Telegram-Android/TMessagesProj/jni/voip/webrtc/call/bitrate_allocator.cc

595 lines
24 KiB
C++
Raw Normal View History

2020-08-14 18:58:22 +02:00
/*
* Copyright (c) 2015 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*
*/
#include "call/bitrate_allocator.h"
#include <algorithm>
#include <cmath>
#include <memory>
#include <utility>
#include "absl/algorithm/container.h"
#include "api/units/data_rate.h"
#include "api/units/time_delta.h"
#include "rtc_base/checks.h"
#include "rtc_base/logging.h"
#include "rtc_base/numerics/safe_minmax.h"
#include "system_wrappers/include/clock.h"
#include "system_wrappers/include/field_trial.h"
#include "system_wrappers/include/metrics.h"
namespace webrtc {
namespace {
using bitrate_allocator_impl::AllocatableTrack;
// Allow packets to be transmitted in up to 2 times max video bitrate if the
// bandwidth estimate allows it.
const uint8_t kTransmissionMaxBitrateMultiplier = 2;
const int kDefaultBitrateBps = 300000;
// Require a bitrate increase of max(10%, 20kbps) to resume paused streams.
const double kToggleFactor = 0.1;
const uint32_t kMinToggleBitrateBps = 20000;
const int64_t kBweLogIntervalMs = 5000;
double MediaRatio(uint32_t allocated_bitrate, uint32_t protection_bitrate) {
RTC_DCHECK_GT(allocated_bitrate, 0);
if (protection_bitrate == 0)
return 1.0;
uint32_t media_bitrate = allocated_bitrate - protection_bitrate;
return media_bitrate / static_cast<double>(allocated_bitrate);
}
bool EnoughBitrateForAllObservers(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate,
uint32_t sum_min_bitrates) {
if (bitrate < sum_min_bitrates)
return false;
uint32_t extra_bitrate_per_observer =
(bitrate - sum_min_bitrates) /
static_cast<uint32_t>(allocatable_tracks.size());
for (const auto& observer_config : allocatable_tracks) {
if (observer_config.config.min_bitrate_bps + extra_bitrate_per_observer <
observer_config.MinBitrateWithHysteresis()) {
return false;
}
}
return true;
}
2022-03-11 17:49:54 +01:00
// Splits `bitrate` evenly to observers already in `allocation`.
// `include_zero_allocations` decides if zero allocations should be part of
// the distribution or not. The allowed max bitrate is `max_multiplier` x
2020-08-14 18:58:22 +02:00
// observer max bitrate.
void DistributeBitrateEvenly(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate,
bool include_zero_allocations,
int max_multiplier,
std::map<BitrateAllocatorObserver*, int>* allocation) {
RTC_DCHECK_EQ(allocation->size(), allocatable_tracks.size());
std::multimap<uint32_t, const AllocatableTrack*> list_max_bitrates;
for (const auto& observer_config : allocatable_tracks) {
if (include_zero_allocations ||
allocation->at(observer_config.observer) != 0) {
list_max_bitrates.insert(
{observer_config.config.max_bitrate_bps, &observer_config});
}
}
auto it = list_max_bitrates.begin();
while (it != list_max_bitrates.end()) {
RTC_DCHECK_GT(bitrate, 0);
uint32_t extra_allocation =
bitrate / static_cast<uint32_t>(list_max_bitrates.size());
uint32_t total_allocation =
extra_allocation + allocation->at(it->second->observer);
bitrate -= extra_allocation;
if (total_allocation > max_multiplier * it->first) {
// There is more than we can fit for this observer, carry over to the
// remaining observers.
bitrate += total_allocation - max_multiplier * it->first;
total_allocation = max_multiplier * it->first;
}
// Finally, update the allocation for this observer.
allocation->at(it->second->observer) = total_allocation;
it = list_max_bitrates.erase(it);
}
}
2022-03-11 17:49:54 +01:00
// From the available `bitrate`, each observer will be allocated a
2020-08-14 18:58:22 +02:00
// proportional amount based upon its bitrate priority. If that amount is
// more than the observer's capacity, it will be allocated its capacity, and
// the excess bitrate is still allocated proportionally to other observers.
// Allocating the proportional amount means an observer with twice the
// bitrate_priority of another will be allocated twice the bitrate.
void DistributeBitrateRelatively(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t remaining_bitrate,
const std::map<BitrateAllocatorObserver*, int>& observers_capacities,
std::map<BitrateAllocatorObserver*, int>* allocation) {
RTC_DCHECK_EQ(allocation->size(), allocatable_tracks.size());
RTC_DCHECK_EQ(observers_capacities.size(), allocatable_tracks.size());
struct PriorityRateObserverConfig {
BitrateAllocatorObserver* allocation_key;
// The amount of bitrate bps that can be allocated to this observer.
int capacity_bps;
double bitrate_priority;
};
double bitrate_priority_sum = 0;
std::vector<PriorityRateObserverConfig> priority_rate_observers;
for (const auto& observer_config : allocatable_tracks) {
priority_rate_observers.push_back(PriorityRateObserverConfig{
observer_config.observer,
observers_capacities.at(observer_config.observer),
observer_config.config.bitrate_priority});
bitrate_priority_sum += observer_config.config.bitrate_priority;
}
// Iterate in the order observers can be allocated their full capacity.
// We want to sort by which observers will be allocated their full capacity
// first. By dividing each observer's capacity by its bitrate priority we
// are "normalizing" the capacity of an observer by the rate it will be
// filled. This is because the amount allocated is based upon bitrate
// priority. We allocate twice as much bitrate to an observer with twice the
// bitrate priority of another.
absl::c_sort(priority_rate_observers, [](const auto& a, const auto& b) {
return a.capacity_bps / a.bitrate_priority <
b.capacity_bps / b.bitrate_priority;
});
size_t i;
for (i = 0; i < priority_rate_observers.size(); ++i) {
const auto& priority_rate_observer = priority_rate_observers[i];
// We allocate the full capacity to an observer only if its relative
// portion from the remaining bitrate is sufficient to allocate its full
// capacity. This means we aren't greedily allocating the full capacity, but
// that it is only done when there is also enough bitrate to allocate the
// proportional amounts to all other observers.
double observer_share =
priority_rate_observer.bitrate_priority / bitrate_priority_sum;
double allocation_bps = observer_share * remaining_bitrate;
bool enough_bitrate = allocation_bps >= priority_rate_observer.capacity_bps;
if (!enough_bitrate)
break;
allocation->at(priority_rate_observer.allocation_key) +=
priority_rate_observer.capacity_bps;
remaining_bitrate -= priority_rate_observer.capacity_bps;
bitrate_priority_sum -= priority_rate_observer.bitrate_priority;
}
// From the remaining bitrate, allocate the proportional amounts to the
// observers that aren't allocated their max capacity.
for (; i < priority_rate_observers.size(); ++i) {
const auto& priority_rate_observer = priority_rate_observers[i];
double fraction_allocated =
priority_rate_observer.bitrate_priority / bitrate_priority_sum;
allocation->at(priority_rate_observer.allocation_key) +=
fraction_allocated * remaining_bitrate;
}
}
// Allocates bitrate to observers when there isn't enough to allocate the
// minimum to all observers.
std::map<BitrateAllocatorObserver*, int> LowRateAllocation(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate) {
std::map<BitrateAllocatorObserver*, int> allocation;
// Start by allocating bitrate to observers enforcing a min bitrate, hence
// remaining_bitrate might turn negative.
int64_t remaining_bitrate = bitrate;
for (const auto& observer_config : allocatable_tracks) {
int32_t allocated_bitrate = 0;
if (observer_config.config.enforce_min_bitrate)
allocated_bitrate = observer_config.config.min_bitrate_bps;
allocation[observer_config.observer] = allocated_bitrate;
remaining_bitrate -= allocated_bitrate;
}
// Allocate bitrate to all previously active streams.
if (remaining_bitrate > 0) {
for (const auto& observer_config : allocatable_tracks) {
if (observer_config.config.enforce_min_bitrate ||
observer_config.LastAllocatedBitrate() == 0)
continue;
uint32_t required_bitrate = observer_config.MinBitrateWithHysteresis();
if (remaining_bitrate >= required_bitrate) {
allocation[observer_config.observer] = required_bitrate;
remaining_bitrate -= required_bitrate;
}
}
}
// Allocate bitrate to previously paused streams.
if (remaining_bitrate > 0) {
for (const auto& observer_config : allocatable_tracks) {
if (observer_config.LastAllocatedBitrate() != 0)
continue;
// Add a hysteresis to avoid toggling.
uint32_t required_bitrate = observer_config.MinBitrateWithHysteresis();
if (remaining_bitrate >= required_bitrate) {
allocation[observer_config.observer] = required_bitrate;
remaining_bitrate -= required_bitrate;
}
}
}
// Split a possible remainder evenly on all streams with an allocation.
if (remaining_bitrate > 0)
DistributeBitrateEvenly(allocatable_tracks, remaining_bitrate, false, 1,
&allocation);
RTC_DCHECK_EQ(allocation.size(), allocatable_tracks.size());
return allocation;
}
// Allocates bitrate to all observers when the available bandwidth is enough
// to allocate the minimum to all observers but not enough to allocate the
// max bitrate of each observer.
// Allocates the bitrate based on the bitrate priority of each observer. This
// bitrate priority defines the priority for bitrate to be allocated to that
// observer in relation to other observers. For example with two observers, if
// observer 1 had a bitrate_priority = 1.0, and observer 2 has a
// bitrate_priority = 2.0, the expected behavior is that observer 2 will be
// allocated twice the bitrate as observer 1 above the each observer's
// min_bitrate_bps values, until one of the observers hits its max_bitrate_bps.
std::map<BitrateAllocatorObserver*, int> NormalRateAllocation(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate,
uint32_t sum_min_bitrates) {
std::map<BitrateAllocatorObserver*, int> allocation;
std::map<BitrateAllocatorObserver*, int> observers_capacities;
for (const auto& observer_config : allocatable_tracks) {
allocation[observer_config.observer] =
observer_config.config.min_bitrate_bps;
observers_capacities[observer_config.observer] =
observer_config.config.max_bitrate_bps -
observer_config.config.min_bitrate_bps;
}
bitrate -= sum_min_bitrates;
// TODO(srte): Implement fair sharing between prioritized streams, currently
// they are treated on a first come first serve basis.
for (const auto& observer_config : allocatable_tracks) {
int64_t priority_margin = observer_config.config.priority_bitrate_bps -
allocation[observer_config.observer];
if (priority_margin > 0 && bitrate > 0) {
int64_t extra_bitrate = std::min<int64_t>(priority_margin, bitrate);
allocation[observer_config.observer] +=
rtc::dchecked_cast<int>(extra_bitrate);
observers_capacities[observer_config.observer] -= extra_bitrate;
bitrate -= extra_bitrate;
}
}
// From the remaining bitrate, allocate a proportional amount to each observer
// above the min bitrate already allocated.
if (bitrate > 0)
DistributeBitrateRelatively(allocatable_tracks, bitrate,
observers_capacities, &allocation);
return allocation;
}
// Allocates bitrate to observers when there is enough available bandwidth
// for all observers to be allocated their max bitrate.
std::map<BitrateAllocatorObserver*, int> MaxRateAllocation(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate,
uint32_t sum_max_bitrates) {
std::map<BitrateAllocatorObserver*, int> allocation;
for (const auto& observer_config : allocatable_tracks) {
allocation[observer_config.observer] =
observer_config.config.max_bitrate_bps;
bitrate -= observer_config.config.max_bitrate_bps;
}
DistributeBitrateEvenly(allocatable_tracks, bitrate, true,
kTransmissionMaxBitrateMultiplier, &allocation);
return allocation;
}
// Allocates zero bitrate to all observers.
std::map<BitrateAllocatorObserver*, int> ZeroRateAllocation(
const std::vector<AllocatableTrack>& allocatable_tracks) {
std::map<BitrateAllocatorObserver*, int> allocation;
for (const auto& observer_config : allocatable_tracks)
allocation[observer_config.observer] = 0;
return allocation;
}
std::map<BitrateAllocatorObserver*, int> AllocateBitrates(
const std::vector<AllocatableTrack>& allocatable_tracks,
uint32_t bitrate) {
if (allocatable_tracks.empty())
return std::map<BitrateAllocatorObserver*, int>();
if (bitrate == 0)
return ZeroRateAllocation(allocatable_tracks);
uint32_t sum_min_bitrates = 0;
uint32_t sum_max_bitrates = 0;
for (const auto& observer_config : allocatable_tracks) {
sum_min_bitrates += observer_config.config.min_bitrate_bps;
sum_max_bitrates += observer_config.config.max_bitrate_bps;
}
// Not enough for all observers to get an allocation, allocate according to:
// enforced min bitrate -> allocated bitrate previous round -> restart paused
// streams.
if (!EnoughBitrateForAllObservers(allocatable_tracks, bitrate,
sum_min_bitrates))
return LowRateAllocation(allocatable_tracks, bitrate);
// All observers will get their min bitrate plus a share of the rest. This
// share is allocated to each observer based on its bitrate_priority.
if (bitrate <= sum_max_bitrates)
return NormalRateAllocation(allocatable_tracks, bitrate, sum_min_bitrates);
// All observers will get up to transmission_max_bitrate_multiplier_ x max.
return MaxRateAllocation(allocatable_tracks, bitrate, sum_max_bitrates);
}
} // namespace
BitrateAllocator::BitrateAllocator(LimitObserver* limit_observer)
: limit_observer_(limit_observer),
last_target_bps_(0),
last_stable_target_bps_(0),
last_non_zero_bitrate_bps_(kDefaultBitrateBps),
last_fraction_loss_(0),
last_rtt_(0),
last_bwe_period_ms_(1000),
num_pause_events_(0),
last_bwe_log_time_(0) {
sequenced_checker_.Detach();
}
BitrateAllocator::~BitrateAllocator() {
RTC_HISTOGRAM_COUNTS_100("WebRTC.Call.NumberOfPauseEvents",
num_pause_events_);
}
void BitrateAllocator::UpdateStartRate(uint32_t start_rate_bps) {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
last_non_zero_bitrate_bps_ = start_rate_bps;
}
void BitrateAllocator::OnNetworkEstimateChanged(TargetTransferRate msg) {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
last_target_bps_ = msg.target_rate.bps();
last_stable_target_bps_ = msg.stable_target_rate.bps();
last_non_zero_bitrate_bps_ =
last_target_bps_ > 0 ? last_target_bps_ : last_non_zero_bitrate_bps_;
int loss_ratio_255 = msg.network_estimate.loss_rate_ratio * 255;
last_fraction_loss_ =
rtc::dchecked_cast<uint8_t>(rtc::SafeClamp(loss_ratio_255, 0, 255));
last_rtt_ = msg.network_estimate.round_trip_time.ms();
last_bwe_period_ms_ = msg.network_estimate.bwe_period.ms();
// Periodically log the incoming BWE.
int64_t now = msg.at_time.ms();
if (now > last_bwe_log_time_ + kBweLogIntervalMs) {
RTC_LOG(LS_INFO) << "Current BWE " << last_target_bps_;
last_bwe_log_time_ = now;
}
auto allocation = AllocateBitrates(allocatable_tracks_, last_target_bps_);
auto stable_bitrate_allocation =
AllocateBitrates(allocatable_tracks_, last_stable_target_bps_);
for (auto& config : allocatable_tracks_) {
uint32_t allocated_bitrate = allocation[config.observer];
uint32_t allocated_stable_target_rate =
stable_bitrate_allocation[config.observer];
BitrateAllocationUpdate update;
update.target_bitrate = DataRate::BitsPerSec(allocated_bitrate);
update.stable_target_bitrate =
DataRate::BitsPerSec(allocated_stable_target_rate);
update.packet_loss_ratio = last_fraction_loss_ / 256.0;
update.round_trip_time = TimeDelta::Millis(last_rtt_);
update.bwe_period = TimeDelta::Millis(last_bwe_period_ms_);
update.cwnd_reduce_ratio = msg.cwnd_reduce_ratio;
uint32_t protection_bitrate = config.observer->OnBitrateUpdated(update);
if (allocated_bitrate == 0 && config.allocated_bitrate_bps > 0) {
if (last_target_bps_ > 0)
++num_pause_events_;
// The protection bitrate is an estimate based on the ratio between media
// and protection used before this observer was muted.
uint32_t predicted_protection_bps =
(1.0 - config.media_ratio) * config.config.min_bitrate_bps;
RTC_LOG(LS_INFO) << "Pausing observer " << config.observer
<< " with configured min bitrate "
<< config.config.min_bitrate_bps
<< " and current estimate of " << last_target_bps_
<< " and protection bitrate "
<< predicted_protection_bps;
} else if (allocated_bitrate > 0 && config.allocated_bitrate_bps == 0) {
if (last_target_bps_ > 0)
++num_pause_events_;
RTC_LOG(LS_INFO) << "Resuming observer " << config.observer
<< ", configured min bitrate "
<< config.config.min_bitrate_bps
<< ", current allocation " << allocated_bitrate
<< " and protection bitrate " << protection_bitrate;
}
// Only update the media ratio if the observer got an allocation.
if (allocated_bitrate > 0)
config.media_ratio = MediaRatio(allocated_bitrate, protection_bitrate);
config.allocated_bitrate_bps = allocated_bitrate;
}
UpdateAllocationLimits();
}
void BitrateAllocator::AddObserver(BitrateAllocatorObserver* observer,
MediaStreamAllocationConfig config) {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
RTC_DCHECK_GT(config.bitrate_priority, 0);
RTC_DCHECK(std::isnormal(config.bitrate_priority));
auto it = absl::c_find_if(
allocatable_tracks_,
[observer](const auto& config) { return config.observer == observer; });
// Update settings if the observer already exists, create a new one otherwise.
if (it != allocatable_tracks_.end()) {
it->config = config;
} else {
allocatable_tracks_.push_back(AllocatableTrack(observer, config));
}
if (last_target_bps_ > 0) {
// Calculate a new allocation and update all observers.
auto allocation = AllocateBitrates(allocatable_tracks_, last_target_bps_);
auto stable_bitrate_allocation =
AllocateBitrates(allocatable_tracks_, last_stable_target_bps_);
for (auto& config : allocatable_tracks_) {
uint32_t allocated_bitrate = allocation[config.observer];
uint32_t allocated_stable_bitrate =
stable_bitrate_allocation[config.observer];
BitrateAllocationUpdate update;
update.target_bitrate = DataRate::BitsPerSec(allocated_bitrate);
update.stable_target_bitrate =
DataRate::BitsPerSec(allocated_stable_bitrate);
update.packet_loss_ratio = last_fraction_loss_ / 256.0;
update.round_trip_time = TimeDelta::Millis(last_rtt_);
update.bwe_period = TimeDelta::Millis(last_bwe_period_ms_);
uint32_t protection_bitrate = config.observer->OnBitrateUpdated(update);
config.allocated_bitrate_bps = allocated_bitrate;
if (allocated_bitrate > 0)
config.media_ratio = MediaRatio(allocated_bitrate, protection_bitrate);
}
} else {
// Currently, an encoder is not allowed to produce frames.
// But we still have to return the initial config bitrate + let the
// observer know that it can not produce frames.
BitrateAllocationUpdate update;
update.target_bitrate = DataRate::Zero();
update.stable_target_bitrate = DataRate::Zero();
update.packet_loss_ratio = last_fraction_loss_ / 256.0;
update.round_trip_time = TimeDelta::Millis(last_rtt_);
update.bwe_period = TimeDelta::Millis(last_bwe_period_ms_);
observer->OnBitrateUpdated(update);
}
UpdateAllocationLimits();
}
void BitrateAllocator::UpdateAllocationLimits() {
BitrateAllocationLimits limits;
for (const auto& config : allocatable_tracks_) {
uint32_t stream_padding = config.config.pad_up_bitrate_bps;
if (config.config.enforce_min_bitrate) {
limits.min_allocatable_rate +=
DataRate::BitsPerSec(config.config.min_bitrate_bps);
} else if (config.allocated_bitrate_bps == 0) {
stream_padding =
std::max(config.MinBitrateWithHysteresis(), stream_padding);
}
limits.max_padding_rate += DataRate::BitsPerSec(stream_padding);
limits.max_allocatable_rate +=
DataRate::BitsPerSec(config.config.max_bitrate_bps);
}
if (limits.min_allocatable_rate == current_limits_.min_allocatable_rate &&
limits.max_allocatable_rate == current_limits_.max_allocatable_rate &&
limits.max_padding_rate == current_limits_.max_padding_rate) {
return;
}
current_limits_ = limits;
RTC_LOG(LS_INFO) << "UpdateAllocationLimits : total_requested_min_bitrate: "
<< ToString(limits.min_allocatable_rate)
<< ", total_requested_padding_bitrate: "
<< ToString(limits.max_padding_rate)
<< ", total_requested_max_bitrate: "
<< ToString(limits.max_allocatable_rate);
limit_observer_->OnAllocationLimitsChanged(limits);
}
void BitrateAllocator::RemoveObserver(BitrateAllocatorObserver* observer) {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
for (auto it = allocatable_tracks_.begin(); it != allocatable_tracks_.end();
++it) {
if (it->observer == observer) {
allocatable_tracks_.erase(it);
break;
}
}
UpdateAllocationLimits();
}
int BitrateAllocator::GetStartBitrate(
BitrateAllocatorObserver* observer) const {
RTC_DCHECK_RUN_ON(&sequenced_checker_);
auto it = absl::c_find_if(
allocatable_tracks_,
[observer](const auto& config) { return config.observer == observer; });
if (it == allocatable_tracks_.end()) {
// This observer hasn't been added yet, just give it its fair share.
return last_non_zero_bitrate_bps_ /
static_cast<int>((allocatable_tracks_.size() + 1));
} else if (it->allocated_bitrate_bps == -1) {
// This observer hasn't received an allocation yet, so do the same.
return last_non_zero_bitrate_bps_ /
static_cast<int>(allocatable_tracks_.size());
} else {
// This observer already has an allocation.
return it->allocated_bitrate_bps;
}
}
uint32_t bitrate_allocator_impl::AllocatableTrack::LastAllocatedBitrate()
const {
// Return the configured minimum bitrate for newly added observers, to avoid
// requiring an extra high bitrate for the observer to get an allocated
// bitrate.
return allocated_bitrate_bps == -1 ? config.min_bitrate_bps
: allocated_bitrate_bps;
}
uint32_t bitrate_allocator_impl::AllocatableTrack::MinBitrateWithHysteresis()
const {
uint32_t min_bitrate = config.min_bitrate_bps;
if (LastAllocatedBitrate() == 0) {
min_bitrate += std::max(static_cast<uint32_t>(kToggleFactor * min_bitrate),
kMinToggleBitrateBps);
}
// Account for protection bitrate used by this observer in the previous
// allocation.
// Note: the ratio will only be updated when the stream is active, meaning a
// paused stream won't get any ratio updates. This might lead to waiting a bit
// longer than necessary if the network condition improves, but this is to
// avoid too much toggling.
if (media_ratio > 0.0 && media_ratio < 1.0)
min_bitrate += min_bitrate * (1.0 - media_ratio);
return min_bitrate;
}
} // namespace webrtc