mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-20 15:54:49 +01:00
140 lines
4 KiB
C
140 lines
4 KiB
C
// Copyright 2011 Google Inc. All Rights Reserved.
|
|
//
|
|
// Use of this source code is governed by a BSD-style license
|
|
// that can be found in the COPYING file in the root of the source
|
|
// tree. An additional intellectual property rights grant can be found
|
|
// in the file PATENTS. All contributing project authors may
|
|
// be found in the AUTHORS file in the root of the source tree.
|
|
// -----------------------------------------------------------------------------
|
|
//
|
|
// Quantize levels for specified number of quantization-levels ([2, 256]).
|
|
// Min and max values are preserved (usual 0 and 255 for alpha plane).
|
|
//
|
|
// Author: Skal (pascal.massimino@gmail.com)
|
|
|
|
#include <assert.h>
|
|
|
|
#include "./quant_levels.h"
|
|
|
|
#define NUM_SYMBOLS 256
|
|
|
|
#define MAX_ITER 6 // Maximum number of convergence steps.
|
|
#define ERROR_THRESHOLD 1e-4 // MSE stopping criterion.
|
|
|
|
// -----------------------------------------------------------------------------
|
|
// Quantize levels.
|
|
|
|
int QuantizeLevels(uint8_t* const data, int width, int height,
|
|
int num_levels, uint64_t* const sse) {
|
|
int freq[NUM_SYMBOLS] = { 0 };
|
|
int q_level[NUM_SYMBOLS] = { 0 };
|
|
double inv_q_level[NUM_SYMBOLS] = { 0 };
|
|
int min_s = 255, max_s = 0;
|
|
const size_t data_size = height * width;
|
|
int i, num_levels_in, iter;
|
|
double last_err = 1.e38, err = 0.;
|
|
const double err_threshold = ERROR_THRESHOLD * data_size;
|
|
|
|
if (data == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (width <= 0 || height <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
if (num_levels < 2 || num_levels > 256) {
|
|
return 0;
|
|
}
|
|
|
|
{
|
|
size_t n;
|
|
num_levels_in = 0;
|
|
for (n = 0; n < data_size; ++n) {
|
|
num_levels_in += (freq[data[n]] == 0);
|
|
if (min_s > data[n]) min_s = data[n];
|
|
if (max_s < data[n]) max_s = data[n];
|
|
++freq[data[n]];
|
|
}
|
|
}
|
|
|
|
if (num_levels_in <= num_levels) goto End; // nothing to do!
|
|
|
|
// Start with uniformly spread centroids.
|
|
for (i = 0; i < num_levels; ++i) {
|
|
inv_q_level[i] = min_s + (double)(max_s - min_s) * i / (num_levels - 1);
|
|
}
|
|
|
|
// Fixed values. Won't be changed.
|
|
q_level[min_s] = 0;
|
|
q_level[max_s] = num_levels - 1;
|
|
assert(inv_q_level[0] == min_s);
|
|
assert(inv_q_level[num_levels - 1] == max_s);
|
|
|
|
// k-Means iterations.
|
|
for (iter = 0; iter < MAX_ITER; ++iter) {
|
|
double q_sum[NUM_SYMBOLS] = { 0 };
|
|
double q_count[NUM_SYMBOLS] = { 0 };
|
|
int s, slot = 0;
|
|
|
|
// Assign classes to representatives.
|
|
for (s = min_s; s <= max_s; ++s) {
|
|
// Keep track of the nearest neighbour 'slot'
|
|
while (slot < num_levels - 1 &&
|
|
2 * s > inv_q_level[slot] + inv_q_level[slot + 1]) {
|
|
++slot;
|
|
}
|
|
if (freq[s] > 0) {
|
|
q_sum[slot] += s * freq[s];
|
|
q_count[slot] += freq[s];
|
|
}
|
|
q_level[s] = slot;
|
|
}
|
|
|
|
// Assign new representatives to classes.
|
|
if (num_levels > 2) {
|
|
for (slot = 1; slot < num_levels - 1; ++slot) {
|
|
const double count = q_count[slot];
|
|
if (count > 0.) {
|
|
inv_q_level[slot] = q_sum[slot] / count;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute convergence error.
|
|
err = 0.;
|
|
for (s = min_s; s <= max_s; ++s) {
|
|
const double error = s - inv_q_level[q_level[s]];
|
|
err += freq[s] * error * error;
|
|
}
|
|
|
|
// Check for convergence: we stop as soon as the error is no
|
|
// longer improving.
|
|
if (last_err - err < err_threshold) break;
|
|
last_err = err;
|
|
}
|
|
|
|
// Remap the alpha plane to quantized values.
|
|
{
|
|
// double->int rounding operation can be costly, so we do it
|
|
// once for all before remapping. We also perform the data[] -> slot
|
|
// mapping, while at it (avoid one indirection in the final loop).
|
|
uint8_t map[NUM_SYMBOLS];
|
|
int s;
|
|
size_t n;
|
|
for (s = min_s; s <= max_s; ++s) {
|
|
const int slot = q_level[s];
|
|
map[s] = (uint8_t)(inv_q_level[slot] + .5);
|
|
}
|
|
// Final pass.
|
|
for (n = 0; n < data_size; ++n) {
|
|
data[n] = map[data[n]];
|
|
}
|
|
}
|
|
End:
|
|
// Store sum of squared error if needed.
|
|
if (sse != NULL) *sse = (uint64_t)err;
|
|
|
|
return 1;
|
|
}
|
|
|