" classes provide easy tracking of various blocking actions.
class BASE_EXPORT ScopedTaskRunActivity
: public GlobalActivityTracker::ScopedThreadActivity {
public:
ALWAYS_INLINE
explicit ScopedTaskRunActivity(const PendingTask& task)
: ScopedTaskRunActivity(GetProgramCounter(), task) {}
private:
ScopedTaskRunActivity(const void* program_counter, const PendingTask& task);
DISALLOW_COPY_AND_ASSIGN(ScopedTaskRunActivity);
};
class BASE_EXPORT ScopedLockAcquireActivity
: public GlobalActivityTracker::ScopedThreadActivity {
public:
ALWAYS_INLINE
explicit ScopedLockAcquireActivity(const base::internal::LockImpl* lock)
: ScopedLockAcquireActivity(GetProgramCounter(), lock) {}
private:
ScopedLockAcquireActivity(const void* program_counter,
const base::internal::LockImpl* lock);
DISALLOW_COPY_AND_ASSIGN(ScopedLockAcquireActivity);
};
class BASE_EXPORT ScopedEventWaitActivity
: public GlobalActivityTracker::ScopedThreadActivity {
public:
ALWAYS_INLINE
explicit ScopedEventWaitActivity(const WaitableEvent* event)
: ScopedEventWaitActivity(GetProgramCounter(), event) {}
private:
ScopedEventWaitActivity(const void* program_counter,
const WaitableEvent* event);
DISALLOW_COPY_AND_ASSIGN(ScopedEventWaitActivity);
};
class BASE_EXPORT ScopedThreadJoinActivity
: public GlobalActivityTracker::ScopedThreadActivity {
public:
ALWAYS_INLINE
explicit ScopedThreadJoinActivity(const PlatformThreadHandle* thread)
: ScopedThreadJoinActivity(GetProgramCounter(), thread) {}
private:
ScopedThreadJoinActivity(const void* program_counter,
const PlatformThreadHandle* thread);
DISALLOW_COPY_AND_ASSIGN(ScopedThreadJoinActivity);
};
// Some systems don't have base::Process
#if !defined(OS_NACL) && !defined(OS_IOS)
class BASE_EXPORT ScopedProcessWaitActivity
: public GlobalActivityTracker::ScopedThreadActivity {
public:
ALWAYS_INLINE
explicit ScopedProcessWaitActivity(const Process* process)
: ScopedProcessWaitActivity(GetProgramCounter(), process) {}
private:
ScopedProcessWaitActivity(const void* program_counter,
const Process* process);
DISALLOW_COPY_AND_ASSIGN(ScopedProcessWaitActivity);
};
#endif
} // namespace debug
} // namespace base
#endif // BASE_DEBUG_ACTIVITY_TRACKER_H_