Telegram-Android/TMessagesProj/jni/voip/webrtc/base/values.cc
2020-09-30 16:48:47 +03:00

1849 lines
51 KiB
C++

// Copyright (c) 2012 The Chromium Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/values.h"
#include <string.h>
#include <algorithm>
#include <cmath>
#include <new>
#include <ostream>
#include <utility>
#include "base/bit_cast.h"
#include "base/containers/checked_iterators.h"
#include "base/json/json_writer.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/stl_util.h"
#include "base/strings/string_util.h"
#include "base/strings/utf_string_conversions.h"
#include "base/trace_event/memory_usage_estimator.h"
namespace base {
// base::Value must be standard layout to guarantee that writing to
// |bool_type_| then reading |type_| is defined behaviour. See:
//
// [class.union]:
// If a standard-layout union contains several standard-layout structs that
// share a common initial sequence (9.2), and if an object of this
// standard-layout union type contains one of the standard-layout structs,
// it is permitted to inspect the common initial sequence of any of
// standard-layout struct members;
//
static_assert(std::is_standard_layout<Value>::value,
"base::Value should be a standard-layout C++ class in order "
"to avoid undefined behaviour in its implementation!");
static_assert(sizeof(Value::DoubleStorage) == sizeof(double),
"The double and DoubleStorage types should have the same size");
namespace {
const char* const kTypeNames[] = {"null", "boolean", "integer", "double",
"string", "binary", "dictionary", "list"};
static_assert(base::size(kTypeNames) ==
static_cast<size_t>(Value::Type::LIST) + 1,
"kTypeNames Has Wrong Size");
std::unique_ptr<Value> CopyWithoutEmptyChildren(const Value& node);
// Make a deep copy of |node|, but don't include empty lists or dictionaries
// in the copy. It's possible for this function to return NULL and it
// expects |node| to always be non-NULL.
std::unique_ptr<Value> CopyListWithoutEmptyChildren(const Value& list) {
Value copy(Value::Type::LIST);
for (const auto& entry : list.GetList()) {
std::unique_ptr<Value> child_copy = CopyWithoutEmptyChildren(entry);
if (child_copy)
copy.Append(std::move(*child_copy));
}
return copy.GetList().empty() ? nullptr
: std::make_unique<Value>(std::move(copy));
}
std::unique_ptr<DictionaryValue> CopyDictionaryWithoutEmptyChildren(
const DictionaryValue& dict) {
std::unique_ptr<DictionaryValue> copy;
for (const auto& it : dict.DictItems()) {
std::unique_ptr<Value> child_copy = CopyWithoutEmptyChildren(it.second);
if (child_copy) {
if (!copy)
copy = std::make_unique<DictionaryValue>();
copy->SetKey(it.first, std::move(*child_copy));
}
}
return copy;
}
std::unique_ptr<Value> CopyWithoutEmptyChildren(const Value& node) {
switch (node.type()) {
case Value::Type::LIST:
return CopyListWithoutEmptyChildren(static_cast<const ListValue&>(node));
case Value::Type::DICTIONARY:
return CopyDictionaryWithoutEmptyChildren(
static_cast<const DictionaryValue&>(node));
default:
return std::make_unique<Value>(node.Clone());
}
}
// Helper class to enumerate the path components from a StringPiece
// without performing heap allocations. Components are simply separated
// by single dots (e.g. "foo.bar.baz" -> ["foo", "bar", "baz"]).
//
// Usage example:
// PathSplitter splitter(some_path);
// while (splitter.HasNext()) {
// StringPiece component = splitter.Next();
// ...
// }
//
class PathSplitter {
public:
explicit PathSplitter(StringPiece path) : path_(path) {}
bool HasNext() const { return pos_ < path_.size(); }
StringPiece Next() {
DCHECK(HasNext());
size_t start = pos_;
size_t pos = path_.find('.', start);
size_t end;
if (pos == path_.npos) {
end = path_.size();
pos_ = end;
} else {
end = pos;
pos_ = pos + 1;
}
return path_.substr(start, end - start);
}
private:
StringPiece path_;
size_t pos_ = 0;
};
} // namespace
// static
std::unique_ptr<Value> Value::CreateWithCopiedBuffer(const char* buffer,
size_t size) {
return std::make_unique<Value>(BlobStorage(buffer, buffer + size));
}
// static
Value Value::FromUniquePtrValue(std::unique_ptr<Value> val) {
return std::move(*val);
}
// static
std::unique_ptr<Value> Value::ToUniquePtrValue(Value val) {
return std::make_unique<Value>(std::move(val));
}
// static
const DictionaryValue& Value::AsDictionaryValue(const Value& val) {
CHECK(val.is_dict());
return static_cast<const DictionaryValue&>(val);
}
// static
const ListValue& Value::AsListValue(const Value& val) {
CHECK(val.is_list());
return static_cast<const ListValue&>(val);
}
Value::Value(Value&& that) noexcept {
InternalMoveConstructFrom(std::move(that));
}
Value::Value(Type type) : type_(type) {
// Initialize with the default value.
switch (type_) {
case Type::NONE:
return;
case Type::BOOLEAN:
bool_value_ = false;
return;
case Type::INTEGER:
int_value_ = 0;
return;
case Type::DOUBLE:
double_value_ = bit_cast<DoubleStorage>(0.0);
return;
case Type::STRING:
new (&string_value_) std::string();
return;
case Type::BINARY:
new (&binary_value_) BlobStorage();
return;
case Type::DICTIONARY:
new (&dict_) DictStorage();
return;
case Type::LIST:
new (&list_) ListStorage();
return;
// TODO(crbug.com/859477): Remove after root cause is found.
case Type::DEAD:
CHECK(false);
return;
}
// TODO(crbug.com/859477): Revert to NOTREACHED() after root cause is found.
CHECK(false);
}
Value::Value(bool in_bool) : type_(Type::BOOLEAN), bool_value_(in_bool) {}
Value::Value(int in_int) : type_(Type::INTEGER), int_value_(in_int) {}
Value::Value(double in_double)
: type_(Type::DOUBLE), double_value_(bit_cast<DoubleStorage>(in_double)) {
if (!std::isfinite(in_double)) {
NOTREACHED() << "Non-finite (i.e. NaN or positive/negative infinity) "
<< "values cannot be represented in JSON";
double_value_ = bit_cast<DoubleStorage>(0.0);
}
}
Value::Value(const char* in_string) : Value(std::string(in_string)) {}
Value::Value(StringPiece in_string) : Value(std::string(in_string)) {}
Value::Value(std::string&& in_string) noexcept
: type_(Type::STRING), string_value_(std::move(in_string)) {
DCHECK(IsStringUTF8AllowingNoncharacters(string_value_));
}
Value::Value(const char16* in_string16) : Value(StringPiece16(in_string16)) {}
Value::Value(StringPiece16 in_string16) : Value(UTF16ToUTF8(in_string16)) {}
Value::Value(const std::vector<char>& in_blob)
: type_(Type::BINARY), binary_value_(in_blob.begin(), in_blob.end()) {}
Value::Value(base::span<const uint8_t> in_blob)
: type_(Type::BINARY), binary_value_(in_blob.begin(), in_blob.end()) {}
Value::Value(BlobStorage&& in_blob) noexcept
: type_(Type::BINARY), binary_value_(std::move(in_blob)) {}
Value::Value(const DictStorage& in_dict) : type_(Type::DICTIONARY), dict_() {
dict_.reserve(in_dict.size());
for (const auto& it : in_dict) {
dict_.try_emplace(dict_.end(), it.first,
std::make_unique<Value>(it.second->Clone()));
}
}
Value::Value(DictStorage&& in_dict) noexcept
: type_(Type::DICTIONARY), dict_(std::move(in_dict)) {}
Value::Value(span<const Value> in_list) : type_(Type::LIST), list_() {
list_.reserve(in_list.size());
for (const auto& val : in_list)
list_.emplace_back(val.Clone());
}
Value::Value(ListStorage&& in_list) noexcept
: type_(Type::LIST), list_(std::move(in_list)) {}
Value& Value::operator=(Value&& that) noexcept {
InternalCleanup();
InternalMoveConstructFrom(std::move(that));
return *this;
}
double Value::AsDoubleInternal() const {
return bit_cast<double>(double_value_);
}
Value Value::Clone() const {
switch (type_) {
case Type::NONE:
return Value();
case Type::BOOLEAN:
return Value(bool_value_);
case Type::INTEGER:
return Value(int_value_);
case Type::DOUBLE:
return Value(AsDoubleInternal());
case Type::STRING:
return Value(string_value_);
case Type::BINARY:
return Value(binary_value_);
case Type::DICTIONARY:
return Value(dict_);
case Type::LIST:
return Value(list_);
// TODO(crbug.com/859477): Remove after root cause is found.
case Type::DEAD:
CHECK(false);
return Value();
}
// TODO(crbug.com/859477): Revert to NOTREACHED() after root cause is found.
CHECK(false);
return Value();
}
Value::~Value() {
InternalCleanup();
// TODO(crbug.com/859477): Remove after root cause is found.
type_ = Type::DEAD;
}
// static
const char* Value::GetTypeName(Value::Type type) {
DCHECK_GE(static_cast<int>(type), 0);
DCHECK_LT(static_cast<size_t>(type), base::size(kTypeNames));
return kTypeNames[static_cast<size_t>(type)];
}
bool Value::GetBool() const {
CHECK(is_bool());
return bool_value_;
}
int Value::GetInt() const {
CHECK(is_int());
return int_value_;
}
double Value::GetDouble() const {
if (is_double())
return AsDoubleInternal();
if (is_int())
return int_value_;
CHECK(false);
return 0.0;
}
const std::string& Value::GetString() const {
CHECK(is_string());
return string_value_;
}
std::string& Value::GetString() {
CHECK(is_string());
return string_value_;
}
const Value::BlobStorage& Value::GetBlob() const {
CHECK(is_blob());
return binary_value_;
}
Value::ListView Value::GetList() {
CHECK(is_list());
return list_;
}
Value::ConstListView Value::GetList() const {
CHECK(is_list());
return list_;
}
Value::ListStorage Value::TakeList() {
CHECK(is_list());
return std::exchange(list_, ListStorage());
}
void Value::Append(bool value) {
CHECK(is_list());
list_.emplace_back(value);
}
void Value::Append(int value) {
CHECK(is_list());
list_.emplace_back(value);
}
void Value::Append(double value) {
CHECK(is_list());
list_.emplace_back(value);
}
void Value::Append(const char* value) {
CHECK(is_list());
list_.emplace_back(value);
}
void Value::Append(StringPiece value) {
CHECK(is_list());
list_.emplace_back(value);
}
void Value::Append(std::string&& value) {
CHECK(is_list());
list_.emplace_back(std::move(value));
}
void Value::Append(const char16* value) {
CHECK(is_list());
list_.emplace_back(value);
}
void Value::Append(StringPiece16 value) {
CHECK(is_list());
list_.emplace_back(value);
}
void Value::Append(Value&& value) {
CHECK(is_list());
list_.emplace_back(std::move(value));
}
CheckedContiguousIterator<Value> Value::Insert(
CheckedContiguousConstIterator<Value> pos,
Value&& value) {
CHECK(is_list());
const auto offset = pos - make_span(list_).begin();
list_.insert(list_.begin() + offset, std::move(value));
return make_span(list_).begin() + offset;
}
bool Value::EraseListIter(CheckedContiguousConstIterator<Value> iter) {
CHECK(is_list());
const auto offset = iter - ListView(list_).begin();
auto list_iter = list_.begin() + offset;
if (list_iter == list_.end())
return false;
list_.erase(list_iter);
return true;
}
size_t Value::EraseListValue(const Value& val) {
return EraseListValueIf([&val](const Value& other) { return val == other; });
}
void Value::ClearList() {
CHECK(is_list());
list_.clear();
}
Value* Value::FindKey(StringPiece key) {
return const_cast<Value*>(as_const(*this).FindKey(key));
}
const Value* Value::FindKey(StringPiece key) const {
CHECK(is_dict());
auto found = dict_.find(key);
if (found == dict_.end())
return nullptr;
return found->second.get();
}
Value* Value::FindKeyOfType(StringPiece key, Type type) {
return const_cast<Value*>(as_const(*this).FindKeyOfType(key, type));
}
const Value* Value::FindKeyOfType(StringPiece key, Type type) const {
const Value* result = FindKey(key);
if (!result || result->type() != type)
return nullptr;
return result;
}
base::Optional<bool> Value::FindBoolKey(StringPiece key) const {
const Value* result = FindKeyOfType(key, Type::BOOLEAN);
return result ? base::make_optional(result->bool_value_) : base::nullopt;
}
base::Optional<int> Value::FindIntKey(StringPiece key) const {
const Value* result = FindKeyOfType(key, Type::INTEGER);
return result ? base::make_optional(result->int_value_) : base::nullopt;
}
base::Optional<double> Value::FindDoubleKey(StringPiece key) const {
const Value* result = FindKey(key);
if (result) {
if (result->is_int())
return static_cast<double>(result->int_value_);
if (result->is_double()) {
return result->AsDoubleInternal();
}
}
return base::nullopt;
}
const std::string* Value::FindStringKey(StringPiece key) const {
const Value* result = FindKeyOfType(key, Type::STRING);
return result ? &result->string_value_ : nullptr;
}
std::string* Value::FindStringKey(StringPiece key) {
Value* result = FindKeyOfType(key, Type::STRING);
return result ? &result->string_value_ : nullptr;
}
const Value::BlobStorage* Value::FindBlobKey(StringPiece key) const {
const Value* value = FindKeyOfType(key, Type::BINARY);
return value ? &value->binary_value_ : nullptr;
}
const Value* Value::FindDictKey(StringPiece key) const {
return FindKeyOfType(key, Type::DICTIONARY);
}
Value* Value::FindDictKey(StringPiece key) {
return FindKeyOfType(key, Type::DICTIONARY);
}
const Value* Value::FindListKey(StringPiece key) const {
return FindKeyOfType(key, Type::LIST);
}
Value* Value::FindListKey(StringPiece key) {
return FindKeyOfType(key, Type::LIST);
}
Value* Value::SetKey(StringPiece key, Value&& value) {
return SetKeyInternal(key, std::make_unique<Value>(std::move(value)));
}
Value* Value::SetKey(std::string&& key, Value&& value) {
CHECK(is_dict());
return dict_
.insert_or_assign(std::move(key),
std::make_unique<Value>(std::move(value)))
.first->second.get();
}
Value* Value::SetKey(const char* key, Value&& value) {
return SetKeyInternal(key, std::make_unique<Value>(std::move(value)));
}
Value* Value::SetBoolKey(StringPiece key, bool value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetIntKey(StringPiece key, int value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetDoubleKey(StringPiece key, double value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetStringKey(StringPiece key, StringPiece value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetStringKey(StringPiece key, const char* value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
Value* Value::SetStringKey(StringPiece key, std::string&& value) {
return SetKeyInternal(key, std::make_unique<Value>(std::move(value)));
}
Value* Value::SetStringKey(StringPiece key, StringPiece16 value) {
return SetKeyInternal(key, std::make_unique<Value>(value));
}
bool Value::RemoveKey(StringPiece key) {
CHECK(is_dict());
return dict_.erase(key) != 0;
}
Optional<Value> Value::ExtractKey(StringPiece key) {
CHECK(is_dict());
auto found = dict_.find(key);
if (found == dict_.end())
return nullopt;
Value value = std::move(*found->second);
dict_.erase(found);
return std::move(value);
}
Value* Value::FindPath(StringPiece path) {
return const_cast<Value*>(as_const(*this).FindPath(path));
}
const Value* Value::FindPath(StringPiece path) const {
CHECK(is_dict());
const Value* cur = this;
PathSplitter splitter(path);
while (splitter.HasNext()) {
if (!cur->is_dict() || (cur = cur->FindKey(splitter.Next())) == nullptr)
return nullptr;
}
return cur;
}
Value* Value::FindPathOfType(StringPiece path, Type type) {
return const_cast<Value*>(as_const(*this).FindPathOfType(path, type));
}
const Value* Value::FindPathOfType(StringPiece path, Type type) const {
const Value* cur = FindPath(path);
if (!cur || cur->type() != type)
return nullptr;
return cur;
}
base::Optional<bool> Value::FindBoolPath(StringPiece path) const {
const Value* cur = FindPath(path);
if (!cur || !cur->is_bool())
return base::nullopt;
return cur->bool_value_;
}
base::Optional<int> Value::FindIntPath(StringPiece path) const {
const Value* cur = FindPath(path);
if (!cur || !cur->is_int())
return base::nullopt;
return cur->int_value_;
}
base::Optional<double> Value::FindDoublePath(StringPiece path) const {
const Value* cur = FindPath(path);
if (cur) {
if (cur->is_int())
return static_cast<double>(cur->int_value_);
if (cur->is_double())
return cur->AsDoubleInternal();
}
return base::nullopt;
}
const std::string* Value::FindStringPath(StringPiece path) const {
const Value* cur = FindPath(path);
if (!cur || !cur->is_string())
return nullptr;
return &cur->string_value_;
}
std::string* Value::FindStringPath(StringPiece path) {
return const_cast<std::string*>(as_const(*this).FindStringPath(path));
}
const Value::BlobStorage* Value::FindBlobPath(StringPiece path) const {
const Value* cur = FindPath(path);
if (!cur || !cur->is_blob())
return nullptr;
return &cur->binary_value_;
}
const Value* Value::FindDictPath(StringPiece path) const {
return FindPathOfType(path, Type::DICTIONARY);
}
Value* Value::FindDictPath(StringPiece path) {
return FindPathOfType(path, Type::DICTIONARY);
}
const Value* Value::FindListPath(StringPiece path) const {
return FindPathOfType(path, Type::LIST);
}
Value* Value::FindListPath(StringPiece path) {
return FindPathOfType(path, Type::LIST);
}
Value* Value::SetPath(StringPiece path, Value&& value) {
return SetPathInternal(path, std::make_unique<Value>(std::move(value)));
}
Value* Value::SetBoolPath(StringPiece path, bool value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetIntPath(StringPiece path, int value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetDoublePath(StringPiece path, double value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetStringPath(StringPiece path, StringPiece value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetStringPath(StringPiece path, std::string&& value) {
return SetPathInternal(path, std::make_unique<Value>(std::move(value)));
}
Value* Value::SetStringPath(StringPiece path, const char* value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
Value* Value::SetStringPath(StringPiece path, StringPiece16 value) {
return SetPathInternal(path, std::make_unique<Value>(value));
}
bool Value::RemovePath(StringPiece path) {
return ExtractPath(path).has_value();
}
Optional<Value> Value::ExtractPath(StringPiece path) {
if (!is_dict() || path.empty())
return nullopt;
// NOTE: PathSplitter is not being used here because recursion is used to
// ensure that dictionaries that become empty due to this operation are
// removed automatically.
size_t pos = path.find('.');
if (pos == path.npos)
return ExtractKey(path);
auto found = dict_.find(path.substr(0, pos));
if (found == dict_.end() || !found->second->is_dict())
return nullopt;
Optional<Value> extracted = found->second->ExtractPath(path.substr(pos + 1));
if (extracted && found->second->dict_.empty())
dict_.erase(found);
return extracted;
}
// DEPRECATED METHODS
Value* Value::FindPath(std::initializer_list<StringPiece> path) {
return const_cast<Value*>(as_const(*this).FindPath(path));
}
Value* Value::FindPath(span<const StringPiece> path) {
return const_cast<Value*>(as_const(*this).FindPath(path));
}
const Value* Value::FindPath(std::initializer_list<StringPiece> path) const {
DCHECK_GE(path.size(), 2u) << "Use FindKey() for a path of length 1.";
return FindPath(make_span(path.begin(), path.size()));
}
const Value* Value::FindPath(span<const StringPiece> path) const {
const Value* cur = this;
for (const StringPiece component : path) {
if (!cur->is_dict() || (cur = cur->FindKey(component)) == nullptr)
return nullptr;
}
return cur;
}
Value* Value::FindPathOfType(std::initializer_list<StringPiece> path,
Type type) {
return const_cast<Value*>(as_const(*this).FindPathOfType(path, type));
}
Value* Value::FindPathOfType(span<const StringPiece> path, Type type) {
return const_cast<Value*>(as_const(*this).FindPathOfType(path, type));
}
const Value* Value::FindPathOfType(std::initializer_list<StringPiece> path,
Type type) const {
DCHECK_GE(path.size(), 2u) << "Use FindKeyOfType() for a path of length 1.";
return FindPathOfType(make_span(path.begin(), path.size()), type);
}
const Value* Value::FindPathOfType(span<const StringPiece> path,
Type type) const {
const Value* result = FindPath(path);
if (!result || result->type() != type)
return nullptr;
return result;
}
Value* Value::SetPath(std::initializer_list<StringPiece> path, Value&& value) {
DCHECK_GE(path.size(), 2u) << "Use SetKey() for a path of length 1.";
return SetPath(make_span(path.begin(), path.size()), std::move(value));
}
Value* Value::SetPath(span<const StringPiece> path, Value&& value) {
DCHECK(path.begin() != path.end()); // Can't be empty path.
// Walk/construct intermediate dictionaries. The last element requires
// special handling so skip it in this loop.
Value* cur = this;
auto cur_path = path.begin();
for (; (cur_path + 1) < path.end(); ++cur_path) {
if (!cur->is_dict())
return nullptr;
// Use lower_bound to avoid doing the search twice for missing keys.
const StringPiece path_component = *cur_path;
auto found = cur->dict_.lower_bound(path_component);
if (found == cur->dict_.end() || found->first != path_component) {
// No key found, insert one.
auto inserted = cur->dict_.try_emplace(
found, path_component, std::make_unique<Value>(Type::DICTIONARY));
cur = inserted->second.get();
} else {
cur = found->second.get();
}
}
// "cur" will now contain the last dictionary to insert or replace into.
if (!cur->is_dict())
return nullptr;
return cur->SetKey(*cur_path, std::move(value));
}
bool Value::RemovePath(std::initializer_list<StringPiece> path) {
DCHECK_GE(path.size(), 2u) << "Use RemoveKey() for a path of length 1.";
return RemovePath(make_span(path.begin(), path.size()));
}
bool Value::RemovePath(span<const StringPiece> path) {
if (!is_dict() || path.empty())
return false;
if (path.size() == 1)
return RemoveKey(path[0]);
auto found = dict_.find(path[0]);
if (found == dict_.end() || !found->second->is_dict())
return false;
bool removed = found->second->RemovePath(path.subspan(1));
if (removed && found->second->dict_.empty())
dict_.erase(found);
return removed;
}
Value::dict_iterator_proxy Value::DictItems() {
CHECK(is_dict());
return dict_iterator_proxy(&dict_);
}
Value::const_dict_iterator_proxy Value::DictItems() const {
CHECK(is_dict());
return const_dict_iterator_proxy(&dict_);
}
size_t Value::DictSize() const {
CHECK(is_dict());
return dict_.size();
}
bool Value::DictEmpty() const {
CHECK(is_dict());
return dict_.empty();
}
void Value::MergeDictionary(const Value* dictionary) {
CHECK(is_dict());
CHECK(dictionary->is_dict());
for (const auto& pair : dictionary->dict_) {
const auto& key = pair.first;
const auto& val = pair.second;
// Check whether we have to merge dictionaries.
if (val->is_dict()) {
auto found = dict_.find(key);
if (found != dict_.end() && found->second->is_dict()) {
found->second->MergeDictionary(val.get());
continue;
}
}
// All other cases: Make a copy and hook it up.
SetKey(key, val->Clone());
}
}
bool Value::GetAsBoolean(bool* out_value) const {
if (out_value && is_bool()) {
*out_value = bool_value_;
return true;
}
return is_bool();
}
bool Value::GetAsInteger(int* out_value) const {
if (out_value && is_int()) {
*out_value = int_value_;
return true;
}
return is_int();
}
bool Value::GetAsDouble(double* out_value) const {
if (out_value && is_double()) {
*out_value = AsDoubleInternal();
return true;
}
if (out_value && is_int()) {
// Allow promotion from int to double.
*out_value = int_value_;
return true;
}
return is_double() || is_int();
}
bool Value::GetAsString(std::string* out_value) const {
if (out_value && is_string()) {
*out_value = string_value_;
return true;
}
return is_string();
}
bool Value::GetAsString(string16* out_value) const {
if (out_value && is_string()) {
*out_value = UTF8ToUTF16(string_value_);
return true;
}
return is_string();
}
bool Value::GetAsString(const Value** out_value) const {
if (out_value && is_string()) {
*out_value = this;
return true;
}
return is_string();
}
bool Value::GetAsString(StringPiece* out_value) const {
if (out_value && is_string()) {
*out_value = string_value_;
return true;
}
return is_string();
}
bool Value::GetAsList(ListValue** out_value) {
if (out_value && is_list()) {
*out_value = static_cast<ListValue*>(this);
return true;
}
return is_list();
}
bool Value::GetAsList(const ListValue** out_value) const {
if (out_value && is_list()) {
*out_value = static_cast<const ListValue*>(this);
return true;
}
return is_list();
}
bool Value::GetAsDictionary(DictionaryValue** out_value) {
if (out_value && is_dict()) {
*out_value = static_cast<DictionaryValue*>(this);
return true;
}
return is_dict();
}
bool Value::GetAsDictionary(const DictionaryValue** out_value) const {
if (out_value && is_dict()) {
*out_value = static_cast<const DictionaryValue*>(this);
return true;
}
return is_dict();
}
Value* Value::DeepCopy() const {
return new Value(Clone());
}
std::unique_ptr<Value> Value::CreateDeepCopy() const {
return std::make_unique<Value>(Clone());
}
bool operator==(const Value& lhs, const Value& rhs) {
if (lhs.type_ != rhs.type_)
return false;
switch (lhs.type_) {
case Value::Type::NONE:
return true;
case Value::Type::BOOLEAN:
return lhs.bool_value_ == rhs.bool_value_;
case Value::Type::INTEGER:
return lhs.int_value_ == rhs.int_value_;
case Value::Type::DOUBLE:
return lhs.AsDoubleInternal() == rhs.AsDoubleInternal();
case Value::Type::STRING:
return lhs.string_value_ == rhs.string_value_;
case Value::Type::BINARY:
return lhs.binary_value_ == rhs.binary_value_;
// TODO(crbug.com/646113): Clean this up when DictionaryValue and ListValue
// are completely inlined.
case Value::Type::DICTIONARY:
if (lhs.dict_.size() != rhs.dict_.size())
return false;
return std::equal(std::begin(lhs.dict_), std::end(lhs.dict_),
std::begin(rhs.dict_),
[](const auto& u, const auto& v) {
return std::tie(u.first, *u.second) ==
std::tie(v.first, *v.second);
});
case Value::Type::LIST:
return lhs.list_ == rhs.list_;
// TODO(crbug.com/859477): Remove after root cause is found.
case Value::Type::DEAD:
CHECK(false);
return false;
}
// TODO(crbug.com/859477): Revert to NOTREACHED() after root cause is found.
CHECK(false);
return false;
}
bool operator!=(const Value& lhs, const Value& rhs) {
return !(lhs == rhs);
}
bool operator<(const Value& lhs, const Value& rhs) {
if (lhs.type_ != rhs.type_)
return lhs.type_ < rhs.type_;
switch (lhs.type_) {
case Value::Type::NONE:
return false;
case Value::Type::BOOLEAN:
return lhs.bool_value_ < rhs.bool_value_;
case Value::Type::INTEGER:
return lhs.int_value_ < rhs.int_value_;
case Value::Type::DOUBLE:
return lhs.AsDoubleInternal() < rhs.AsDoubleInternal();
case Value::Type::STRING:
return lhs.string_value_ < rhs.string_value_;
case Value::Type::BINARY:
return lhs.binary_value_ < rhs.binary_value_;
// TODO(crbug.com/646113): Clean this up when DictionaryValue and ListValue
// are completely inlined.
case Value::Type::DICTIONARY:
return std::lexicographical_compare(
std::begin(lhs.dict_), std::end(lhs.dict_), std::begin(rhs.dict_),
std::end(rhs.dict_),
[](const Value::DictStorage::value_type& u,
const Value::DictStorage::value_type& v) {
return std::tie(u.first, *u.second) < std::tie(v.first, *v.second);
});
case Value::Type::LIST:
return lhs.list_ < rhs.list_;
// TODO(crbug.com/859477): Remove after root cause is found.
case Value::Type::DEAD:
CHECK(false);
return false;
}
// TODO(crbug.com/859477): Revert to NOTREACHED() after root cause is found.
CHECK(false);
return false;
}
bool operator>(const Value& lhs, const Value& rhs) {
return rhs < lhs;
}
bool operator<=(const Value& lhs, const Value& rhs) {
return !(rhs < lhs);
}
bool operator>=(const Value& lhs, const Value& rhs) {
return !(lhs < rhs);
}
bool Value::Equals(const Value* other) const {
DCHECK(other);
return *this == *other;
}
size_t Value::EstimateMemoryUsage() const {
switch (type_) {
case Type::STRING:
return base::trace_event::EstimateMemoryUsage(string_value_);
case Type::BINARY:
return base::trace_event::EstimateMemoryUsage(binary_value_);
case Type::DICTIONARY:
return base::trace_event::EstimateMemoryUsage(dict_);
case Type::LIST:
return base::trace_event::EstimateMemoryUsage(list_);
default:
return 0;
}
}
void Value::InternalMoveConstructFrom(Value&& that) {
type_ = that.type_;
switch (type_) {
case Type::NONE:
return;
case Type::BOOLEAN:
bool_value_ = that.bool_value_;
return;
case Type::INTEGER:
int_value_ = that.int_value_;
return;
case Type::DOUBLE:
double_value_ = that.double_value_;
return;
case Type::STRING:
new (&string_value_) std::string(std::move(that.string_value_));
return;
case Type::BINARY:
new (&binary_value_) BlobStorage(std::move(that.binary_value_));
return;
case Type::DICTIONARY:
new (&dict_) DictStorage(std::move(that.dict_));
return;
case Type::LIST:
new (&list_) ListStorage(std::move(that.list_));
return;
// TODO(crbug.com/859477): Remove after root cause is found.
case Type::DEAD:
CHECK(false);
return;
}
// TODO(crbug.com/859477): Revert to NOTREACHED() after root cause is found.
CHECK(false);
}
void Value::InternalCleanup() {
switch (type_) {
case Type::NONE:
case Type::BOOLEAN:
case Type::INTEGER:
case Type::DOUBLE:
// Nothing to do
return;
case Type::STRING:
string_value_.~basic_string();
return;
case Type::BINARY:
binary_value_.~BlobStorage();
return;
case Type::DICTIONARY:
dict_.~DictStorage();
return;
case Type::LIST:
list_.~ListStorage();
return;
// TODO(crbug.com/859477): Remove after root cause is found.
case Type::DEAD:
CHECK(false);
return;
}
// TODO(crbug.com/859477): Revert to NOTREACHED() after root cause is found.
CHECK(false);
}
Value* Value::SetKeyInternal(StringPiece key,
std::unique_ptr<Value>&& val_ptr) {
CHECK(is_dict());
// NOTE: We can't use |insert_or_assign| here, as only |try_emplace| does
// an explicit conversion from StringPiece to std::string if necessary.
auto result = dict_.try_emplace(key, std::move(val_ptr));
if (!result.second) {
// val_ptr is guaranteed to be still intact at this point.
result.first->second = std::move(val_ptr);
}
return result.first->second.get();
}
Value* Value::SetPathInternal(StringPiece path,
std::unique_ptr<Value>&& value_ptr) {
PathSplitter splitter(path);
DCHECK(splitter.HasNext()) << "Cannot call SetPath() with empty path";
// Walk/construct intermediate dictionaries. The last element requires
// special handling so skip it in this loop.
Value* cur = this;
StringPiece path_component = splitter.Next();
while (splitter.HasNext()) {
if (!cur->is_dict())
return nullptr;
// Use lower_bound to avoid doing the search twice for missing keys.
auto found = cur->dict_.lower_bound(path_component);
if (found == cur->dict_.end() || found->first != path_component) {
// No key found, insert one.
auto inserted = cur->dict_.try_emplace(
found, path_component, std::make_unique<Value>(Type::DICTIONARY));
cur = inserted->second.get();
} else {
cur = found->second.get();
}
path_component = splitter.Next();
}
// "cur" will now contain the last dictionary to insert or replace into.
if (!cur->is_dict())
return nullptr;
return cur->SetKeyInternal(path_component, std::move(value_ptr));
}
///////////////////// DictionaryValue ////////////////////
// static
std::unique_ptr<DictionaryValue> DictionaryValue::From(
std::unique_ptr<Value> value) {
DictionaryValue* out;
if (value && value->GetAsDictionary(&out)) {
ignore_result(value.release());
return WrapUnique(out);
}
return nullptr;
}
DictionaryValue::DictionaryValue() : Value(Type::DICTIONARY) {}
DictionaryValue::DictionaryValue(const DictStorage& in_dict) : Value(in_dict) {}
DictionaryValue::DictionaryValue(DictStorage&& in_dict) noexcept
: Value(std::move(in_dict)) {}
bool DictionaryValue::HasKey(StringPiece key) const {
DCHECK(IsStringUTF8AllowingNoncharacters(key));
auto current_entry = dict_.find(key);
DCHECK((current_entry == dict_.end()) || current_entry->second);
return current_entry != dict_.end();
}
void DictionaryValue::Clear() {
dict_.clear();
}
Value* DictionaryValue::Set(StringPiece path, std::unique_ptr<Value> in_value) {
DCHECK(IsStringUTF8AllowingNoncharacters(path));
DCHECK(in_value);
// IMPORTANT NOTE: Do not replace with SetPathInternal() yet, because the
// latter fails when over-writing a non-dict intermediate node, while this
// method just replaces it with one. This difference makes some tests actually
// fail (http://crbug.com/949461).
StringPiece current_path(path);
Value* current_dictionary = this;
for (size_t delimiter_position = current_path.find('.');
delimiter_position != StringPiece::npos;
delimiter_position = current_path.find('.')) {
// Assume that we're indexing into a dictionary.
StringPiece key = current_path.substr(0, delimiter_position);
Value* child_dictionary =
current_dictionary->FindKeyOfType(key, Type::DICTIONARY);
if (!child_dictionary) {
child_dictionary =
current_dictionary->SetKey(key, Value(Type::DICTIONARY));
}
current_dictionary = child_dictionary;
current_path = current_path.substr(delimiter_position + 1);
}
return static_cast<DictionaryValue*>(current_dictionary)
->SetWithoutPathExpansion(current_path, std::move(in_value));
}
Value* DictionaryValue::SetBoolean(StringPiece path, bool in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
Value* DictionaryValue::SetInteger(StringPiece path, int in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
Value* DictionaryValue::SetDouble(StringPiece path, double in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
Value* DictionaryValue::SetString(StringPiece path, StringPiece in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
Value* DictionaryValue::SetString(StringPiece path, const string16& in_value) {
return Set(path, std::make_unique<Value>(in_value));
}
DictionaryValue* DictionaryValue::SetDictionary(
StringPiece path,
std::unique_ptr<DictionaryValue> in_value) {
return static_cast<DictionaryValue*>(Set(path, std::move(in_value)));
}
ListValue* DictionaryValue::SetList(StringPiece path,
std::unique_ptr<ListValue> in_value) {
return static_cast<ListValue*>(Set(path, std::move(in_value)));
}
Value* DictionaryValue::SetWithoutPathExpansion(
StringPiece key,
std::unique_ptr<Value> in_value) {
// NOTE: We can't use |insert_or_assign| here, as only |try_emplace| does
// an explicit conversion from StringPiece to std::string if necessary.
auto result = dict_.try_emplace(key, std::move(in_value));
if (!result.second) {
// in_value is guaranteed to be still intact at this point.
result.first->second = std::move(in_value);
}
return result.first->second.get();
}
bool DictionaryValue::Get(StringPiece path,
const Value** out_value) const {
DCHECK(IsStringUTF8AllowingNoncharacters(path));
const Value* value = FindPath(path);
if (!value)
return false;
if (out_value)
*out_value = value;
return true;
}
bool DictionaryValue::Get(StringPiece path, Value** out_value) {
return as_const(*this).Get(path, const_cast<const Value**>(out_value));
}
bool DictionaryValue::GetBoolean(StringPiece path, bool* bool_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsBoolean(bool_value);
}
bool DictionaryValue::GetInteger(StringPiece path, int* out_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsInteger(out_value);
}
bool DictionaryValue::GetDouble(StringPiece path, double* out_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsDouble(out_value);
}
bool DictionaryValue::GetString(StringPiece path,
std::string* out_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsString(out_value);
}
bool DictionaryValue::GetString(StringPiece path, string16* out_value) const {
const Value* value;
if (!Get(path, &value))
return false;
return value->GetAsString(out_value);
}
bool DictionaryValue::GetStringASCII(StringPiece path,
std::string* out_value) const {
std::string out;
if (!GetString(path, &out))
return false;
if (!IsStringASCII(out)) {
NOTREACHED();
return false;
}
out_value->assign(out);
return true;
}
bool DictionaryValue::GetBinary(StringPiece path,
const Value** out_value) const {
const Value* value;
bool result = Get(path, &value);
if (!result || !value->is_blob())
return false;
if (out_value)
*out_value = value;
return true;
}
bool DictionaryValue::GetBinary(StringPiece path, Value** out_value) {
return as_const(*this).GetBinary(path, const_cast<const Value**>(out_value));
}
bool DictionaryValue::GetDictionary(StringPiece path,
const DictionaryValue** out_value) const {
const Value* value;
bool result = Get(path, &value);
if (!result || !value->is_dict())
return false;
if (out_value)
*out_value = static_cast<const DictionaryValue*>(value);
return true;
}
bool DictionaryValue::GetDictionary(StringPiece path,
DictionaryValue** out_value) {
return as_const(*this).GetDictionary(
path, const_cast<const DictionaryValue**>(out_value));
}
bool DictionaryValue::GetList(StringPiece path,
const ListValue** out_value) const {
const Value* value;
bool result = Get(path, &value);
if (!result || !value->is_list())
return false;
if (out_value)
*out_value = static_cast<const ListValue*>(value);
return true;
}
bool DictionaryValue::GetList(StringPiece path, ListValue** out_value) {
return as_const(*this).GetList(path,
const_cast<const ListValue**>(out_value));
}
bool DictionaryValue::GetWithoutPathExpansion(StringPiece key,
const Value** out_value) const {
DCHECK(IsStringUTF8AllowingNoncharacters(key));
auto entry_iterator = dict_.find(key);
if (entry_iterator == dict_.end())
return false;
if (out_value)
*out_value = entry_iterator->second.get();
return true;
}
bool DictionaryValue::GetWithoutPathExpansion(StringPiece key,
Value** out_value) {
return as_const(*this).GetWithoutPathExpansion(
key, const_cast<const Value**>(out_value));
}
bool DictionaryValue::GetBooleanWithoutPathExpansion(StringPiece key,
bool* out_value) const {
const Value* value;
if (!GetWithoutPathExpansion(key, &value))
return false;
return value->GetAsBoolean(out_value);
}
bool DictionaryValue::GetIntegerWithoutPathExpansion(StringPiece key,
int* out_value) const {
const Value* value;
if (!GetWithoutPathExpansion(key, &value))
return false;
return value->GetAsInteger(out_value);
}
bool DictionaryValue::GetDoubleWithoutPathExpansion(StringPiece key,
double* out_value) const {
const Value* value;
if (!GetWithoutPathExpansion(key, &value))
return false;
return value->GetAsDouble(out_value);
}
bool DictionaryValue::GetStringWithoutPathExpansion(
StringPiece key,
std::string* out_value) const {
const Value* value;
if (!GetWithoutPathExpansion(key, &value))
return false;
return value->GetAsString(out_value);
}
bool DictionaryValue::GetStringWithoutPathExpansion(StringPiece key,
string16* out_value) const {
const Value* value;
if (!GetWithoutPathExpansion(key, &value))
return false;
return value->GetAsString(out_value);
}
bool DictionaryValue::GetDictionaryWithoutPathExpansion(
StringPiece key,
const DictionaryValue** out_value) const {
const Value* value;
bool result = GetWithoutPathExpansion(key, &value);
if (!result || !value->is_dict())
return false;
if (out_value)
*out_value = static_cast<const DictionaryValue*>(value);
return true;
}
bool DictionaryValue::GetDictionaryWithoutPathExpansion(
StringPiece key,
DictionaryValue** out_value) {
return as_const(*this).GetDictionaryWithoutPathExpansion(
key, const_cast<const DictionaryValue**>(out_value));
}
bool DictionaryValue::GetListWithoutPathExpansion(
StringPiece key,
const ListValue** out_value) const {
const Value* value;
bool result = GetWithoutPathExpansion(key, &value);
if (!result || !value->is_list())
return false;
if (out_value)
*out_value = static_cast<const ListValue*>(value);
return true;
}
bool DictionaryValue::GetListWithoutPathExpansion(StringPiece key,
ListValue** out_value) {
return as_const(*this).GetListWithoutPathExpansion(
key, const_cast<const ListValue**>(out_value));
}
bool DictionaryValue::Remove(StringPiece path,
std::unique_ptr<Value>* out_value) {
DCHECK(IsStringUTF8AllowingNoncharacters(path));
StringPiece current_path(path);
DictionaryValue* current_dictionary = this;
size_t delimiter_position = current_path.rfind('.');
if (delimiter_position != StringPiece::npos) {
if (!GetDictionary(current_path.substr(0, delimiter_position),
&current_dictionary))
return false;
current_path = current_path.substr(delimiter_position + 1);
}
return current_dictionary->RemoveWithoutPathExpansion(current_path,
out_value);
}
bool DictionaryValue::RemoveWithoutPathExpansion(
StringPiece key,
std::unique_ptr<Value>* out_value) {
DCHECK(IsStringUTF8AllowingNoncharacters(key));
auto entry_iterator = dict_.find(key);
if (entry_iterator == dict_.end())
return false;
if (out_value)
*out_value = std::move(entry_iterator->second);
dict_.erase(entry_iterator);
return true;
}
bool DictionaryValue::RemovePath(StringPiece path,
std::unique_ptr<Value>* out_value) {
bool result = false;
size_t delimiter_position = path.find('.');
if (delimiter_position == std::string::npos)
return RemoveWithoutPathExpansion(path, out_value);
StringPiece subdict_path = path.substr(0, delimiter_position);
DictionaryValue* subdict = nullptr;
if (!GetDictionary(subdict_path, &subdict))
return false;
result = subdict->RemovePath(path.substr(delimiter_position + 1),
out_value);
if (result && subdict->empty())
RemoveWithoutPathExpansion(subdict_path, nullptr);
return result;
}
std::unique_ptr<DictionaryValue> DictionaryValue::DeepCopyWithoutEmptyChildren()
const {
std::unique_ptr<DictionaryValue> copy =
CopyDictionaryWithoutEmptyChildren(*this);
if (!copy)
copy = std::make_unique<DictionaryValue>();
return copy;
}
void DictionaryValue::Swap(DictionaryValue* other) {
CHECK(other->is_dict());
dict_.swap(other->dict_);
}
DictionaryValue::Iterator::Iterator(const DictionaryValue& target)
: target_(target), it_(target.dict_.begin()) {}
DictionaryValue::Iterator::Iterator(const Iterator& other) = default;
DictionaryValue::Iterator::~Iterator() = default;
DictionaryValue* DictionaryValue::DeepCopy() const {
return new DictionaryValue(dict_);
}
std::unique_ptr<DictionaryValue> DictionaryValue::CreateDeepCopy() const {
return std::make_unique<DictionaryValue>(dict_);
}
///////////////////// ListValue ////////////////////
// static
std::unique_ptr<ListValue> ListValue::From(std::unique_ptr<Value> value) {
ListValue* out;
if (value && value->GetAsList(&out)) {
ignore_result(value.release());
return WrapUnique(out);
}
return nullptr;
}
ListValue::ListValue() : Value(Type::LIST) {}
ListValue::ListValue(span<const Value> in_list) : Value(in_list) {}
ListValue::ListValue(ListStorage&& in_list) noexcept
: Value(std::move(in_list)) {}
void ListValue::Clear() {
list_.clear();
}
void ListValue::Reserve(size_t n) {
list_.reserve(n);
}
bool ListValue::Set(size_t index, std::unique_ptr<Value> in_value) {
if (!in_value)
return false;
if (index >= list_.size())
list_.resize(index + 1);
list_[index] = std::move(*in_value);
return true;
}
bool ListValue::Get(size_t index, const Value** out_value) const {
if (index >= list_.size())
return false;
if (out_value)
*out_value = &list_[index];
return true;
}
bool ListValue::Get(size_t index, Value** out_value) {
return as_const(*this).Get(index, const_cast<const Value**>(out_value));
}
bool ListValue::GetBoolean(size_t index, bool* bool_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsBoolean(bool_value);
}
bool ListValue::GetInteger(size_t index, int* out_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsInteger(out_value);
}
bool ListValue::GetDouble(size_t index, double* out_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsDouble(out_value);
}
bool ListValue::GetString(size_t index, std::string* out_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsString(out_value);
}
bool ListValue::GetString(size_t index, string16* out_value) const {
const Value* value;
if (!Get(index, &value))
return false;
return value->GetAsString(out_value);
}
bool ListValue::GetDictionary(size_t index,
const DictionaryValue** out_value) const {
const Value* value;
bool result = Get(index, &value);
if (!result || !value->is_dict())
return false;
if (out_value)
*out_value = static_cast<const DictionaryValue*>(value);
return true;
}
bool ListValue::GetDictionary(size_t index, DictionaryValue** out_value) {
return as_const(*this).GetDictionary(
index, const_cast<const DictionaryValue**>(out_value));
}
bool ListValue::GetList(size_t index, const ListValue** out_value) const {
const Value* value;
bool result = Get(index, &value);
if (!result || !value->is_list())
return false;
if (out_value)
*out_value = static_cast<const ListValue*>(value);
return true;
}
bool ListValue::GetList(size_t index, ListValue** out_value) {
return as_const(*this).GetList(index,
const_cast<const ListValue**>(out_value));
}
bool ListValue::Remove(size_t index, std::unique_ptr<Value>* out_value) {
if (index >= list_.size())
return false;
if (out_value)
*out_value = std::make_unique<Value>(std::move(list_[index]));
list_.erase(list_.begin() + index);
return true;
}
bool ListValue::Remove(const Value& value, size_t* index) {
auto it = std::find(list_.begin(), list_.end(), value);
if (it == list_.end())
return false;
if (index)
*index = std::distance(list_.begin(), it);
list_.erase(it);
return true;
}
ListValue::iterator ListValue::Erase(iterator iter,
std::unique_ptr<Value>* out_value) {
if (out_value)
*out_value = std::make_unique<Value>(std::move(*iter));
auto list_iter = list_.begin() + (iter - GetList().begin());
CHECK(list_iter != list_.end());
list_iter = list_.erase(list_iter);
return GetList().begin() + (list_iter - list_.begin());
}
void ListValue::Append(std::unique_ptr<Value> in_value) {
list_.push_back(std::move(*in_value));
}
void ListValue::AppendBoolean(bool in_value) {
list_.emplace_back(in_value);
}
void ListValue::AppendInteger(int in_value) {
list_.emplace_back(in_value);
}
void ListValue::AppendDouble(double in_value) {
list_.emplace_back(in_value);
}
void ListValue::AppendString(StringPiece in_value) {
list_.emplace_back(in_value);
}
void ListValue::AppendString(const string16& in_value) {
list_.emplace_back(in_value);
}
void ListValue::AppendStrings(const std::vector<std::string>& in_values) {
list_.reserve(list_.size() + in_values.size());
for (const auto& in_value : in_values)
list_.emplace_back(in_value);
}
void ListValue::AppendStrings(const std::vector<string16>& in_values) {
list_.reserve(list_.size() + in_values.size());
for (const auto& in_value : in_values)
list_.emplace_back(in_value);
}
bool ListValue::AppendIfNotPresent(std::unique_ptr<Value> in_value) {
DCHECK(in_value);
if (Contains(list_, *in_value))
return false;
list_.push_back(std::move(*in_value));
return true;
}
bool ListValue::Insert(size_t index, std::unique_ptr<Value> in_value) {
DCHECK(in_value);
if (index > list_.size())
return false;
list_.insert(list_.begin() + index, std::move(*in_value));
return true;
}
ListValue::const_iterator ListValue::Find(const Value& value) const {
return std::find(GetList().begin(), GetList().end(), value);
}
void ListValue::Swap(ListValue* other) {
CHECK(other->is_list());
list_.swap(other->list_);
}
ListValue* ListValue::DeepCopy() const {
return new ListValue(list_);
}
std::unique_ptr<ListValue> ListValue::CreateDeepCopy() const {
return std::make_unique<ListValue>(list_);
}
ValueSerializer::~ValueSerializer() = default;
ValueDeserializer::~ValueDeserializer() = default;
std::ostream& operator<<(std::ostream& out, const Value& value) {
std::string json;
JSONWriter::WriteWithOptions(value, JSONWriter::OPTIONS_PRETTY_PRINT, &json);
return out << json;
}
std::ostream& operator<<(std::ostream& out, const Value::Type& type) {
if (static_cast<int>(type) < 0 ||
static_cast<size_t>(type) >= base::size(kTypeNames))
return out << "Invalid Type (index = " << static_cast<int>(type) << ")";
return out << Value::GetTypeName(type);
}
} // namespace base