Telegram-Android/TMessagesProj/jni/voip/webrtc/modules/pacing/pacing_controller.cc
2021-06-25 03:43:10 +03:00

744 lines
26 KiB
C++

/*
* Copyright (c) 2019 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/pacing_controller.h"
#include <algorithm>
#include <memory>
#include <utility>
#include <vector>
#include "absl/strings/match.h"
#include "modules/pacing/bitrate_prober.h"
#include "modules/pacing/interval_budget.h"
#include "modules/utility/include/process_thread.h"
#include "rtc_base/checks.h"
#include "rtc_base/experiments/field_trial_parser.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
namespace {
// Time limit in milliseconds between packet bursts.
constexpr TimeDelta kDefaultMinPacketLimit = TimeDelta::Millis(5);
constexpr TimeDelta kCongestedPacketInterval = TimeDelta::Millis(500);
// TODO(sprang): Consider dropping this limit.
// The maximum debt level, in terms of time, capped when sending packets.
constexpr TimeDelta kMaxDebtInTime = TimeDelta::Millis(500);
constexpr TimeDelta kMaxElapsedTime = TimeDelta::Seconds(2);
// Upper cap on process interval, in case process has not been called in a long
// time. Applies only to periodic mode.
constexpr TimeDelta kMaxProcessingInterval = TimeDelta::Millis(30);
// Allow probes to be processed slightly ahead of inteded send time. Currently
// set to 1ms as this is intended to allow times be rounded down to the nearest
// millisecond.
constexpr TimeDelta kMaxEarlyProbeProcessing = TimeDelta::Millis(1);
constexpr int kFirstPriority = 0;
bool IsDisabled(const WebRtcKeyValueConfig& field_trials,
absl::string_view key) {
return absl::StartsWith(field_trials.Lookup(key), "Disabled");
}
bool IsEnabled(const WebRtcKeyValueConfig& field_trials,
absl::string_view key) {
return absl::StartsWith(field_trials.Lookup(key), "Enabled");
}
TimeDelta GetDynamicPaddingTarget(const WebRtcKeyValueConfig& field_trials) {
FieldTrialParameter<TimeDelta> padding_target("timedelta",
TimeDelta::Millis(5));
ParseFieldTrial({&padding_target},
field_trials.Lookup("WebRTC-Pacer-DynamicPaddingTarget"));
return padding_target.Get();
}
int GetPriorityForType(RtpPacketMediaType type) {
// Lower number takes priority over higher.
switch (type) {
case RtpPacketMediaType::kAudio:
// Audio is always prioritized over other packet types.
return kFirstPriority + 1;
case RtpPacketMediaType::kRetransmission:
// Send retransmissions before new media.
return kFirstPriority + 2;
case RtpPacketMediaType::kVideo:
case RtpPacketMediaType::kForwardErrorCorrection:
// Video has "normal" priority, in the old speak.
// Send redundancy concurrently to video. If it is delayed it might have a
// lower chance of being useful.
return kFirstPriority + 3;
case RtpPacketMediaType::kPadding:
// Packets that are in themselves likely useless, only sent to keep the
// BWE high.
return kFirstPriority + 4;
}
RTC_CHECK_NOTREACHED();
}
} // namespace
const TimeDelta PacingController::kMaxExpectedQueueLength =
TimeDelta::Millis(2000);
const float PacingController::kDefaultPaceMultiplier = 2.5f;
const TimeDelta PacingController::kPausedProcessInterval =
kCongestedPacketInterval;
const TimeDelta PacingController::kMinSleepTime = TimeDelta::Millis(1);
PacingController::PacingController(Clock* clock,
PacketSender* packet_sender,
RtcEventLog* event_log,
const WebRtcKeyValueConfig* field_trials,
ProcessMode mode)
: mode_(mode),
clock_(clock),
packet_sender_(packet_sender),
fallback_field_trials_(
!field_trials ? std::make_unique<FieldTrialBasedConfig>() : nullptr),
field_trials_(field_trials ? field_trials : fallback_field_trials_.get()),
drain_large_queues_(
!IsDisabled(*field_trials_, "WebRTC-Pacer-DrainQueue")),
send_padding_if_silent_(
IsEnabled(*field_trials_, "WebRTC-Pacer-PadInSilence")),
pace_audio_(IsEnabled(*field_trials_, "WebRTC-Pacer-BlockAudio")),
ignore_transport_overhead_(
IsEnabled(*field_trials_, "WebRTC-Pacer-IgnoreTransportOverhead")),
padding_target_duration_(GetDynamicPaddingTarget(*field_trials_)),
min_packet_limit_(kDefaultMinPacketLimit),
transport_overhead_per_packet_(DataSize::Zero()),
last_timestamp_(clock_->CurrentTime()),
paused_(false),
media_budget_(0),
padding_budget_(0),
media_debt_(DataSize::Zero()),
padding_debt_(DataSize::Zero()),
media_rate_(DataRate::Zero()),
padding_rate_(DataRate::Zero()),
prober_(*field_trials_),
probing_send_failure_(false),
pacing_bitrate_(DataRate::Zero()),
last_process_time_(clock->CurrentTime()),
last_send_time_(last_process_time_),
packet_queue_(last_process_time_, field_trials_),
packet_counter_(0),
congestion_window_size_(DataSize::PlusInfinity()),
outstanding_data_(DataSize::Zero()),
queue_time_limit(kMaxExpectedQueueLength),
account_for_audio_(false),
include_overhead_(false) {
if (!drain_large_queues_) {
RTC_LOG(LS_WARNING) << "Pacer queues will not be drained,"
"pushback experiment must be enabled.";
}
FieldTrialParameter<int> min_packet_limit_ms("", min_packet_limit_.ms());
ParseFieldTrial({&min_packet_limit_ms},
field_trials_->Lookup("WebRTC-Pacer-MinPacketLimitMs"));
min_packet_limit_ = TimeDelta::Millis(min_packet_limit_ms.Get());
UpdateBudgetWithElapsedTime(min_packet_limit_);
}
PacingController::~PacingController() = default;
void PacingController::CreateProbeCluster(DataRate bitrate, int cluster_id) {
prober_.CreateProbeCluster(bitrate, CurrentTime(), cluster_id);
}
void PacingController::Pause() {
if (!paused_)
RTC_LOG(LS_INFO) << "PacedSender paused.";
paused_ = true;
packet_queue_.SetPauseState(true, CurrentTime());
}
void PacingController::Resume() {
if (paused_)
RTC_LOG(LS_INFO) << "PacedSender resumed.";
paused_ = false;
packet_queue_.SetPauseState(false, CurrentTime());
}
bool PacingController::IsPaused() const {
return paused_;
}
void PacingController::SetCongestionWindow(DataSize congestion_window_size) {
const bool was_congested = Congested();
congestion_window_size_ = congestion_window_size;
if (was_congested && !Congested()) {
TimeDelta elapsed_time = UpdateTimeAndGetElapsed(CurrentTime());
UpdateBudgetWithElapsedTime(elapsed_time);
}
}
void PacingController::UpdateOutstandingData(DataSize outstanding_data) {
const bool was_congested = Congested();
outstanding_data_ = outstanding_data;
if (was_congested && !Congested()) {
TimeDelta elapsed_time = UpdateTimeAndGetElapsed(CurrentTime());
UpdateBudgetWithElapsedTime(elapsed_time);
}
}
bool PacingController::Congested() const {
if (congestion_window_size_.IsFinite()) {
return outstanding_data_ >= congestion_window_size_;
}
return false;
}
bool PacingController::IsProbing() const {
return prober_.is_probing();
}
Timestamp PacingController::CurrentTime() const {
Timestamp time = clock_->CurrentTime();
if (time < last_timestamp_) {
RTC_LOG(LS_WARNING)
<< "Non-monotonic clock behavior observed. Previous timestamp: "
<< last_timestamp_.ms() << ", new timestamp: " << time.ms();
RTC_DCHECK_GE(time, last_timestamp_);
time = last_timestamp_;
}
last_timestamp_ = time;
return time;
}
void PacingController::SetProbingEnabled(bool enabled) {
RTC_CHECK_EQ(0, packet_counter_);
prober_.SetEnabled(enabled);
}
void PacingController::SetPacingRates(DataRate pacing_rate,
DataRate padding_rate) {
RTC_DCHECK_GT(pacing_rate, DataRate::Zero());
media_rate_ = pacing_rate;
padding_rate_ = padding_rate;
pacing_bitrate_ = pacing_rate;
padding_budget_.set_target_rate_kbps(padding_rate.kbps());
RTC_LOG(LS_VERBOSE) << "bwe:pacer_updated pacing_kbps="
<< pacing_bitrate_.kbps()
<< " padding_budget_kbps=" << padding_rate.kbps();
}
void PacingController::EnqueuePacket(std::unique_ptr<RtpPacketToSend> packet) {
RTC_DCHECK(pacing_bitrate_ > DataRate::Zero())
<< "SetPacingRate must be called before InsertPacket.";
RTC_CHECK(packet->packet_type());
// Get priority first and store in temporary, to avoid chance of object being
// moved before GetPriorityForType() being called.
const int priority = GetPriorityForType(*packet->packet_type());
EnqueuePacketInternal(std::move(packet), priority);
}
void PacingController::SetAccountForAudioPackets(bool account_for_audio) {
account_for_audio_ = account_for_audio;
}
void PacingController::SetIncludeOverhead() {
include_overhead_ = true;
packet_queue_.SetIncludeOverhead();
}
void PacingController::SetTransportOverhead(DataSize overhead_per_packet) {
if (ignore_transport_overhead_)
return;
transport_overhead_per_packet_ = overhead_per_packet;
packet_queue_.SetTransportOverhead(overhead_per_packet);
}
TimeDelta PacingController::ExpectedQueueTime() const {
RTC_DCHECK_GT(pacing_bitrate_, DataRate::Zero());
return TimeDelta::Millis(
(QueueSizeData().bytes() * 8 * rtc::kNumMillisecsPerSec) /
pacing_bitrate_.bps());
}
size_t PacingController::QueueSizePackets() const {
return packet_queue_.SizeInPackets();
}
DataSize PacingController::QueueSizeData() const {
return packet_queue_.Size();
}
DataSize PacingController::CurrentBufferLevel() const {
return std::max(media_debt_, padding_debt_);
}
absl::optional<Timestamp> PacingController::FirstSentPacketTime() const {
return first_sent_packet_time_;
}
TimeDelta PacingController::OldestPacketWaitTime() const {
Timestamp oldest_packet = packet_queue_.OldestEnqueueTime();
if (oldest_packet.IsInfinite()) {
return TimeDelta::Zero();
}
return CurrentTime() - oldest_packet;
}
void PacingController::EnqueuePacketInternal(
std::unique_ptr<RtpPacketToSend> packet,
int priority) {
prober_.OnIncomingPacket(DataSize::Bytes(packet->payload_size()));
Timestamp now = CurrentTime();
if (mode_ == ProcessMode::kDynamic && packet_queue_.Empty() &&
NextSendTime() <= now) {
TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now);
UpdateBudgetWithElapsedTime(elapsed_time);
}
packet_queue_.Push(priority, now, packet_counter_++, std::move(packet));
}
TimeDelta PacingController::UpdateTimeAndGetElapsed(Timestamp now) {
// If no previous processing, or last process was "in the future" because of
// early probe processing, then there is no elapsed time to add budget for.
if (last_process_time_.IsMinusInfinity() || now < last_process_time_) {
return TimeDelta::Zero();
}
RTC_DCHECK_GE(now, last_process_time_);
TimeDelta elapsed_time = now - last_process_time_;
last_process_time_ = now;
if (elapsed_time > kMaxElapsedTime) {
RTC_LOG(LS_WARNING) << "Elapsed time (" << elapsed_time.ms()
<< " ms) longer than expected, limiting to "
<< kMaxElapsedTime.ms();
elapsed_time = kMaxElapsedTime;
}
return elapsed_time;
}
bool PacingController::ShouldSendKeepalive(Timestamp now) const {
if (send_padding_if_silent_ || paused_ || Congested() ||
packet_counter_ == 0) {
// We send a padding packet every 500 ms to ensure we won't get stuck in
// congested state due to no feedback being received.
TimeDelta elapsed_since_last_send = now - last_send_time_;
if (elapsed_since_last_send >= kCongestedPacketInterval) {
return true;
}
}
return false;
}
Timestamp PacingController::NextSendTime() const {
const Timestamp now = CurrentTime();
if (paused_) {
return last_send_time_ + kPausedProcessInterval;
}
// If probing is active, that always takes priority.
if (prober_.is_probing()) {
Timestamp probe_time = prober_.NextProbeTime(now);
// |probe_time| == PlusInfinity indicates no probe scheduled.
if (probe_time != Timestamp::PlusInfinity() && !probing_send_failure_) {
return probe_time;
}
}
if (mode_ == ProcessMode::kPeriodic) {
// In periodic non-probing mode, we just have a fixed interval.
return last_process_time_ + min_packet_limit_;
}
// In dynamic mode, figure out when the next packet should be sent,
// given the current conditions.
if (!pace_audio_) {
// Not pacing audio, if leading packet is audio its target send
// time is the time at which it was enqueued.
absl::optional<Timestamp> audio_enqueue_time =
packet_queue_.LeadingAudioPacketEnqueueTime();
if (audio_enqueue_time.has_value()) {
return *audio_enqueue_time;
}
}
if (Congested() || packet_counter_ == 0) {
// We need to at least send keep-alive packets with some interval.
return last_send_time_ + kCongestedPacketInterval;
}
// Check how long until we can send the next media packet.
if (media_rate_ > DataRate::Zero() && !packet_queue_.Empty()) {
return std::min(last_send_time_ + kPausedProcessInterval,
last_process_time_ + media_debt_ / media_rate_);
}
// If we _don't_ have pending packets, check how long until we have
// bandwidth for padding packets. Both media and padding debts must
// have been drained to do this.
if (padding_rate_ > DataRate::Zero() && packet_queue_.Empty()) {
TimeDelta drain_time =
std::max(media_debt_ / media_rate_, padding_debt_ / padding_rate_);
return std::min(last_send_time_ + kPausedProcessInterval,
last_process_time_ + drain_time);
}
if (send_padding_if_silent_) {
return last_send_time_ + kPausedProcessInterval;
}
return last_process_time_ + kPausedProcessInterval;
}
void PacingController::ProcessPackets() {
Timestamp now = CurrentTime();
Timestamp target_send_time = now;
if (mode_ == ProcessMode::kDynamic) {
target_send_time = NextSendTime();
TimeDelta early_execute_margin =
prober_.is_probing() ? kMaxEarlyProbeProcessing : TimeDelta::Zero();
if (target_send_time.IsMinusInfinity()) {
target_send_time = now;
} else if (now < target_send_time - early_execute_margin) {
// We are too early, but if queue is empty still allow draining some debt.
// Probing is allowed to be sent up to kMinSleepTime early.
TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now);
UpdateBudgetWithElapsedTime(elapsed_time);
return;
}
if (target_send_time < last_process_time_) {
// After the last process call, at time X, the target send time
// shifted to be earlier than X. This should normally not happen
// but we want to make sure rounding errors or erratic behavior
// of NextSendTime() does not cause issue. In particular, if the
// buffer reduction of
// rate * (target_send_time - previous_process_time)
// in the main loop doesn't clean up the existing debt we may not
// be able to send again. We don't want to check this reordering
// there as it is the normal exit condtion when the buffer is
// exhausted and there are packets in the queue.
UpdateBudgetWithElapsedTime(last_process_time_ - target_send_time);
target_send_time = last_process_time_;
}
}
Timestamp previous_process_time = last_process_time_;
TimeDelta elapsed_time = UpdateTimeAndGetElapsed(now);
if (ShouldSendKeepalive(now)) {
// We can not send padding unless a normal packet has first been sent. If
// we do, timestamps get messed up.
if (packet_counter_ == 0) {
last_send_time_ = now;
} else {
DataSize keepalive_data_sent = DataSize::Zero();
std::vector<std::unique_ptr<RtpPacketToSend>> keepalive_packets =
packet_sender_->GeneratePadding(DataSize::Bytes(1));
for (auto& packet : keepalive_packets) {
keepalive_data_sent +=
DataSize::Bytes(packet->payload_size() + packet->padding_size());
packet_sender_->SendPacket(std::move(packet), PacedPacketInfo());
for (auto& packet : packet_sender_->FetchFec()) {
EnqueuePacket(std::move(packet));
}
}
OnPaddingSent(keepalive_data_sent);
}
}
if (paused_) {
return;
}
if (elapsed_time > TimeDelta::Zero()) {
DataRate target_rate = pacing_bitrate_;
DataSize queue_size_data = packet_queue_.Size();
if (queue_size_data > DataSize::Zero()) {
// Assuming equal size packets and input/output rate, the average packet
// has avg_time_left_ms left to get queue_size_bytes out of the queue, if
// time constraint shall be met. Determine bitrate needed for that.
packet_queue_.UpdateQueueTime(now);
if (drain_large_queues_) {
TimeDelta avg_time_left =
std::max(TimeDelta::Millis(1),
queue_time_limit - packet_queue_.AverageQueueTime());
DataRate min_rate_needed = queue_size_data / avg_time_left;
if (min_rate_needed > target_rate) {
target_rate = min_rate_needed;
RTC_LOG(LS_VERBOSE) << "bwe:large_pacing_queue pacing_rate_kbps="
<< target_rate.kbps();
}
}
}
if (mode_ == ProcessMode::kPeriodic) {
// In periodic processing mode, the IntevalBudget allows positive budget
// up to (process interval duration) * (target rate), so we only need to
// update it once before the packet sending loop.
media_budget_.set_target_rate_kbps(target_rate.kbps());
UpdateBudgetWithElapsedTime(elapsed_time);
} else {
media_rate_ = target_rate;
}
}
bool first_packet_in_probe = false;
PacedPacketInfo pacing_info;
DataSize recommended_probe_size = DataSize::Zero();
bool is_probing = prober_.is_probing();
if (is_probing) {
// Probe timing is sensitive, and handled explicitly by BitrateProber, so
// use actual send time rather than target.
pacing_info = prober_.CurrentCluster(now).value_or(PacedPacketInfo());
if (pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe) {
first_packet_in_probe = pacing_info.probe_cluster_bytes_sent == 0;
recommended_probe_size = prober_.RecommendedMinProbeSize();
RTC_DCHECK_GT(recommended_probe_size, DataSize::Zero());
} else {
// No valid probe cluster returned, probe might have timed out.
is_probing = false;
}
}
DataSize data_sent = DataSize::Zero();
// The paused state is checked in the loop since it leaves the critical
// section allowing the paused state to be changed from other code.
while (!paused_) {
if (first_packet_in_probe) {
// If first packet in probe, insert a small padding packet so we have a
// more reliable start window for the rate estimation.
auto padding = packet_sender_->GeneratePadding(DataSize::Bytes(1));
// If no RTP modules sending media are registered, we may not get a
// padding packet back.
if (!padding.empty()) {
// Insert with high priority so larger media packets don't preempt it.
EnqueuePacketInternal(std::move(padding[0]), kFirstPriority);
// We should never get more than one padding packets with a requested
// size of 1 byte.
RTC_DCHECK_EQ(padding.size(), 1u);
}
first_packet_in_probe = false;
}
if (mode_ == ProcessMode::kDynamic &&
previous_process_time < target_send_time) {
// Reduce buffer levels with amount corresponding to time between last
// process and target send time for the next packet.
// If the process call is late, that may be the time between the optimal
// send times for two packets we should already have sent.
UpdateBudgetWithElapsedTime(target_send_time - previous_process_time);
previous_process_time = target_send_time;
}
// Fetch the next packet, so long as queue is not empty or budget is not
// exhausted.
std::unique_ptr<RtpPacketToSend> rtp_packet =
GetPendingPacket(pacing_info, target_send_time, now);
if (rtp_packet == nullptr) {
// No packet available to send, check if we should send padding.
DataSize padding_to_add = PaddingToAdd(recommended_probe_size, data_sent);
if (padding_to_add > DataSize::Zero()) {
std::vector<std::unique_ptr<RtpPacketToSend>> padding_packets =
packet_sender_->GeneratePadding(padding_to_add);
if (padding_packets.empty()) {
// No padding packets were generated, quite send loop.
break;
}
for (auto& packet : padding_packets) {
EnqueuePacket(std::move(packet));
}
// Continue loop to send the padding that was just added.
continue;
}
// Can't fetch new packet and no padding to send, exit send loop.
break;
}
RTC_DCHECK(rtp_packet);
RTC_DCHECK(rtp_packet->packet_type().has_value());
const RtpPacketMediaType packet_type = *rtp_packet->packet_type();
DataSize packet_size = DataSize::Bytes(rtp_packet->payload_size() +
rtp_packet->padding_size());
if (include_overhead_) {
packet_size += DataSize::Bytes(rtp_packet->headers_size()) +
transport_overhead_per_packet_;
}
packet_sender_->SendPacket(std::move(rtp_packet), pacing_info);
for (auto& packet : packet_sender_->FetchFec()) {
EnqueuePacket(std::move(packet));
}
data_sent += packet_size;
// Send done, update send/process time to the target send time.
OnPacketSent(packet_type, packet_size, target_send_time);
// If we are currently probing, we need to stop the send loop when we have
// reached the send target.
if (is_probing && data_sent >= recommended_probe_size) {
break;
}
if (mode_ == ProcessMode::kDynamic) {
// Update target send time in case that are more packets that we are late
// in processing.
Timestamp next_send_time = NextSendTime();
if (next_send_time.IsMinusInfinity()) {
target_send_time = now;
} else {
target_send_time = std::min(now, next_send_time);
}
}
}
last_process_time_ = std::max(last_process_time_, previous_process_time);
if (is_probing) {
probing_send_failure_ = data_sent == DataSize::Zero();
if (!probing_send_failure_) {
prober_.ProbeSent(CurrentTime(), data_sent);
}
}
}
DataSize PacingController::PaddingToAdd(DataSize recommended_probe_size,
DataSize data_sent) const {
if (!packet_queue_.Empty()) {
// Actual payload available, no need to add padding.
return DataSize::Zero();
}
if (Congested()) {
// Don't add padding if congested, even if requested for probing.
return DataSize::Zero();
}
if (packet_counter_ == 0) {
// We can not send padding unless a normal packet has first been sent. If we
// do, timestamps get messed up.
return DataSize::Zero();
}
if (!recommended_probe_size.IsZero()) {
if (recommended_probe_size > data_sent) {
return recommended_probe_size - data_sent;
}
return DataSize::Zero();
}
if (mode_ == ProcessMode::kPeriodic) {
return DataSize::Bytes(padding_budget_.bytes_remaining());
} else if (padding_rate_ > DataRate::Zero() &&
padding_debt_ == DataSize::Zero()) {
return padding_target_duration_ * padding_rate_;
}
return DataSize::Zero();
}
std::unique_ptr<RtpPacketToSend> PacingController::GetPendingPacket(
const PacedPacketInfo& pacing_info,
Timestamp target_send_time,
Timestamp now) {
if (packet_queue_.Empty()) {
return nullptr;
}
// First, check if there is any reason _not_ to send the next queued packet.
// Unpaced audio packets and probes are exempted from send checks.
bool unpaced_audio_packet =
!pace_audio_ && packet_queue_.LeadingAudioPacketEnqueueTime().has_value();
bool is_probe = pacing_info.probe_cluster_id != PacedPacketInfo::kNotAProbe;
if (!unpaced_audio_packet && !is_probe) {
if (Congested()) {
// Don't send anything if congested.
return nullptr;
}
if (mode_ == ProcessMode::kPeriodic) {
if (media_budget_.bytes_remaining() <= 0) {
// Not enough budget.
return nullptr;
}
} else {
// Dynamic processing mode.
if (now <= target_send_time) {
// We allow sending slightly early if we think that we would actually
// had been able to, had we been right on time - i.e. the current debt
// is not more than would be reduced to zero at the target sent time.
TimeDelta flush_time = media_debt_ / media_rate_;
if (now + flush_time > target_send_time) {
return nullptr;
}
}
}
}
return packet_queue_.Pop();
}
void PacingController::OnPacketSent(RtpPacketMediaType packet_type,
DataSize packet_size,
Timestamp send_time) {
if (!first_sent_packet_time_) {
first_sent_packet_time_ = send_time;
}
bool audio_packet = packet_type == RtpPacketMediaType::kAudio;
if (!audio_packet || account_for_audio_) {
// Update media bytes sent.
UpdateBudgetWithSentData(packet_size);
}
last_send_time_ = send_time;
last_process_time_ = send_time;
}
void PacingController::OnPaddingSent(DataSize data_sent) {
if (data_sent > DataSize::Zero()) {
UpdateBudgetWithSentData(data_sent);
}
Timestamp now = CurrentTime();
last_send_time_ = now;
last_process_time_ = now;
}
void PacingController::UpdateBudgetWithElapsedTime(TimeDelta delta) {
if (mode_ == ProcessMode::kPeriodic) {
delta = std::min(kMaxProcessingInterval, delta);
media_budget_.IncreaseBudget(delta.ms());
padding_budget_.IncreaseBudget(delta.ms());
} else {
media_debt_ -= std::min(media_debt_, media_rate_ * delta);
padding_debt_ -= std::min(padding_debt_, padding_rate_ * delta);
}
}
void PacingController::UpdateBudgetWithSentData(DataSize size) {
outstanding_data_ += size;
if (mode_ == ProcessMode::kPeriodic) {
media_budget_.UseBudget(size.bytes());
padding_budget_.UseBudget(size.bytes());
} else {
media_debt_ += size;
media_debt_ = std::min(media_debt_, media_rate_ * kMaxDebtInTime);
padding_debt_ += size;
padding_debt_ = std::min(padding_debt_, padding_rate_ * kMaxDebtInTime);
}
}
void PacingController::SetQueueTimeLimit(TimeDelta limit) {
queue_time_limit = limit;
}
} // namespace webrtc