/* * Copyright (c) 2021 The WebRTC project authors. All Rights Reserved. * * Use of this source code is governed by a BSD-style license * that can be found in the LICENSE file in the root of the source * tree. An additional intellectual property rights grant can be found * in the file PATENTS. All contributing project authors may * be found in the AUTHORS file in the root of the source tree. */ #include "net/dcsctp/tx/outstanding_data.h" #include #include #include #include #include "net/dcsctp/common/math.h" #include "net/dcsctp/common/sequence_numbers.h" #include "net/dcsctp/public/types.h" #include "rtc_base/logging.h" namespace dcsctp { // The number of times a packet must be NACKed before it's retransmitted. // See https://tools.ietf.org/html/rfc4960#section-7.2.4 constexpr uint8_t kNumberOfNacksForRetransmission = 3; // Returns how large a chunk will be, serialized, carrying the data size_t OutstandingData::GetSerializedChunkSize(const Data& data) const { return RoundUpTo4(data_chunk_header_size_ + data.size()); } void OutstandingData::Item::Ack() { ack_state_ = AckState::kAcked; should_be_retransmitted_ = false; } OutstandingData::Item::NackAction OutstandingData::Item::Nack( bool retransmit_now) { ack_state_ = AckState::kNacked; ++nack_count_; if ((retransmit_now || nack_count_ >= kNumberOfNacksForRetransmission) && !is_abandoned_) { // Nacked enough times - it's considered lost. if (num_retransmissions_ < *max_retransmissions_) { should_be_retransmitted_ = true; return NackAction::kRetransmit; } Abandon(); return NackAction::kAbandon; } return NackAction::kNothing; } void OutstandingData::Item::Retransmit() { ack_state_ = AckState::kUnacked; should_be_retransmitted_ = false; nack_count_ = 0; ++num_retransmissions_; } void OutstandingData::Item::Abandon() { is_abandoned_ = true; should_be_retransmitted_ = false; } bool OutstandingData::Item::has_expired(TimeMs now) const { return expires_at_ <= now; } bool OutstandingData::IsConsistent() const { size_t actual_outstanding_bytes = 0; size_t actual_outstanding_items = 0; std::set actual_to_be_retransmitted; for (const auto& elem : outstanding_data_) { if (elem.second.is_outstanding()) { actual_outstanding_bytes += GetSerializedChunkSize(elem.second.data()); ++actual_outstanding_items; } if (elem.second.should_be_retransmitted()) { actual_to_be_retransmitted.insert(elem.first); } } if (outstanding_data_.empty() && next_tsn_ != last_cumulative_tsn_ack_.next_value()) { return false; } return actual_outstanding_bytes == outstanding_bytes_ && actual_outstanding_items == outstanding_items_ && actual_to_be_retransmitted == to_be_retransmitted_; } void OutstandingData::AckChunk(AckInfo& ack_info, std::map::iterator iter) { if (!iter->second.is_acked()) { size_t serialized_size = GetSerializedChunkSize(iter->second.data()); ack_info.bytes_acked += serialized_size; if (iter->second.is_outstanding()) { outstanding_bytes_ -= serialized_size; --outstanding_items_; } if (iter->second.should_be_retransmitted()) { to_be_retransmitted_.erase(iter->first); } iter->second.Ack(); ack_info.highest_tsn_acked = std::max(ack_info.highest_tsn_acked, iter->first); } } OutstandingData::AckInfo OutstandingData::HandleSack( UnwrappedTSN cumulative_tsn_ack, rtc::ArrayView gap_ack_blocks, bool is_in_fast_retransmit) { OutstandingData::AckInfo ack_info(cumulative_tsn_ack); // Erase all items up to cumulative_tsn_ack. RemoveAcked(cumulative_tsn_ack, ack_info); // ACK packets reported in the gap ack blocks AckGapBlocks(cumulative_tsn_ack, gap_ack_blocks, ack_info); // NACK and possibly mark for retransmit chunks that weren't acked. NackBetweenAckBlocks(cumulative_tsn_ack, gap_ack_blocks, is_in_fast_retransmit, ack_info); RTC_DCHECK(IsConsistent()); return ack_info; } void OutstandingData::RemoveAcked(UnwrappedTSN cumulative_tsn_ack, AckInfo& ack_info) { auto first_unacked = outstanding_data_.upper_bound(cumulative_tsn_ack); for (auto iter = outstanding_data_.begin(); iter != first_unacked; ++iter) { AckChunk(ack_info, iter); } outstanding_data_.erase(outstanding_data_.begin(), first_unacked); last_cumulative_tsn_ack_ = cumulative_tsn_ack; } void OutstandingData::AckGapBlocks( UnwrappedTSN cumulative_tsn_ack, rtc::ArrayView gap_ack_blocks, AckInfo& ack_info) { // Mark all non-gaps as ACKED (but they can't be removed) as (from RFC) // "SCTP considers the information carried in the Gap Ack Blocks in the // SACK chunk as advisory.". Note that when NR-SACK is supported, this can be // handled differently. for (auto& block : gap_ack_blocks) { auto start = outstanding_data_.lower_bound( UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start)); auto end = outstanding_data_.upper_bound( UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end)); for (auto iter = start; iter != end; ++iter) { AckChunk(ack_info, iter); } } } void OutstandingData::NackBetweenAckBlocks( UnwrappedTSN cumulative_tsn_ack, rtc::ArrayView gap_ack_blocks, bool is_in_fast_recovery, OutstandingData::AckInfo& ack_info) { // Mark everything between the blocks as NACKED/TO_BE_RETRANSMITTED. // https://tools.ietf.org/html/rfc4960#section-7.2.4 // "Mark the DATA chunk(s) with three miss indications for retransmission." // "For each incoming SACK, miss indications are incremented only for // missing TSNs prior to the highest TSN newly acknowledged in the SACK." // // What this means is that only when there is a increasing stream of data // received and there are new packets seen (since last time), packets that are // in-flight and between gaps should be nacked. This means that SCTP relies on // the T3-RTX-timer to re-send packets otherwise. UnwrappedTSN max_tsn_to_nack = ack_info.highest_tsn_acked; if (is_in_fast_recovery && cumulative_tsn_ack > last_cumulative_tsn_ack_) { // https://tools.ietf.org/html/rfc4960#section-7.2.4 // "If an endpoint is in Fast Recovery and a SACK arrives that advances // the Cumulative TSN Ack Point, the miss indications are incremented for // all TSNs reported missing in the SACK." max_tsn_to_nack = UnwrappedTSN::AddTo( cumulative_tsn_ack, gap_ack_blocks.empty() ? 0 : gap_ack_blocks.rbegin()->end); } UnwrappedTSN prev_block_last_acked = cumulative_tsn_ack; for (auto& block : gap_ack_blocks) { UnwrappedTSN cur_block_first_acked = UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start); for (auto iter = outstanding_data_.upper_bound(prev_block_last_acked); iter != outstanding_data_.lower_bound(cur_block_first_acked); ++iter) { if (iter->first <= max_tsn_to_nack) { ack_info.has_packet_loss = NackItem(iter->first, iter->second, /*retransmit_now=*/false); } } prev_block_last_acked = UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end); } // Note that packets are not NACKED which are above the highest gap-ack-block // (or above the cumulative ack TSN if no gap-ack-blocks) as only packets // up until the highest_tsn_acked (see above) should be considered when // NACKing. } bool OutstandingData::NackItem(UnwrappedTSN tsn, Item& item, bool retransmit_now) { if (item.is_outstanding()) { outstanding_bytes_ -= GetSerializedChunkSize(item.data()); --outstanding_items_; } switch (item.Nack(retransmit_now)) { case Item::NackAction::kNothing: return false; case Item::NackAction::kRetransmit: to_be_retransmitted_.insert(tsn); RTC_DLOG(LS_VERBOSE) << *tsn.Wrap() << " marked for retransmission"; break; case Item::NackAction::kAbandon: AbandonAllFor(item); break; } return true; } void OutstandingData::AbandonAllFor(const Item& item) { // Erase all remaining chunks from the producer, if any. if (discard_from_send_queue_(item.data().is_unordered, item.data().stream_id, item.data().message_id)) { // There were remaining chunks to be produced for this message. Since the // receiver may have already received all chunks (up till now) for this // message, we can't just FORWARD-TSN to the last fragment in this // (abandoned) message and start sending a new message, as the receiver will // then see a new message before the end of the previous one was seen (or // skipped over). So create a new fragment, representing the end, that the // received will never see as it is abandoned immediately and used as cum // TSN in the sent FORWARD-TSN. UnwrappedTSN tsn = next_tsn_; next_tsn_.Increment(); Data message_end(item.data().stream_id, item.data().ssn, item.data().message_id, item.data().fsn, item.data().ppid, std::vector(), Data::IsBeginning(false), Data::IsEnd(true), item.data().is_unordered); Item& added_item = outstanding_data_ .emplace(tsn, Item(std::move(message_end), MaxRetransmits::NoLimit(), TimeMs(0), TimeMs::InfiniteFuture())) .first->second; // The added chunk shouldn't be included in `outstanding_bytes`, so set it // as acked. added_item.Ack(); RTC_DLOG(LS_VERBOSE) << "Adding unsent end placeholder for message at tsn=" << *tsn.Wrap(); } for (auto& elem : outstanding_data_) { UnwrappedTSN tsn = elem.first; Item& other = elem.second; if (!other.is_abandoned() && other.data().stream_id == item.data().stream_id && other.data().is_unordered == item.data().is_unordered && other.data().message_id == item.data().message_id) { RTC_DLOG(LS_VERBOSE) << "Marking chunk " << *tsn.Wrap() << " as abandoned"; if (other.should_be_retransmitted()) { to_be_retransmitted_.erase(tsn); } other.Abandon(); } } } std::vector> OutstandingData::GetChunksToBeRetransmitted( size_t max_size) { std::vector> result; for (auto it = to_be_retransmitted_.begin(); it != to_be_retransmitted_.end();) { UnwrappedTSN tsn = *it; auto elem = outstanding_data_.find(tsn); RTC_DCHECK(elem != outstanding_data_.end()); Item& item = elem->second; RTC_DCHECK(item.should_be_retransmitted()); RTC_DCHECK(!item.is_outstanding()); RTC_DCHECK(!item.is_abandoned()); RTC_DCHECK(!item.is_acked()); size_t serialized_size = GetSerializedChunkSize(item.data()); if (serialized_size <= max_size) { item.Retransmit(); result.emplace_back(tsn.Wrap(), item.data().Clone()); max_size -= serialized_size; outstanding_bytes_ += serialized_size; ++outstanding_items_; it = to_be_retransmitted_.erase(it); } else { ++it; } // No point in continuing if the packet is full. if (max_size <= data_chunk_header_size_) { break; } } RTC_DCHECK(IsConsistent()); return result; } void OutstandingData::ExpireOutstandingChunks(TimeMs now) { for (const auto& elem : outstanding_data_) { UnwrappedTSN tsn = elem.first; const Item& item = elem.second; // Chunks that are nacked can be expired. Care should be taken not to expire // unacked (in-flight) chunks as they might have been received, but the SACK // is either delayed or in-flight and may be received later. if (item.is_abandoned()) { // Already abandoned. } else if (item.is_nacked() && item.has_expired(now)) { RTC_DLOG(LS_VERBOSE) << "Marking nacked chunk " << *tsn.Wrap() << " and message " << *item.data().message_id << " as expired"; AbandonAllFor(item); } else { // A non-expired chunk. No need to iterate any further. break; } } RTC_DCHECK(IsConsistent()); } UnwrappedTSN OutstandingData::highest_outstanding_tsn() const { return outstanding_data_.empty() ? last_cumulative_tsn_ack_ : outstanding_data_.rbegin()->first; } absl::optional OutstandingData::Insert( const Data& data, MaxRetransmits max_retransmissions, TimeMs time_sent, TimeMs expires_at) { UnwrappedTSN tsn = next_tsn_; next_tsn_.Increment(); // All chunks are always padded to be even divisible by 4. size_t chunk_size = GetSerializedChunkSize(data); outstanding_bytes_ += chunk_size; ++outstanding_items_; auto it = outstanding_data_ .emplace(tsn, Item(data.Clone(), max_retransmissions, time_sent, expires_at)) .first; if (it->second.has_expired(time_sent)) { // No need to send it - it was expired when it was in the send // queue. RTC_DLOG(LS_VERBOSE) << "Marking freshly produced chunk " << *it->first.Wrap() << " and message " << *it->second.data().message_id << " as expired"; AbandonAllFor(it->second); RTC_DCHECK(IsConsistent()); return absl::nullopt; } RTC_DCHECK(IsConsistent()); return tsn; } void OutstandingData::NackAll() { for (auto& elem : outstanding_data_) { UnwrappedTSN tsn = elem.first; Item& item = elem.second; if (!item.is_acked()) { NackItem(tsn, item, /*retransmit_now=*/true); } } RTC_DCHECK(IsConsistent()); } absl::optional OutstandingData::MeasureRTT(TimeMs now, UnwrappedTSN tsn) const { auto it = outstanding_data_.find(tsn); if (it != outstanding_data_.end() && !it->second.has_been_retransmitted()) { // https://tools.ietf.org/html/rfc4960#section-6.3.1 // "Karn's algorithm: RTT measurements MUST NOT be made using // packets that were retransmitted (and thus for which it is ambiguous // whether the reply was for the first instance of the chunk or for a // later instance)" return now - it->second.time_sent(); } return absl::nullopt; } std::vector> OutstandingData::GetChunkStatesForTesting() const { std::vector> states; states.emplace_back(last_cumulative_tsn_ack_.Wrap(), State::kAcked); for (const auto& elem : outstanding_data_) { State state; if (elem.second.is_abandoned()) { state = State::kAbandoned; } else if (elem.second.should_be_retransmitted()) { state = State::kToBeRetransmitted; } else if (elem.second.is_acked()) { state = State::kAcked; } else if (elem.second.is_outstanding()) { state = State::kInFlight; } else { state = State::kNacked; } states.emplace_back(elem.first.Wrap(), state); } return states; } bool OutstandingData::ShouldSendForwardTsn() const { if (!outstanding_data_.empty()) { auto it = outstanding_data_.begin(); return it->first == last_cumulative_tsn_ack_.next_value() && it->second.is_abandoned(); } return false; } ForwardTsnChunk OutstandingData::CreateForwardTsn() const { std::map skipped_per_ordered_stream; UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_; for (const auto& elem : outstanding_data_) { UnwrappedTSN tsn = elem.first; const Item& item = elem.second; if ((tsn != new_cumulative_ack.next_value()) || !item.is_abandoned()) { break; } new_cumulative_ack = tsn; if (!item.data().is_unordered && item.data().ssn > skipped_per_ordered_stream[item.data().stream_id]) { skipped_per_ordered_stream[item.data().stream_id] = item.data().ssn; } } std::vector skipped_streams; skipped_streams.reserve(skipped_per_ordered_stream.size()); for (const auto& elem : skipped_per_ordered_stream) { skipped_streams.emplace_back(elem.first, elem.second); } return ForwardTsnChunk(new_cumulative_ack.Wrap(), std::move(skipped_streams)); } IForwardTsnChunk OutstandingData::CreateIForwardTsn() const { std::map, MID> skipped_per_stream; UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_; for (const auto& elem : outstanding_data_) { UnwrappedTSN tsn = elem.first; const Item& item = elem.second; if ((tsn != new_cumulative_ack.next_value()) || !item.is_abandoned()) { break; } new_cumulative_ack = tsn; std::pair stream_id = std::make_pair(item.data().is_unordered, item.data().stream_id); if (item.data().message_id > skipped_per_stream[stream_id]) { skipped_per_stream[stream_id] = item.data().message_id; } } std::vector skipped_streams; skipped_streams.reserve(skipped_per_stream.size()); for (const auto& elem : skipped_per_stream) { const std::pair& stream = elem.first; MID message_id = elem.second; skipped_streams.emplace_back(stream.first, stream.second, message_id); } return IForwardTsnChunk(new_cumulative_ack.Wrap(), std::move(skipped_streams)); } } // namespace dcsctp