Telegram-Android/TMessagesProj/jni/boringssl/crypto/hrss/hrss.c
2019-12-31 16:08:08 +03:00

2201 lines
74 KiB
C
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

/* Copyright (c) 2018, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/hrss.h>
#include <assert.h>
#include <stdio.h>
#include <stdlib.h>
#include <openssl/bn.h>
#include <openssl/cpu.h>
#include <openssl/hmac.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
#include <emmintrin.h>
#endif
#if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
(defined(__ARM_NEON__) || defined(__ARM_NEON))
#include <arm_neon.h>
#endif
#if defined(_MSC_VER)
#define RESTRICT
#else
#define RESTRICT restrict
#endif
#include "../internal.h"
#include "internal.h"
// This is an implementation of [HRSS], but with a KEM transformation based on
// [SXY]. The primary references are:
// HRSS: https://eprint.iacr.org/2017/667.pdf
// HRSSNIST:
// https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/NTRU_HRSS_KEM.zip
// SXY: https://eprint.iacr.org/2017/1005.pdf
// NTRUTN14:
// https://assets.onboardsecurity.com/static/downloads/NTRU/resources/NTRUTech014.pdf
// NTRUCOMP:
// https://eprint.iacr.org/2018/1174
// Vector operations.
//
// A couple of functions in this file can use vector operations to meaningful
// effect. If we're building for a target that has a supported vector unit,
// |HRSS_HAVE_VECTOR_UNIT| will be defined and |vec_t| will be typedefed to a
// 128-bit vector. The following functions abstract over the differences between
// NEON and SSE2 for implementing some vector operations.
// TODO: MSVC can likely also be made to work with vector operations.
#if ((defined(__SSE__) && defined(OPENSSL_X86)) || defined(OPENSSL_X86_64)) && \
(defined(__clang__) || !defined(_MSC_VER))
#define HRSS_HAVE_VECTOR_UNIT
typedef __m128i vec_t;
// vec_capable returns one iff the current platform supports SSE2.
static int vec_capable(void) {
#if defined(__SSE2__)
return 1;
#else
int has_sse2 = (OPENSSL_ia32cap_P[0] & (1 << 26)) != 0;
return has_sse2;
#endif
}
// vec_add performs a pair-wise addition of four uint16s from |a| and |b|.
static inline vec_t vec_add(vec_t a, vec_t b) { return _mm_add_epi16(a, b); }
// vec_sub performs a pair-wise subtraction of four uint16s from |a| and |b|.
static inline vec_t vec_sub(vec_t a, vec_t b) { return _mm_sub_epi16(a, b); }
// vec_mul multiplies each uint16_t in |a| by |b| and returns the resulting
// vector.
static inline vec_t vec_mul(vec_t a, uint16_t b) {
return _mm_mullo_epi16(a, _mm_set1_epi16(b));
}
// vec_fma multiplies each uint16_t in |b| by |c|, adds the result to |a|, and
// returns the resulting vector.
static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) {
return _mm_add_epi16(a, _mm_mullo_epi16(b, _mm_set1_epi16(c)));
}
// vec3_rshift_word right-shifts the 24 uint16_t's in |v| by one uint16.
static inline void vec3_rshift_word(vec_t v[3]) {
// Intel's left and right shifting is backwards compared to the order in
// memory because they're based on little-endian order of words (and not just
// bytes). So the shifts in this function will be backwards from what one
// might expect.
const __m128i carry0 = _mm_srli_si128(v[0], 14);
v[0] = _mm_slli_si128(v[0], 2);
const __m128i carry1 = _mm_srli_si128(v[1], 14);
v[1] = _mm_slli_si128(v[1], 2);
v[1] |= carry0;
v[2] = _mm_slli_si128(v[2], 2);
v[2] |= carry1;
}
// vec4_rshift_word right-shifts the 32 uint16_t's in |v| by one uint16.
static inline void vec4_rshift_word(vec_t v[4]) {
// Intel's left and right shifting is backwards compared to the order in
// memory because they're based on little-endian order of words (and not just
// bytes). So the shifts in this function will be backwards from what one
// might expect.
const __m128i carry0 = _mm_srli_si128(v[0], 14);
v[0] = _mm_slli_si128(v[0], 2);
const __m128i carry1 = _mm_srli_si128(v[1], 14);
v[1] = _mm_slli_si128(v[1], 2);
v[1] |= carry0;
const __m128i carry2 = _mm_srli_si128(v[2], 14);
v[2] = _mm_slli_si128(v[2], 2);
v[2] |= carry1;
v[3] = _mm_slli_si128(v[3], 2);
v[3] |= carry2;
}
// vec_merge_3_5 takes the final three uint16_t's from |left|, appends the first
// five from |right|, and returns the resulting vector.
static inline vec_t vec_merge_3_5(vec_t left, vec_t right) {
return _mm_srli_si128(left, 10) | _mm_slli_si128(right, 6);
}
// poly3_vec_lshift1 left-shifts the 768 bits in |a_s|, and in |a_a|, by one
// bit.
static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) {
vec_t carry_s = {0};
vec_t carry_a = {0};
for (int i = 0; i < 6; i++) {
vec_t next_carry_s = _mm_srli_epi64(a_s[i], 63);
a_s[i] = _mm_slli_epi64(a_s[i], 1);
a_s[i] |= _mm_slli_si128(next_carry_s, 8);
a_s[i] |= carry_s;
carry_s = _mm_srli_si128(next_carry_s, 8);
vec_t next_carry_a = _mm_srli_epi64(a_a[i], 63);
a_a[i] = _mm_slli_epi64(a_a[i], 1);
a_a[i] |= _mm_slli_si128(next_carry_a, 8);
a_a[i] |= carry_a;
carry_a = _mm_srli_si128(next_carry_a, 8);
}
}
// poly3_vec_rshift1 right-shifts the 768 bits in |a_s|, and in |a_a|, by one
// bit.
static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) {
vec_t carry_s = {0};
vec_t carry_a = {0};
for (int i = 5; i >= 0; i--) {
const vec_t next_carry_s = _mm_slli_epi64(a_s[i], 63);
a_s[i] = _mm_srli_epi64(a_s[i], 1);
a_s[i] |= _mm_srli_si128(next_carry_s, 8);
a_s[i] |= carry_s;
carry_s = _mm_slli_si128(next_carry_s, 8);
const vec_t next_carry_a = _mm_slli_epi64(a_a[i], 63);
a_a[i] = _mm_srli_epi64(a_a[i], 1);
a_a[i] |= _mm_srli_si128(next_carry_a, 8);
a_a[i] |= carry_a;
carry_a = _mm_slli_si128(next_carry_a, 8);
}
}
// vec_broadcast_bit duplicates the least-significant bit in |a| to all bits in
// a vector and returns the result.
static inline vec_t vec_broadcast_bit(vec_t a) {
return _mm_shuffle_epi32(_mm_srai_epi32(_mm_slli_epi64(a, 63), 31),
0b01010101);
}
// vec_broadcast_bit15 duplicates the most-significant bit of the first word in
// |a| to all bits in a vector and returns the result.
static inline vec_t vec_broadcast_bit15(vec_t a) {
return _mm_shuffle_epi32(_mm_srai_epi32(_mm_slli_epi64(a, 63 - 15), 31),
0b01010101);
}
// vec_get_word returns the |i|th uint16_t in |v|. (This is a macro because the
// compiler requires that |i| be a compile-time constant.)
#define vec_get_word(v, i) _mm_extract_epi16(v, i)
#elif (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
(defined(__ARM_NEON__) || defined(__ARM_NEON))
#define HRSS_HAVE_VECTOR_UNIT
typedef uint16x8_t vec_t;
// These functions perform the same actions as the SSE2 function of the same
// name, above.
static int vec_capable(void) { return CRYPTO_is_NEON_capable(); }
static inline vec_t vec_add(vec_t a, vec_t b) { return a + b; }
static inline vec_t vec_sub(vec_t a, vec_t b) { return a - b; }
static inline vec_t vec_mul(vec_t a, uint16_t b) { return vmulq_n_u16(a, b); }
static inline vec_t vec_fma(vec_t a, vec_t b, uint16_t c) {
return vmlaq_n_u16(a, b, c);
}
static inline void vec3_rshift_word(vec_t v[3]) {
const uint16x8_t kZero = {0};
v[2] = vextq_u16(v[1], v[2], 7);
v[1] = vextq_u16(v[0], v[1], 7);
v[0] = vextq_u16(kZero, v[0], 7);
}
static inline void vec4_rshift_word(vec_t v[4]) {
const uint16x8_t kZero = {0};
v[3] = vextq_u16(v[2], v[3], 7);
v[2] = vextq_u16(v[1], v[2], 7);
v[1] = vextq_u16(v[0], v[1], 7);
v[0] = vextq_u16(kZero, v[0], 7);
}
static inline vec_t vec_merge_3_5(vec_t left, vec_t right) {
return vextq_u16(left, right, 5);
}
static inline uint16_t vec_get_word(vec_t v, unsigned i) {
return v[i];
}
#if !defined(OPENSSL_AARCH64)
static inline vec_t vec_broadcast_bit(vec_t a) {
a = (vec_t)vshrq_n_s16(((int16x8_t)a) << 15, 15);
return vdupq_lane_u16(vget_low_u16(a), 0);
}
static inline vec_t vec_broadcast_bit15(vec_t a) {
a = (vec_t)vshrq_n_s16((int16x8_t)a, 15);
return vdupq_lane_u16(vget_low_u16(a), 0);
}
static inline void poly3_vec_lshift1(vec_t a_s[6], vec_t a_a[6]) {
vec_t carry_s = {0};
vec_t carry_a = {0};
const vec_t kZero = {0};
for (int i = 0; i < 6; i++) {
vec_t next_carry_s = a_s[i] >> 15;
a_s[i] <<= 1;
a_s[i] |= vextq_u16(kZero, next_carry_s, 7);
a_s[i] |= carry_s;
carry_s = vextq_u16(next_carry_s, kZero, 7);
vec_t next_carry_a = a_a[i] >> 15;
a_a[i] <<= 1;
a_a[i] |= vextq_u16(kZero, next_carry_a, 7);
a_a[i] |= carry_a;
carry_a = vextq_u16(next_carry_a, kZero, 7);
}
}
static inline void poly3_vec_rshift1(vec_t a_s[6], vec_t a_a[6]) {
vec_t carry_s = {0};
vec_t carry_a = {0};
const vec_t kZero = {0};
for (int i = 5; i >= 0; i--) {
vec_t next_carry_s = a_s[i] << 15;
a_s[i] >>= 1;
a_s[i] |= vextq_u16(next_carry_s, kZero, 1);
a_s[i] |= carry_s;
carry_s = vextq_u16(kZero, next_carry_s, 1);
vec_t next_carry_a = a_a[i] << 15;
a_a[i] >>= 1;
a_a[i] |= vextq_u16(next_carry_a, kZero, 1);
a_a[i] |= carry_a;
carry_a = vextq_u16(kZero, next_carry_a, 1);
}
}
#endif // !OPENSSL_AARCH64
#endif // (ARM || AARCH64) && NEON
// Polynomials in this scheme have N terms.
// #define N 701
// Underlying data types and arithmetic operations.
// ------------------------------------------------
// Binary polynomials.
// poly2 represents a degree-N polynomial over GF(2). The words are in little-
// endian order, i.e. the coefficient of x^0 is the LSB of the first word. The
// final word is only partially used since N is not a multiple of the word size.
// Defined in internal.h:
// struct poly2 {
// crypto_word_t v[WORDS_PER_POLY];
// };
OPENSSL_UNUSED static void hexdump(const void *void_in, size_t len) {
const uint8_t *in = (const uint8_t *)void_in;
for (size_t i = 0; i < len; i++) {
printf("%02x", in[i]);
}
printf("\n");
}
static void poly2_zero(struct poly2 *p) {
OPENSSL_memset(&p->v[0], 0, sizeof(crypto_word_t) * WORDS_PER_POLY);
}
// poly2_cmov sets |out| to |in| iff |mov| is all ones.
static void poly2_cmov(struct poly2 *out, const struct poly2 *in,
crypto_word_t mov) {
for (size_t i = 0; i < WORDS_PER_POLY; i++) {
out->v[i] = (out->v[i] & ~mov) | (in->v[i] & mov);
}
}
// poly2_rotr_words performs a right-rotate on |in|, writing the result to
// |out|. The shift count, |bits|, must be a non-zero multiple of the word size.
static void poly2_rotr_words(struct poly2 *out, const struct poly2 *in,
size_t bits) {
assert(bits >= BITS_PER_WORD && bits % BITS_PER_WORD == 0);
assert(out != in);
const size_t start = bits / BITS_PER_WORD;
const size_t n = (N - bits) / BITS_PER_WORD;
// The rotate is by a whole number of words so the first few words are easy:
// just move them down.
for (size_t i = 0; i < n; i++) {
out->v[i] = in->v[start + i];
}
// Since the last word is only partially filled, however, the remainder needs
// shifting and merging of words to take care of that.
crypto_word_t carry = in->v[WORDS_PER_POLY - 1];
for (size_t i = 0; i < start; i++) {
out->v[n + i] = carry | in->v[i] << BITS_IN_LAST_WORD;
carry = in->v[i] >> (BITS_PER_WORD - BITS_IN_LAST_WORD);
}
out->v[WORDS_PER_POLY - 1] = carry;
}
// poly2_rotr_bits performs a right-rotate on |in|, writing the result to |out|.
// The shift count, |bits|, must be a power of two that is less than
// |BITS_PER_WORD|.
static void poly2_rotr_bits(struct poly2 *out, const struct poly2 *in,
size_t bits) {
assert(bits <= BITS_PER_WORD / 2);
assert(bits != 0);
assert((bits & (bits - 1)) == 0);
assert(out != in);
// BITS_PER_WORD/2 is the greatest legal value of |bits|. If
// |BITS_IN_LAST_WORD| is smaller than this then the code below doesn't work
// because more than the last word needs to carry down in the previous one and
// so on.
OPENSSL_STATIC_ASSERT(
BITS_IN_LAST_WORD >= BITS_PER_WORD / 2,
"there are more carry bits than fit in BITS_IN_LAST_WORD");
crypto_word_t carry = in->v[WORDS_PER_POLY - 1] << (BITS_PER_WORD - bits);
for (size_t i = WORDS_PER_POLY - 2; i < WORDS_PER_POLY; i--) {
out->v[i] = carry | in->v[i] >> bits;
carry = in->v[i] << (BITS_PER_WORD - bits);
}
crypto_word_t last_word = carry >> (BITS_PER_WORD - BITS_IN_LAST_WORD) |
in->v[WORDS_PER_POLY - 1] >> bits;
last_word &= (UINT64_C(1) << BITS_IN_LAST_WORD) - 1;
out->v[WORDS_PER_POLY - 1] = last_word;
}
// HRSS_poly2_rotr_consttime right-rotates |p| by |bits| in constant-time.
void HRSS_poly2_rotr_consttime(struct poly2 *p, size_t bits) {
assert(bits <= N);
assert(p->v[WORDS_PER_POLY-1] >> BITS_IN_LAST_WORD == 0);
// Constant-time rotation is implemented by calculating the rotations of
// powers-of-two bits and throwing away the unneeded values. 2^9 (i.e. 512) is
// the largest power-of-two shift that we need to consider because 2^10 > N.
#define HRSS_POLY2_MAX_SHIFT 9
size_t shift = HRSS_POLY2_MAX_SHIFT;
OPENSSL_STATIC_ASSERT((1 << (HRSS_POLY2_MAX_SHIFT + 1)) > N,
"maximum shift is too small");
OPENSSL_STATIC_ASSERT((1 << HRSS_POLY2_MAX_SHIFT) <= N,
"maximum shift is too large");
struct poly2 shifted;
for (; (UINT64_C(1) << shift) >= BITS_PER_WORD; shift--) {
poly2_rotr_words(&shifted, p, UINT64_C(1) << shift);
poly2_cmov(p, &shifted, ~((1 & (bits >> shift)) - 1));
}
for (; shift < HRSS_POLY2_MAX_SHIFT; shift--) {
poly2_rotr_bits(&shifted, p, UINT64_C(1) << shift);
poly2_cmov(p, &shifted, ~((1 & (bits >> shift)) - 1));
}
#undef HRSS_POLY2_MAX_SHIFT
}
// poly2_cswap exchanges the values of |a| and |b| if |swap| is all ones.
static void poly2_cswap(struct poly2 *a, struct poly2 *b, crypto_word_t swap) {
for (size_t i = 0; i < WORDS_PER_POLY; i++) {
const crypto_word_t sum = swap & (a->v[i] ^ b->v[i]);
a->v[i] ^= sum;
b->v[i] ^= sum;
}
}
// poly2_fmadd sets |out| to |out| + |in| * m, where m is either
// |CONSTTIME_TRUE_W| or |CONSTTIME_FALSE_W|.
static void poly2_fmadd(struct poly2 *out, const struct poly2 *in,
crypto_word_t m) {
for (size_t i = 0; i < WORDS_PER_POLY; i++) {
out->v[i] ^= in->v[i] & m;
}
}
// poly2_lshift1 left-shifts |p| by one bit.
static void poly2_lshift1(struct poly2 *p) {
crypto_word_t carry = 0;
for (size_t i = 0; i < WORDS_PER_POLY; i++) {
const crypto_word_t next_carry = p->v[i] >> (BITS_PER_WORD - 1);
p->v[i] <<= 1;
p->v[i] |= carry;
carry = next_carry;
}
}
// poly2_rshift1 right-shifts |p| by one bit.
static void poly2_rshift1(struct poly2 *p) {
crypto_word_t carry = 0;
for (size_t i = WORDS_PER_POLY - 1; i < WORDS_PER_POLY; i--) {
const crypto_word_t next_carry = p->v[i] & 1;
p->v[i] >>= 1;
p->v[i] |= carry << (BITS_PER_WORD - 1);
carry = next_carry;
}
}
// poly2_clear_top_bits clears the bits in the final word that are only for
// alignment.
static void poly2_clear_top_bits(struct poly2 *p) {
p->v[WORDS_PER_POLY - 1] &= (UINT64_C(1) << BITS_IN_LAST_WORD) - 1;
}
// poly2_top_bits_are_clear returns one iff the extra bits in the final words of
// |p| are zero.
static int poly2_top_bits_are_clear(const struct poly2 *p) {
return (p->v[WORDS_PER_POLY - 1] &
~((UINT64_C(1) << BITS_IN_LAST_WORD) - 1)) == 0;
}
// Ternary polynomials.
// poly3 represents a degree-N polynomial over GF(3). Each coefficient is
// bitsliced across the |s| and |a| arrays, like this:
//
// s | a | value
// -----------------
// 0 | 0 | 0
// 0 | 1 | 1
// 1 | 1 | -1 (aka 2)
// 1 | 0 | <invalid>
//
// ('s' is for sign, and 'a' is the absolute value.)
//
// Once bitsliced as such, the following circuits can be used to implement
// addition and multiplication mod 3:
//
// (s3, a3) = (s1, a1) × (s2, a2)
// a3 = a1 ∧ a2
// s3 = (s1 ⊕ s2) ∧ a3
//
// (s3, a3) = (s1, a1) + (s2, a2)
// t = s1 ⊕ a2
// s3 = t ∧ (s2 ⊕ a1)
// a3 = (a1 ⊕ a2) (t ⊕ s2)
//
// (s3, a3) = (s1, a1) - (s2, a2)
// t = a1 ⊕ a2
// s3 = (s1 ⊕ a2) ∧ (t ⊕ s2)
// a3 = t (s1 ⊕ s2)
//
// Negating a value just involves XORing s by a.
//
// struct poly3 {
// struct poly2 s, a;
// };
OPENSSL_UNUSED static void poly3_print(const struct poly3 *in) {
struct poly3 p;
OPENSSL_memcpy(&p, in, sizeof(p));
p.s.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1;
p.a.v[WORDS_PER_POLY - 1] &= ((crypto_word_t)1 << BITS_IN_LAST_WORD) - 1;
printf("{[");
for (unsigned i = 0; i < WORDS_PER_POLY; i++) {
if (i) {
printf(" ");
}
printf(BN_HEX_FMT2, p.s.v[i]);
}
printf("] [");
for (unsigned i = 0; i < WORDS_PER_POLY; i++) {
if (i) {
printf(" ");
}
printf(BN_HEX_FMT2, p.a.v[i]);
}
printf("]}\n");
}
static void poly3_zero(struct poly3 *p) {
poly2_zero(&p->s);
poly2_zero(&p->a);
}
// poly3_word_mul sets (|out_s|, |out_a) to (|s1|, |a1|) × (|s2|, |a2|).
static void poly3_word_mul(crypto_word_t *out_s, crypto_word_t *out_a,
const crypto_word_t s1, const crypto_word_t a1,
const crypto_word_t s2, const crypto_word_t a2) {
*out_a = a1 & a2;
*out_s = (s1 ^ s2) & *out_a;
}
// poly3_word_add sets (|out_s|, |out_a|) to (|s1|, |a1|) + (|s2|, |a2|).
static void poly3_word_add(crypto_word_t *out_s, crypto_word_t *out_a,
const crypto_word_t s1, const crypto_word_t a1,
const crypto_word_t s2, const crypto_word_t a2) {
const crypto_word_t t = s1 ^ a2;
*out_s = t & (s2 ^ a1);
*out_a = (a1 ^ a2) | (t ^ s2);
}
// poly3_word_sub sets (|out_s|, |out_a|) to (|s1|, |a1|) - (|s2|, |a2|).
static void poly3_word_sub(crypto_word_t *out_s, crypto_word_t *out_a,
const crypto_word_t s1, const crypto_word_t a1,
const crypto_word_t s2, const crypto_word_t a2) {
const crypto_word_t t = a1 ^ a2;
*out_s = (s1 ^ a2) & (t ^ s2);
*out_a = t | (s1 ^ s2);
}
// lsb_to_all replicates the least-significant bit of |v| to all bits of the
// word. This is used in bit-slicing operations to make a vector from a fixed
// value.
static crypto_word_t lsb_to_all(crypto_word_t v) { return 0u - (v & 1); }
// poly3_mul_const sets |p| to |p|×m, where m = (ms, ma).
static void poly3_mul_const(struct poly3 *p, crypto_word_t ms,
crypto_word_t ma) {
ms = lsb_to_all(ms);
ma = lsb_to_all(ma);
for (size_t i = 0; i < WORDS_PER_POLY; i++) {
poly3_word_mul(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], ms, ma);
}
}
// poly3_rotr_consttime right-rotates |p| by |bits| in constant-time.
static void poly3_rotr_consttime(struct poly3 *p, size_t bits) {
assert(bits <= N);
HRSS_poly2_rotr_consttime(&p->s, bits);
HRSS_poly2_rotr_consttime(&p->a, bits);
}
// poly3_fmadd sets |out| to |out| - |in|×m, where m is (ms, ma).
static void poly3_fmsub(struct poly3 *RESTRICT out,
const struct poly3 *RESTRICT in, crypto_word_t ms,
crypto_word_t ma) {
crypto_word_t product_s, product_a;
for (size_t i = 0; i < WORDS_PER_POLY; i++) {
poly3_word_mul(&product_s, &product_a, in->s.v[i], in->a.v[i], ms, ma);
poly3_word_sub(&out->s.v[i], &out->a.v[i], out->s.v[i], out->a.v[i],
product_s, product_a);
}
}
// final_bit_to_all replicates the bit in the final position of the last word to
// all the bits in the word.
static crypto_word_t final_bit_to_all(crypto_word_t v) {
return lsb_to_all(v >> (BITS_IN_LAST_WORD - 1));
}
// poly3_top_bits_are_clear returns one iff the extra bits in the final words of
// |p| are zero.
OPENSSL_UNUSED static int poly3_top_bits_are_clear(const struct poly3 *p) {
return poly2_top_bits_are_clear(&p->s) && poly2_top_bits_are_clear(&p->a);
}
// poly3_mod_phiN reduces |p| by Φ(N).
static void poly3_mod_phiN(struct poly3 *p) {
// In order to reduce by Φ(N) we subtract by the value of the greatest
// coefficient.
const crypto_word_t factor_s = final_bit_to_all(p->s.v[WORDS_PER_POLY - 1]);
const crypto_word_t factor_a = final_bit_to_all(p->a.v[WORDS_PER_POLY - 1]);
for (size_t i = 0; i < WORDS_PER_POLY; i++) {
poly3_word_sub(&p->s.v[i], &p->a.v[i], p->s.v[i], p->a.v[i], factor_s,
factor_a);
}
poly2_clear_top_bits(&p->s);
poly2_clear_top_bits(&p->a);
}
static void poly3_cswap(struct poly3 *a, struct poly3 *b, crypto_word_t swap) {
poly2_cswap(&a->s, &b->s, swap);
poly2_cswap(&a->a, &b->a, swap);
}
static void poly3_lshift1(struct poly3 *p) {
poly2_lshift1(&p->s);
poly2_lshift1(&p->a);
}
static void poly3_rshift1(struct poly3 *p) {
poly2_rshift1(&p->s);
poly2_rshift1(&p->a);
}
// poly3_span represents a pointer into a poly3.
struct poly3_span {
crypto_word_t *s;
crypto_word_t *a;
};
// poly3_span_add adds |n| words of values from |a| and |b| and writes the
// result to |out|.
static void poly3_span_add(const struct poly3_span *out,
const struct poly3_span *a,
const struct poly3_span *b, size_t n) {
for (size_t i = 0; i < n; i++) {
poly3_word_add(&out->s[i], &out->a[i], a->s[i], a->a[i], b->s[i], b->a[i]);
}
}
// poly3_span_sub subtracts |n| words of |b| from |n| words of |a|.
static void poly3_span_sub(const struct poly3_span *a,
const struct poly3_span *b, size_t n) {
for (size_t i = 0; i < n; i++) {
poly3_word_sub(&a->s[i], &a->a[i], a->s[i], a->a[i], b->s[i], b->a[i]);
}
}
// poly3_mul_aux is a recursive function that multiplies |n| words from |a| and
// |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements of
// |scratch| and the function recurses, except if |n| == 1, when |scratch| isn't
// used and the recursion stops. For |n| in {11, 22}, the transitive total
// amount of |scratch| needed happens to be 2n+2.
static void poly3_mul_aux(const struct poly3_span *out,
const struct poly3_span *scratch,
const struct poly3_span *a,
const struct poly3_span *b, size_t n) {
if (n == 1) {
crypto_word_t r_s_low = 0, r_s_high = 0, r_a_low = 0, r_a_high = 0;
crypto_word_t b_s = b->s[0], b_a = b->a[0];
const crypto_word_t a_s = a->s[0], a_a = a->a[0];
for (size_t i = 0; i < BITS_PER_WORD; i++) {
// Multiply (s, a) by the next value from (b_s, b_a).
crypto_word_t m_s, m_a;
poly3_word_mul(&m_s, &m_a, a_s, a_a, lsb_to_all(b_s), lsb_to_all(b_a));
b_s >>= 1;
b_a >>= 1;
if (i == 0) {
// Special case otherwise the code tries to shift by BITS_PER_WORD
// below, which is undefined.
r_s_low = m_s;
r_a_low = m_a;
continue;
}
// Shift the multiplication result to the correct position.
const crypto_word_t m_s_low = m_s << i;
const crypto_word_t m_s_high = m_s >> (BITS_PER_WORD - i);
const crypto_word_t m_a_low = m_a << i;
const crypto_word_t m_a_high = m_a >> (BITS_PER_WORD - i);
// Add into the result.
poly3_word_add(&r_s_low, &r_a_low, r_s_low, r_a_low, m_s_low, m_a_low);
poly3_word_add(&r_s_high, &r_a_high, r_s_high, r_a_high, m_s_high,
m_a_high);
}
out->s[0] = r_s_low;
out->s[1] = r_s_high;
out->a[0] = r_a_low;
out->a[1] = r_a_high;
return;
}
// Karatsuba multiplication.
// https://en.wikipedia.org/wiki/Karatsuba_algorithm
// When |n| is odd, the two "halves" will have different lengths. The first
// is always the smaller.
const size_t low_len = n / 2;
const size_t high_len = n - low_len;
const struct poly3_span a_high = {&a->s[low_len], &a->a[low_len]};
const struct poly3_span b_high = {&b->s[low_len], &b->a[low_len]};
// Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second
// half.
const struct poly3_span a_cross_sum = *out;
const struct poly3_span b_cross_sum = {&out->s[high_len], &out->a[high_len]};
poly3_span_add(&a_cross_sum, a, &a_high, low_len);
poly3_span_add(&b_cross_sum, b, &b_high, low_len);
if (high_len != low_len) {
a_cross_sum.s[low_len] = a_high.s[low_len];
a_cross_sum.a[low_len] = a_high.a[low_len];
b_cross_sum.s[low_len] = b_high.s[low_len];
b_cross_sum.a[low_len] = b_high.a[low_len];
}
const struct poly3_span child_scratch = {&scratch->s[2 * high_len],
&scratch->a[2 * high_len]};
const struct poly3_span out_mid = {&out->s[low_len], &out->a[low_len]};
const struct poly3_span out_high = {&out->s[2 * low_len],
&out->a[2 * low_len]};
// Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer.
poly3_mul_aux(scratch, &child_scratch, &a_cross_sum, &b_cross_sum, high_len);
// Calculate a_1 × b_1.
poly3_mul_aux(&out_high, &child_scratch, &a_high, &b_high, high_len);
// Calculate a_0 × b_0.
poly3_mul_aux(out, &child_scratch, a, b, low_len);
// Subtract those last two products from the first.
poly3_span_sub(scratch, out, low_len * 2);
poly3_span_sub(scratch, &out_high, high_len * 2);
// Add the middle product into the output.
poly3_span_add(&out_mid, &out_mid, scratch, high_len * 2);
}
// HRSS_poly3_mul sets |*out| to |x|×|y| mod Φ(N).
void HRSS_poly3_mul(struct poly3 *out, const struct poly3 *x,
const struct poly3 *y) {
crypto_word_t prod_s[WORDS_PER_POLY * 2];
crypto_word_t prod_a[WORDS_PER_POLY * 2];
crypto_word_t scratch_s[WORDS_PER_POLY * 2 + 2];
crypto_word_t scratch_a[WORDS_PER_POLY * 2 + 2];
const struct poly3_span prod_span = {prod_s, prod_a};
const struct poly3_span scratch_span = {scratch_s, scratch_a};
const struct poly3_span x_span = {(crypto_word_t *)x->s.v,
(crypto_word_t *)x->a.v};
const struct poly3_span y_span = {(crypto_word_t *)y->s.v,
(crypto_word_t *)y->a.v};
poly3_mul_aux(&prod_span, &scratch_span, &x_span, &y_span, WORDS_PER_POLY);
// |prod| needs to be reduced mod (𝑥^n - 1), which just involves adding the
// upper-half to the lower-half. However, N is 701, which isn't a multiple of
// BITS_PER_WORD, so the upper-half vectors all have to be shifted before
// being added to the lower-half.
for (size_t i = 0; i < WORDS_PER_POLY; i++) {
crypto_word_t v_s = prod_s[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD;
v_s |= prod_s[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD);
crypto_word_t v_a = prod_a[WORDS_PER_POLY + i - 1] >> BITS_IN_LAST_WORD;
v_a |= prod_a[WORDS_PER_POLY + i] << (BITS_PER_WORD - BITS_IN_LAST_WORD);
poly3_word_add(&out->s.v[i], &out->a.v[i], prod_s[i], prod_a[i], v_s, v_a);
}
poly3_mod_phiN(out);
}
#if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64)
// poly3_vec_cswap swaps (|a_s|, |a_a|) and (|b_s|, |b_a|) if |swap| is
// |0xff..ff|. Otherwise, |swap| must be zero.
static inline void poly3_vec_cswap(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6],
vec_t b_a[6], const vec_t swap) {
for (int i = 0; i < 6; i++) {
const vec_t sum_s = swap & (a_s[i] ^ b_s[i]);
a_s[i] ^= sum_s;
b_s[i] ^= sum_s;
const vec_t sum_a = swap & (a_a[i] ^ b_a[i]);
a_a[i] ^= sum_a;
b_a[i] ^= sum_a;
}
}
// poly3_vec_fmsub subtracts (|ms|, |ma|) × (|b_s|, |b_a|) from (|a_s|, |a_a|).
static inline void poly3_vec_fmsub(vec_t a_s[6], vec_t a_a[6], vec_t b_s[6],
vec_t b_a[6], const vec_t ms,
const vec_t ma) {
for (int i = 0; i < 6; i++) {
// See the bitslice formula, above.
const vec_t s = b_s[i];
const vec_t a = b_a[i];
const vec_t product_a = a & ma;
const vec_t product_s = (s ^ ms) & product_a;
const vec_t out_s = a_s[i];
const vec_t out_a = a_a[i];
const vec_t t = out_a ^ product_a;
a_s[i] = (out_s ^ product_a) & (t ^ product_s);
a_a[i] = t | (out_s ^ product_s);
}
}
// poly3_invert_vec sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod
// Φ(N).
static void poly3_invert_vec(struct poly3 *out, const struct poly3 *in) {
// See the comment in |HRSS_poly3_invert| about this algorithm. In addition to
// the changes described there, this implementation attempts to use vector
// registers to speed up the computation. Even non-poly3 variables are held in
// vectors where possible to minimise the amount of data movement between
// the vector and general-purpose registers.
vec_t b_s[6], b_a[6], c_s[6], c_a[6], f_s[6], f_a[6], g_s[6], g_a[6];
const vec_t kZero = {0};
const vec_t kOne = {1};
static const uint8_t kOneBytes[sizeof(vec_t)] = {1};
static const uint8_t kBottomSixtyOne[sizeof(vec_t)] = {
0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x1f};
memset(b_s, 0, sizeof(b_s));
memcpy(b_a, kOneBytes, sizeof(kOneBytes));
memset(&b_a[1], 0, 5 * sizeof(vec_t));
memset(c_s, 0, sizeof(c_s));
memset(c_a, 0, sizeof(c_a));
f_s[5] = kZero;
memcpy(f_s, in->s.v, WORDS_PER_POLY * sizeof(crypto_word_t));
f_a[5] = kZero;
memcpy(f_a, in->a.v, WORDS_PER_POLY * sizeof(crypto_word_t));
// Set g to all ones.
memset(g_s, 0, sizeof(g_s));
memset(g_a, 0xff, 5 * sizeof(vec_t));
memcpy(&g_a[5], kBottomSixtyOne, sizeof(kBottomSixtyOne));
vec_t deg_f = {N - 1}, deg_g = {N - 1}, rotation = kZero;
vec_t k = kOne;
vec_t f0s = {0}, f0a = {0};
vec_t still_going;
memset(&still_going, 0xff, sizeof(still_going));
for (unsigned i = 0; i < 2 * (N - 1) - 1; i++) {
const vec_t s_a = vec_broadcast_bit(still_going & (f_a[0] & g_a[0]));
const vec_t s_s =
vec_broadcast_bit(still_going & ((f_s[0] ^ g_s[0]) & s_a));
const vec_t should_swap =
(s_s | s_a) & vec_broadcast_bit15(deg_f - deg_g);
poly3_vec_cswap(f_s, f_a, g_s, g_a, should_swap);
poly3_vec_fmsub(f_s, f_a, g_s, g_a, s_s, s_a);
poly3_vec_rshift1(f_s, f_a);
poly3_vec_cswap(b_s, b_a, c_s, c_a, should_swap);
poly3_vec_fmsub(b_s, b_a, c_s, c_a, s_s, s_a);
poly3_vec_lshift1(c_s, c_a);
const vec_t deg_sum = should_swap & (deg_f ^ deg_g);
deg_f ^= deg_sum;
deg_g ^= deg_sum;
deg_f -= kOne;
still_going &= ~vec_broadcast_bit15(deg_f - kOne);
const vec_t f0_is_nonzero = vec_broadcast_bit(f_s[0] | f_a[0]);
// |f0_is_nonzero| implies |still_going|.
rotation ^= f0_is_nonzero & (k ^ rotation);
k += kOne;
const vec_t f0s_sum = f0_is_nonzero & (f_s[0] ^ f0s);
f0s ^= f0s_sum;
const vec_t f0a_sum = f0_is_nonzero & (f_a[0] ^ f0a);
f0a ^= f0a_sum;
}
crypto_word_t rotation_word = vec_get_word(rotation, 0);
rotation_word -= N & constant_time_lt_w(N, rotation_word);
memcpy(out->s.v, b_s, WORDS_PER_POLY * sizeof(crypto_word_t));
memcpy(out->a.v, b_a, WORDS_PER_POLY * sizeof(crypto_word_t));
assert(poly3_top_bits_are_clear(out));
poly3_rotr_consttime(out, rotation_word);
poly3_mul_const(out, vec_get_word(f0s, 0), vec_get_word(f0a, 0));
poly3_mod_phiN(out);
}
#endif // HRSS_HAVE_VECTOR_UNIT
// HRSS_poly3_invert sets |*out| to |in|^-1, i.e. such that |out|×|in| == 1 mod
// Φ(N).
void HRSS_poly3_invert(struct poly3 *out, const struct poly3 *in) {
// The vector version of this function seems slightly slower on AArch64, but
// is useful on ARMv7 and x86-64.
#if defined(HRSS_HAVE_VECTOR_UNIT) && !defined(OPENSSL_AARCH64)
if (vec_capable()) {
poly3_invert_vec(out, in);
return;
}
#endif
// This algorithm mostly follows algorithm 10 in the paper. Some changes:
// 1) k should start at zero, not one. In the code below k is omitted and
// the loop counter, |i|, is used instead.
// 2) The rotation count is conditionally updated to handle trailing zero
// coefficients.
// The best explanation for why it works is in the "Why it works" section of
// [NTRUTN14].
struct poly3 c, f, g;
OPENSSL_memcpy(&f, in, sizeof(f));
// Set g to all ones.
OPENSSL_memset(&g.s, 0, sizeof(struct poly2));
OPENSSL_memset(&g.a, 0xff, sizeof(struct poly2));
g.a.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD;
struct poly3 *b = out;
poly3_zero(b);
poly3_zero(&c);
// Set b to one.
b->a.v[0] = 1;
crypto_word_t deg_f = N - 1, deg_g = N - 1, rotation = 0;
crypto_word_t f0s = 0, f0a = 0;
crypto_word_t still_going = CONSTTIME_TRUE_W;
for (unsigned i = 0; i < 2 * (N - 1) - 1; i++) {
const crypto_word_t s_a = lsb_to_all(
still_going & (f.a.v[0] & g.a.v[0]));
const crypto_word_t s_s = lsb_to_all(
still_going & ((f.s.v[0] ^ g.s.v[0]) & s_a));
const crypto_word_t should_swap =
(s_s | s_a) & constant_time_lt_w(deg_f, deg_g);
poly3_cswap(&f, &g, should_swap);
poly3_cswap(b, &c, should_swap);
const crypto_word_t deg_sum = should_swap & (deg_f ^ deg_g);
deg_f ^= deg_sum;
deg_g ^= deg_sum;
assert(deg_g >= 1);
poly3_fmsub(&f, &g, s_s, s_a);
poly3_fmsub(b, &c, s_s, s_a);
poly3_rshift1(&f);
poly3_lshift1(&c);
deg_f--;
const crypto_word_t f0_is_nonzero =
lsb_to_all(f.s.v[0]) | lsb_to_all(f.a.v[0]);
// |f0_is_nonzero| implies |still_going|.
assert(!(f0_is_nonzero && !still_going));
still_going &= ~constant_time_is_zero_w(deg_f);
rotation = constant_time_select_w(f0_is_nonzero, i, rotation);
f0s = constant_time_select_w(f0_is_nonzero, f.s.v[0], f0s);
f0a = constant_time_select_w(f0_is_nonzero, f.a.v[0], f0a);
}
rotation++;
rotation -= N & constant_time_lt_w(N, rotation);
assert(poly3_top_bits_are_clear(out));
poly3_rotr_consttime(out, rotation);
poly3_mul_const(out, f0s, f0a);
poly3_mod_phiN(out);
}
// Polynomials in Q.
// Coefficients are reduced mod Q. (Q is clearly not prime, therefore the
// coefficients do not form a field.)
#define Q 8192
// VECS_PER_POLY is the number of 128-bit vectors needed to represent a
// polynomial.
#define COEFFICIENTS_PER_VEC (sizeof(vec_t) / sizeof(uint16_t))
#define VECS_PER_POLY ((N + COEFFICIENTS_PER_VEC - 1) / COEFFICIENTS_PER_VEC)
// poly represents a polynomial with coefficients mod Q. Note that, while Q is a
// power of two, this does not operate in GF(Q). That would be a binary field
// but this is simply mod Q. Thus the coefficients are not a field.
//
// Coefficients are ordered little-endian, thus the coefficient of x^0 is the
// first element of the array.
struct poly {
#if defined(HRSS_HAVE_VECTOR_UNIT)
union {
// N + 3 = 704, which is a multiple of 64 and thus aligns things, esp for
// the vector code.
uint16_t v[N + 3];
vec_t vectors[VECS_PER_POLY];
};
#else
// Even if !HRSS_HAVE_VECTOR_UNIT, external assembly may be called that
// requires alignment.
alignas(16) uint16_t v[N + 3];
#endif
};
OPENSSL_UNUSED static void poly_print(const struct poly *p) {
printf("[");
for (unsigned i = 0; i < N; i++) {
if (i) {
printf(" ");
}
printf("%d", p->v[i]);
}
printf("]\n");
}
#if defined(HRSS_HAVE_VECTOR_UNIT)
// poly_mul_vec_aux is a recursive function that multiplies |n| words from |a|
// and |b| and writes 2×|n| words to |out|. Each call uses 2*ceil(n/2) elements
// of |scratch| and the function recurses, except if |n| < 3, when |scratch|
// isn't used and the recursion stops. If |n| == |VECS_PER_POLY| then |scratch|
// needs 172 elements.
static void poly_mul_vec_aux(vec_t *restrict out, vec_t *restrict scratch,
const vec_t *restrict a, const vec_t *restrict b,
const size_t n) {
// In [HRSS], the technique they used for polynomial multiplication is
// described: they start with Toom-4 at the top level and then two layers of
// Karatsuba. Karatsuba is a specific instance of the general ToomCook
// decomposition, which splits an input n-ways and produces 2n-1
// multiplications of those parts. So, starting with 704 coefficients (rounded
// up from 701 to have more factors of two), Toom-4 gives seven
// multiplications of degree-174 polynomials. Each round of Karatsuba (which
// is Toom-2) increases the number of multiplications by a factor of three
// while halving the size of the values being multiplied. So two rounds gives
// 63 multiplications of degree-44 polynomials. Then they (I think) form
// vectors by gathering all 63 coefficients of each power together, for each
// input, and doing more rounds of Karatsuba on the vectors until they bottom-
// out somewhere with schoolbook multiplication.
//
// I tried something like that for NEON. NEON vectors are 128 bits so hold
// eight coefficients. I wrote a function that did Karatsuba on eight
// multiplications at the same time, using such vectors, and a Go script that
// decomposed from degree-704, with Karatsuba in non-transposed form, until it
// reached multiplications of degree-44. It batched up those 81
// multiplications into lots of eight with a single one left over (which was
// handled directly).
//
// It worked, but it was significantly slower than the dumb algorithm used
// below. Potentially that was because I misunderstood how [HRSS] did it, or
// because Clang is bad at generating good code from NEON intrinsics on ARMv7.
// (Which is true: the code generated by Clang for the below is pretty crap.)
//
// This algorithm is much simpler. It just does Karatsuba decomposition all
// the way down and never transposes. When it gets down to degree-16 or
// degree-24 values, they are multiplied using schoolbook multiplication and
// vector intrinsics. The vector operations form each of the eight phase-
// shifts of one of the inputs, point-wise multiply, and then add into the
// result at the correct place. This means that 33% (degree-16) or 25%
// (degree-24) of the multiplies and adds are wasted, but it does ok.
if (n == 2) {
vec_t result[4];
vec_t vec_a[3];
static const vec_t kZero = {0};
vec_a[0] = a[0];
vec_a[1] = a[1];
vec_a[2] = kZero;
result[0] = vec_mul(vec_a[0], vec_get_word(b[0], 0));
result[1] = vec_mul(vec_a[1], vec_get_word(b[0], 0));
result[1] = vec_fma(result[1], vec_a[0], vec_get_word(b[1], 0));
result[2] = vec_mul(vec_a[1], vec_get_word(b[1], 0));
result[3] = kZero;
vec3_rshift_word(vec_a);
#define BLOCK(x, y) \
do { \
result[x + 0] = \
vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \
result[x + 1] = \
vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \
result[x + 2] = \
vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \
} while (0)
BLOCK(0, 1);
BLOCK(1, 9);
vec3_rshift_word(vec_a);
BLOCK(0, 2);
BLOCK(1, 10);
vec3_rshift_word(vec_a);
BLOCK(0, 3);
BLOCK(1, 11);
vec3_rshift_word(vec_a);
BLOCK(0, 4);
BLOCK(1, 12);
vec3_rshift_word(vec_a);
BLOCK(0, 5);
BLOCK(1, 13);
vec3_rshift_word(vec_a);
BLOCK(0, 6);
BLOCK(1, 14);
vec3_rshift_word(vec_a);
BLOCK(0, 7);
BLOCK(1, 15);
#undef BLOCK
memcpy(out, result, sizeof(result));
return;
}
if (n == 3) {
vec_t result[6];
vec_t vec_a[4];
static const vec_t kZero = {0};
vec_a[0] = a[0];
vec_a[1] = a[1];
vec_a[2] = a[2];
vec_a[3] = kZero;
result[0] = vec_mul(a[0], vec_get_word(b[0], 0));
result[1] = vec_mul(a[1], vec_get_word(b[0], 0));
result[2] = vec_mul(a[2], vec_get_word(b[0], 0));
#define BLOCK_PRE(x, y) \
do { \
result[x + 0] = \
vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \
result[x + 1] = \
vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \
result[x + 2] = vec_mul(vec_a[2], vec_get_word(b[y / 8], y % 8)); \
} while (0)
BLOCK_PRE(1, 8);
BLOCK_PRE(2, 16);
result[5] = kZero;
vec4_rshift_word(vec_a);
#define BLOCK(x, y) \
do { \
result[x + 0] = \
vec_fma(result[x + 0], vec_a[0], vec_get_word(b[y / 8], y % 8)); \
result[x + 1] = \
vec_fma(result[x + 1], vec_a[1], vec_get_word(b[y / 8], y % 8)); \
result[x + 2] = \
vec_fma(result[x + 2], vec_a[2], vec_get_word(b[y / 8], y % 8)); \
result[x + 3] = \
vec_fma(result[x + 3], vec_a[3], vec_get_word(b[y / 8], y % 8)); \
} while (0)
BLOCK(0, 1);
BLOCK(1, 9);
BLOCK(2, 17);
vec4_rshift_word(vec_a);
BLOCK(0, 2);
BLOCK(1, 10);
BLOCK(2, 18);
vec4_rshift_word(vec_a);
BLOCK(0, 3);
BLOCK(1, 11);
BLOCK(2, 19);
vec4_rshift_word(vec_a);
BLOCK(0, 4);
BLOCK(1, 12);
BLOCK(2, 20);
vec4_rshift_word(vec_a);
BLOCK(0, 5);
BLOCK(1, 13);
BLOCK(2, 21);
vec4_rshift_word(vec_a);
BLOCK(0, 6);
BLOCK(1, 14);
BLOCK(2, 22);
vec4_rshift_word(vec_a);
BLOCK(0, 7);
BLOCK(1, 15);
BLOCK(2, 23);
#undef BLOCK
#undef BLOCK_PRE
memcpy(out, result, sizeof(result));
return;
}
// Karatsuba multiplication.
// https://en.wikipedia.org/wiki/Karatsuba_algorithm
// When |n| is odd, the two "halves" will have different lengths. The first is
// always the smaller.
const size_t low_len = n / 2;
const size_t high_len = n - low_len;
const vec_t *a_high = &a[low_len];
const vec_t *b_high = &b[low_len];
// Store a_1 + a_0 in the first half of |out| and b_1 + b_0 in the second
// half.
for (size_t i = 0; i < low_len; i++) {
out[i] = vec_add(a_high[i], a[i]);
out[high_len + i] = vec_add(b_high[i], b[i]);
}
if (high_len != low_len) {
out[low_len] = a_high[low_len];
out[high_len + low_len] = b_high[low_len];
}
vec_t *const child_scratch = &scratch[2 * high_len];
// Calculate (a_1 + a_0) × (b_1 + b_0) and write to scratch buffer.
poly_mul_vec_aux(scratch, child_scratch, out, &out[high_len], high_len);
// Calculate a_1 × b_1.
poly_mul_vec_aux(&out[low_len * 2], child_scratch, a_high, b_high, high_len);
// Calculate a_0 × b_0.
poly_mul_vec_aux(out, child_scratch, a, b, low_len);
// Subtract those last two products from the first.
for (size_t i = 0; i < low_len * 2; i++) {
scratch[i] = vec_sub(scratch[i], vec_add(out[i], out[low_len * 2 + i]));
}
if (low_len != high_len) {
scratch[low_len * 2] = vec_sub(scratch[low_len * 2], out[low_len * 4]);
scratch[low_len * 2 + 1] =
vec_sub(scratch[low_len * 2 + 1], out[low_len * 4 + 1]);
}
// Add the middle product into the output.
for (size_t i = 0; i < high_len * 2; i++) {
out[low_len + i] = vec_add(out[low_len + i], scratch[i]);
}
}
// poly_mul_vec sets |*out| to |x|×|y| mod (𝑥^n - 1).
static void poly_mul_vec(struct poly *out, const struct poly *x,
const struct poly *y) {
OPENSSL_memset((uint16_t *)&x->v[N], 0, 3 * sizeof(uint16_t));
OPENSSL_memset((uint16_t *)&y->v[N], 0, 3 * sizeof(uint16_t));
OPENSSL_STATIC_ASSERT(sizeof(out->v) == sizeof(vec_t) * VECS_PER_POLY,
"struct poly is the wrong size");
OPENSSL_STATIC_ASSERT(alignof(struct poly) == alignof(vec_t),
"struct poly has incorrect alignment");
vec_t prod[VECS_PER_POLY * 2];
vec_t scratch[172];
poly_mul_vec_aux(prod, scratch, x->vectors, y->vectors, VECS_PER_POLY);
// |prod| needs to be reduced mod (𝑥^n - 1), which just involves adding the
// upper-half to the lower-half. However, N is 701, which isn't a multiple of
// the vector size, so the upper-half vectors all have to be shifted before
// being added to the lower-half.
vec_t *out_vecs = (vec_t *)out->v;
for (size_t i = 0; i < VECS_PER_POLY; i++) {
const vec_t prev = prod[VECS_PER_POLY - 1 + i];
const vec_t this = prod[VECS_PER_POLY + i];
out_vecs[i] = vec_add(prod[i], vec_merge_3_5(prev, this));
}
OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t));
}
#endif // HRSS_HAVE_VECTOR_UNIT
// poly_mul_novec_aux writes the product of |a| and |b| to |out|, using
// |scratch| as scratch space. It'll use Karatsuba if the inputs are large
// enough to warrant it. Each call uses 2*ceil(n/2) elements of |scratch| and
// the function recurses, except if |n| < 64, when |scratch| isn't used and the
// recursion stops. If |n| == |N| then |scratch| needs 1318 elements.
static void poly_mul_novec_aux(uint16_t *out, uint16_t *scratch,
const uint16_t *a, const uint16_t *b, size_t n) {
static const size_t kSchoolbookLimit = 64;
if (n < kSchoolbookLimit) {
OPENSSL_memset(out, 0, sizeof(uint16_t) * n * 2);
for (size_t i = 0; i < n; i++) {
for (size_t j = 0; j < n; j++) {
out[i + j] += (unsigned) a[i] * b[j];
}
}
return;
}
// Karatsuba multiplication.
// https://en.wikipedia.org/wiki/Karatsuba_algorithm
// When |n| is odd, the two "halves" will have different lengths. The
// first is always the smaller.
const size_t low_len = n / 2;
const size_t high_len = n - low_len;
const uint16_t *const a_high = &a[low_len];
const uint16_t *const b_high = &b[low_len];
for (size_t i = 0; i < low_len; i++) {
out[i] = a_high[i] + a[i];
out[high_len + i] = b_high[i] + b[i];
}
if (high_len != low_len) {
out[low_len] = a_high[low_len];
out[high_len + low_len] = b_high[low_len];
}
uint16_t *const child_scratch = &scratch[2 * high_len];
poly_mul_novec_aux(scratch, child_scratch, out, &out[high_len], high_len);
poly_mul_novec_aux(&out[low_len * 2], child_scratch, a_high, b_high,
high_len);
poly_mul_novec_aux(out, child_scratch, a, b, low_len);
for (size_t i = 0; i < low_len * 2; i++) {
scratch[i] -= out[i] + out[low_len * 2 + i];
}
if (low_len != high_len) {
scratch[low_len * 2] -= out[low_len * 4];
assert(out[low_len * 4 + 1] == 0);
}
for (size_t i = 0; i < high_len * 2; i++) {
out[low_len + i] += scratch[i];
}
}
// poly_mul_novec sets |*out| to |x|×|y| mod (𝑥^n - 1).
static void poly_mul_novec(struct poly *out, const struct poly *x,
const struct poly *y) {
uint16_t prod[2 * N];
uint16_t scratch[1318];
poly_mul_novec_aux(prod, scratch, x->v, y->v, N);
for (size_t i = 0; i < N; i++) {
out->v[i] = prod[i] + prod[i + N];
}
OPENSSL_memset(&out->v[N], 0, 3 * sizeof(uint16_t));
}
static void poly_mul(struct poly *r, const struct poly *a,
const struct poly *b) {
#if defined(POLY_RQ_MUL_ASM)
const int has_avx2 = (OPENSSL_ia32cap_P[2] & (1 << 5)) != 0;
if (has_avx2) {
poly_Rq_mul(r->v, a->v, b->v);
return;
}
#endif
#if defined(HRSS_HAVE_VECTOR_UNIT)
if (vec_capable()) {
poly_mul_vec(r, a, b);
return;
}
#endif
// Fallback, non-vector case.
poly_mul_novec(r, a, b);
}
// poly_mul_x_minus_1 sets |p| to |p|×(𝑥 - 1) mod (𝑥^n - 1).
static void poly_mul_x_minus_1(struct poly *p) {
// Multiplying by (𝑥 - 1) means negating each coefficient and adding in
// the value of the previous one.
const uint16_t orig_final_coefficient = p->v[N - 1];
for (size_t i = N - 1; i > 0; i--) {
p->v[i] = p->v[i - 1] - p->v[i];
}
p->v[0] = orig_final_coefficient - p->v[0];
}
// poly_mod_phiN sets |p| to |p| mod Φ(N).
static void poly_mod_phiN(struct poly *p) {
const uint16_t coeff700 = p->v[N - 1];
for (unsigned i = 0; i < N; i++) {
p->v[i] -= coeff700;
}
}
// poly_clamp reduces each coefficient mod Q.
static void poly_clamp(struct poly *p) {
for (unsigned i = 0; i < N; i++) {
p->v[i] &= Q - 1;
}
}
// Conversion functions
// --------------------
// poly2_from_poly sets |*out| to |in| mod 2.
static void poly2_from_poly(struct poly2 *out, const struct poly *in) {
crypto_word_t *words = out->v;
unsigned shift = 0;
crypto_word_t word = 0;
for (unsigned i = 0; i < N; i++) {
word >>= 1;
word |= (crypto_word_t)(in->v[i] & 1) << (BITS_PER_WORD - 1);
shift++;
if (shift == BITS_PER_WORD) {
*words = word;
words++;
word = 0;
shift = 0;
}
}
word >>= BITS_PER_WORD - shift;
*words = word;
}
// mod3 treats |a| as a signed number and returns |a| mod 3.
static uint16_t mod3(int16_t a) {
const int16_t q = ((int32_t)a * 21845) >> 16;
int16_t ret = a - 3 * q;
// At this point, |ret| is in {0, 1, 2, 3} and that needs to be mapped to {0,
// 1, 2, 0}.
return ret & ((ret & (ret >> 1)) - 1);
}
// poly3_from_poly sets |*out| to |in|.
static void poly3_from_poly(struct poly3 *out, const struct poly *in) {
crypto_word_t *words_s = out->s.v;
crypto_word_t *words_a = out->a.v;
crypto_word_t s = 0;
crypto_word_t a = 0;
unsigned shift = 0;
for (unsigned i = 0; i < N; i++) {
// This duplicates the 13th bit upwards to the top of the uint16,
// essentially treating it as a sign bit and converting into a signed int16.
// The signed value is reduced mod 3, yielding {0, 1, 2}.
const uint16_t v = mod3((int16_t)(in->v[i] << 3) >> 3);
s >>= 1;
const crypto_word_t s_bit = (crypto_word_t)(v & 2) << (BITS_PER_WORD - 2);
s |= s_bit;
a >>= 1;
a |= s_bit | (crypto_word_t)(v & 1) << (BITS_PER_WORD - 1);
shift++;
if (shift == BITS_PER_WORD) {
*words_s = s;
words_s++;
*words_a = a;
words_a++;
s = a = 0;
shift = 0;
}
}
s >>= BITS_PER_WORD - shift;
a >>= BITS_PER_WORD - shift;
*words_s = s;
*words_a = a;
}
// poly3_from_poly_checked sets |*out| to |in|, which has coefficients in {0, 1,
// Q-1}. It returns a mask indicating whether all coefficients were found to be
// in that set.
static crypto_word_t poly3_from_poly_checked(struct poly3 *out,
const struct poly *in) {
crypto_word_t *words_s = out->s.v;
crypto_word_t *words_a = out->a.v;
crypto_word_t s = 0;
crypto_word_t a = 0;
unsigned shift = 0;
crypto_word_t ok = CONSTTIME_TRUE_W;
for (unsigned i = 0; i < N; i++) {
const uint16_t v = in->v[i];
// Maps {0, 1, Q-1} to {0, 1, 2}.
uint16_t mod3 = v & 3;
mod3 ^= mod3 >> 1;
const uint16_t expected = (uint16_t)((~((mod3 >> 1) - 1)) | mod3) % Q;
ok &= constant_time_eq_w(v, expected);
s >>= 1;
const crypto_word_t s_bit = (crypto_word_t)(mod3 & 2)
<< (BITS_PER_WORD - 2);
s |= s_bit;
a >>= 1;
a |= s_bit | (crypto_word_t)(mod3 & 1) << (BITS_PER_WORD - 1);
shift++;
if (shift == BITS_PER_WORD) {
*words_s = s;
words_s++;
*words_a = a;
words_a++;
s = a = 0;
shift = 0;
}
}
s >>= BITS_PER_WORD - shift;
a >>= BITS_PER_WORD - shift;
*words_s = s;
*words_a = a;
return ok;
}
static void poly_from_poly2(struct poly *out, const struct poly2 *in) {
const crypto_word_t *words = in->v;
unsigned shift = 0;
crypto_word_t word = *words;
for (unsigned i = 0; i < N; i++) {
out->v[i] = word & 1;
word >>= 1;
shift++;
if (shift == BITS_PER_WORD) {
words++;
word = *words;
shift = 0;
}
}
}
static void poly_from_poly3(struct poly *out, const struct poly3 *in) {
const crypto_word_t *words_s = in->s.v;
const crypto_word_t *words_a = in->a.v;
crypto_word_t word_s = ~(*words_s);
crypto_word_t word_a = *words_a;
unsigned shift = 0;
for (unsigned i = 0; i < N; i++) {
out->v[i] = (uint16_t)(word_s & 1) - 1;
out->v[i] |= word_a & 1;
word_s >>= 1;
word_a >>= 1;
shift++;
if (shift == BITS_PER_WORD) {
words_s++;
words_a++;
word_s = ~(*words_s);
word_a = *words_a;
shift = 0;
}
}
}
// Polynomial inversion
// --------------------
// poly_invert_mod2 sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod
// Φ(N)), all mod 2. This isn't useful in itself, but is part of doing inversion
// mod Q.
static void poly_invert_mod2(struct poly *out, const struct poly *in) {
// This algorithm follows algorithm 10 in the paper. (Although, in contrast to
// the paper, k should start at zero, not one, and the rotation count is needs
// to handle trailing zero coefficients.) The best explanation for why it
// works is in the "Why it works" section of [NTRUTN14].
struct poly2 b, c, f, g;
poly2_from_poly(&f, in);
OPENSSL_memset(&b, 0, sizeof(b));
b.v[0] = 1;
OPENSSL_memset(&c, 0, sizeof(c));
// Set g to all ones.
OPENSSL_memset(&g, 0xff, sizeof(struct poly2));
g.v[WORDS_PER_POLY - 1] >>= BITS_PER_WORD - BITS_IN_LAST_WORD;
crypto_word_t deg_f = N - 1, deg_g = N - 1, rotation = 0;
crypto_word_t still_going = CONSTTIME_TRUE_W;
for (unsigned i = 0; i < 2 * (N - 1) - 1; i++) {
const crypto_word_t s = still_going & lsb_to_all(f.v[0]);
const crypto_word_t should_swap = s & constant_time_lt_w(deg_f, deg_g);
poly2_cswap(&f, &g, should_swap);
poly2_cswap(&b, &c, should_swap);
const crypto_word_t deg_sum = should_swap & (deg_f ^ deg_g);
deg_f ^= deg_sum;
deg_g ^= deg_sum;
assert(deg_g >= 1);
poly2_fmadd(&f, &g, s);
poly2_fmadd(&b, &c, s);
poly2_rshift1(&f);
poly2_lshift1(&c);
deg_f--;
const crypto_word_t f0_is_nonzero = lsb_to_all(f.v[0]);
// |f0_is_nonzero| implies |still_going|.
assert(!(f0_is_nonzero && !still_going));
rotation = constant_time_select_w(f0_is_nonzero, i, rotation);
still_going &= ~constant_time_is_zero_w(deg_f);
}
rotation++;
rotation -= N & constant_time_lt_w(N, rotation);
assert(poly2_top_bits_are_clear(&b));
HRSS_poly2_rotr_consttime(&b, rotation);
poly_from_poly2(out, &b);
}
// poly_invert sets |*out| to |in^-1| (i.e. such that |*out|×|in| = 1 mod Φ(N)).
static void poly_invert(struct poly *out, const struct poly *in) {
// Inversion mod Q, which is done based on the result of inverting mod
// 2. See [NTRUTN14] paper, bottom of page two.
struct poly a, *b, tmp;
// a = -in.
for (unsigned i = 0; i < N; i++) {
a.v[i] = -in->v[i];
}
// b = in^-1 mod 2.
b = out;
poly_invert_mod2(b, in);
// We are working mod Q=2**13 and we need to iterate ceil(log_2(13))
// times, which is four.
for (unsigned i = 0; i < 4; i++) {
poly_mul(&tmp, &a, b);
tmp.v[0] += 2;
poly_mul(b, b, &tmp);
}
}
// Marshal and unmarshal functions for various basic types.
// --------------------------------------------------------
#define POLY_BYTES 1138
// poly_marshal serialises all but the final coefficient of |in| to |out|.
static void poly_marshal(uint8_t out[POLY_BYTES], const struct poly *in) {
const uint16_t *p = in->v;
for (size_t i = 0; i < N / 8; i++) {
out[0] = p[0];
out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5);
out[2] = p[1] >> 3;
out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2);
out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7);
out[5] = p[3] >> 1;
out[6] = (0xf & (p[3] >> 9)) | ((p[4] & 0x0f) << 4);
out[7] = p[4] >> 4;
out[8] = (1 & (p[4] >> 12)) | ((p[5] & 0x7f) << 1);
out[9] = (0x3f & (p[5] >> 7)) | ((p[6] & 0x03) << 6);
out[10] = p[6] >> 2;
out[11] = (7 & (p[6] >> 10)) | ((p[7] & 0x1f) << 3);
out[12] = p[7] >> 5;
p += 8;
out += 13;
}
// There are four remaining values.
out[0] = p[0];
out[1] = (0x1f & (p[0] >> 8)) | ((p[1] & 0x07) << 5);
out[2] = p[1] >> 3;
out[3] = (3 & (p[1] >> 11)) | ((p[2] & 0x3f) << 2);
out[4] = (0x7f & (p[2] >> 6)) | ((p[3] & 0x01) << 7);
out[5] = p[3] >> 1;
out[6] = 0xf & (p[3] >> 9);
}
// poly_unmarshal parses the output of |poly_marshal| and sets |out| such that
// all but the final coefficients match, and the final coefficient is calculated
// such that evaluating |out| at one results in zero. It returns one on success
// or zero if |in| is an invalid encoding.
static int poly_unmarshal(struct poly *out, const uint8_t in[POLY_BYTES]) {
uint16_t *p = out->v;
for (size_t i = 0; i < N / 8; i++) {
p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8;
p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 |
(uint16_t)(in[3] & 3) << 11;
p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6;
p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 |
(uint16_t)(in[6] & 0xf) << 9;
p[4] = (uint16_t)(in[6] >> 4) | (uint16_t)(in[7]) << 4 |
(uint16_t)(in[8] & 1) << 12;
p[5] = (uint16_t)(in[8] >> 1) | (uint16_t)(in[9] & 0x3f) << 7;
p[6] = (uint16_t)(in[9] >> 6) | (uint16_t)(in[10]) << 2 |
(uint16_t)(in[11] & 7) << 10;
p[7] = (uint16_t)(in[11] >> 3) | (uint16_t)(in[12]) << 5;
p += 8;
in += 13;
}
// There are four coefficients remaining.
p[0] = (uint16_t)(in[0]) | (uint16_t)(in[1] & 0x1f) << 8;
p[1] = (uint16_t)(in[1] >> 5) | (uint16_t)(in[2]) << 3 |
(uint16_t)(in[3] & 3) << 11;
p[2] = (uint16_t)(in[3] >> 2) | (uint16_t)(in[4] & 0x7f) << 6;
p[3] = (uint16_t)(in[4] >> 7) | (uint16_t)(in[5]) << 1 |
(uint16_t)(in[6] & 0xf) << 9;
for (unsigned i = 0; i < N - 1; i++) {
out->v[i] = (int16_t)(out->v[i] << 3) >> 3;
}
// There are four unused bits in the last byte. We require them to be zero.
if ((in[6] & 0xf0) != 0) {
return 0;
}
// Set the final coefficient as specifed in [HRSSNIST] 1.9.2 step 6.
uint32_t sum = 0;
for (size_t i = 0; i < N - 1; i++) {
sum += out->v[i];
}
out->v[N - 1] = (uint16_t)(0u - sum);
return 1;
}
// mod3_from_modQ maps {0, 1, Q-1, 65535} -> {0, 1, 2, 2}. Note that |v| may
// have an invalid value when processing attacker-controlled inputs.
static uint16_t mod3_from_modQ(uint16_t v) {
v &= 3;
return v ^ (v >> 1);
}
// poly_marshal_mod3 marshals |in| to |out| where the coefficients of |in| are
// all in {0, 1, Q-1, 65535} and |in| is mod Φ(N). (Note that coefficients may
// have invalid values when processing attacker-controlled inputs.)
static void poly_marshal_mod3(uint8_t out[HRSS_POLY3_BYTES],
const struct poly *in) {
const uint16_t *coeffs = in->v;
// Only 700 coefficients are marshaled because in[700] must be zero.
assert(coeffs[N-1] == 0);
for (size_t i = 0; i < HRSS_POLY3_BYTES; i++) {
const uint16_t coeffs0 = mod3_from_modQ(coeffs[0]);
const uint16_t coeffs1 = mod3_from_modQ(coeffs[1]);
const uint16_t coeffs2 = mod3_from_modQ(coeffs[2]);
const uint16_t coeffs3 = mod3_from_modQ(coeffs[3]);
const uint16_t coeffs4 = mod3_from_modQ(coeffs[4]);
out[i] = coeffs0 + coeffs1 * 3 + coeffs2 * 9 + coeffs3 * 27 + coeffs4 * 81;
coeffs += 5;
}
}
// HRSS-specific functions
// -----------------------
// poly_short_sample samples a vector of values in {0xffff (i.e. -1), 0, 1}.
// This is the same action as the algorithm in [HRSSNIST] section 1.8.1, but
// with HRSS-SXY the sampling algorithm is now a private detail of the
// implementation (previously it had to match between two parties). This
// function uses that freedom to implement a flatter distribution of values.
static void poly_short_sample(struct poly *out,
const uint8_t in[HRSS_SAMPLE_BYTES]) {
OPENSSL_STATIC_ASSERT(HRSS_SAMPLE_BYTES == N - 1,
"HRSS_SAMPLE_BYTES incorrect");
for (size_t i = 0; i < N - 1; i++) {
uint16_t v = mod3(in[i]);
// Map {0, 1, 2} -> {0, 1, 0xffff}
v |= ((v >> 1) ^ 1) - 1;
out->v[i] = v;
}
out->v[N - 1] = 0;
}
// poly_short_sample_plus performs the T+ sample as defined in [HRSSNIST],
// section 1.8.2.
static void poly_short_sample_plus(struct poly *out,
const uint8_t in[HRSS_SAMPLE_BYTES]) {
poly_short_sample(out, in);
// sum (and the product in the for loop) will overflow. But that's fine
// because |sum| is bound by +/- (N-2), and N < 2^15 so it works out.
uint16_t sum = 0;
for (unsigned i = 0; i < N - 2; i++) {
sum += (unsigned) out->v[i] * out->v[i + 1];
}
// If the sum is negative, flip the sign of even-positioned coefficients. (See
// page 8 of [HRSS].)
sum = ((int16_t) sum) >> 15;
const uint16_t scale = sum | (~sum & 1);
for (unsigned i = 0; i < N; i += 2) {
out->v[i] = (unsigned) out->v[i] * scale;
}
}
// poly_lift computes the function discussed in [HRSS], appendix B.
static void poly_lift(struct poly *out, const struct poly *a) {
// We wish to calculate a/(𝑥-1) mod Φ(N) over GF(3), where Φ(N) is the
// Nth cyclotomic polynomial, i.e. 1 + 𝑥 + … + 𝑥^700 (since N is prime).
// 1/(𝑥-1) has a fairly basic structure that we can exploit to speed this up:
//
// R.<x> = PolynomialRing(GF(3)…)
// inv = R.cyclotomic_polynomial(1).inverse_mod(R.cyclotomic_polynomial(n))
// list(inv)[:15]
// [1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2, 1, 0, 2]
//
// This three-element pattern of coefficients repeats for the whole
// polynomial.
//
// Next define the overbar operator such that z̅ = z[0] +
// reverse(z[1:]). (Index zero of a polynomial here is the coefficient
// of the constant term. So index one is the coefficient of 𝑥 and so
// on.)
//
// A less odd way to define this is to see that z̅ negates the indexes,
// so z̅[0] = z[-0], z̅[1] = z[-1] and so on.
//
// The use of z̅ is that, when working mod (𝑥^701 - 1), vz[0] = <v,
// z̅>, vz[1] = <v, 𝑥z̅>, …. (Where <a, b> is the inner product: the sum
// of the point-wise products.) Although we calculated the inverse mod
// Φ(N), we can work mod (𝑥^N - 1) and reduce mod Φ(N) at the end.
// (That's because (𝑥^N - 1) is a multiple of Φ(N).)
//
// When working mod (𝑥^N - 1), multiplication by 𝑥 is a right-rotation
// of the list of coefficients.
//
// Thus we can consider what the pattern of z̅, 𝑥z̅, 𝑥^2z̅, … looks like:
//
// def reverse(xs):
// suffix = list(xs[1:])
// suffix.reverse()
// return [xs[0]] + suffix
//
// def rotate(xs):
// return [xs[-1]] + xs[:-1]
//
// zoverbar = reverse(list(inv) + [0])
// xzoverbar = rotate(reverse(list(inv) + [0]))
// x2zoverbar = rotate(rotate(reverse(list(inv) + [0])))
//
// zoverbar[:15]
// [1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1]
// xzoverbar[:15]
// [0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0]
// x2zoverbar[:15]
// [2, 0, 1, 0, 1, 2, 0, 1, 2, 0, 1, 2, 0, 1, 2]
//
// (For a formula for z̅, see lemma two of appendix B.)
//
// After the first three elements have been taken care of, all then have
// a repeating three-element cycle. The next value (𝑥^3z̅) involves
// three rotations of the first pattern, thus the three-element cycle
// lines up. However, the discontinuity in the first three elements
// obviously moves to a different position. Consider the difference
// between 𝑥^3z̅ and z̅:
//
// [x-y for (x,y) in zip(zoverbar, x3zoverbar)][:15]
// [0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
//
// This pattern of differences is the same for all elements, although it
// obviously moves right with the rotations.
//
// From this, we reach algorithm eight of appendix B.
// Handle the first three elements of the inner products.
out->v[0] = a->v[0] + a->v[2];
out->v[1] = a->v[1];
out->v[2] = -a->v[0] + a->v[2];
// s0, s1, s2 are added into out->v[0], out->v[1], and out->v[2],
// respectively. We do not compute s1 because it's just -(s0 + s1).
uint16_t s0 = 0, s2 = 0;
for (size_t i = 3; i < 699; i += 3) {
s0 += -a->v[i] + a->v[i + 2];
// s1 += a->v[i] - a->v[i + 1];
s2 += a->v[i + 1] - a->v[i + 2];
}
// Handle the fact that the three-element pattern doesn't fill the
// polynomial exactly (since 701 isn't a multiple of three).
s0 -= a->v[699];
// s1 += a->v[699] - a->v[700];
s2 += a->v[700];
// Note that s0 + s1 + s2 = 0.
out->v[0] += s0;
out->v[1] -= (s0 + s2); // = s1
out->v[2] += s2;
// Calculate the remaining inner products by taking advantage of the
// fact that the pattern repeats every three cycles and the pattern of
// differences moves with the rotation.
for (size_t i = 3; i < N; i++) {
out->v[i] = (out->v[i - 3] - (a->v[i - 2] + a->v[i - 1] + a->v[i]));
}
// Reduce mod Φ(N) by subtracting a multiple of out[700] from every
// element and convert to mod Q. (See above about adding twice as
// subtraction.)
const crypto_word_t v = out->v[700];
for (unsigned i = 0; i < N; i++) {
const uint16_t vi_mod3 = mod3(out->v[i] - v);
// Map {0, 1, 2} to {0, 1, 0xffff}.
out->v[i] = (~((vi_mod3 >> 1) - 1)) | vi_mod3;
}
poly_mul_x_minus_1(out);
}
struct public_key {
struct poly ph;
};
struct private_key {
struct poly3 f, f_inverse;
struct poly ph_inverse;
uint8_t hmac_key[32];
};
// public_key_from_external converts an external public key pointer into an
// internal one. Externally the alignment is only specified to be eight bytes
// but we need 16-byte alignment. We could annotate the external struct with
// that alignment but we can only assume that malloced pointers are 8-byte
// aligned in any case. (Even if the underlying malloc returns values with
// 16-byte alignment, |OPENSSL_malloc| will store an 8-byte size prefix and mess
// that up.)
static struct public_key *public_key_from_external(
struct HRSS_public_key *ext) {
OPENSSL_STATIC_ASSERT(
sizeof(struct HRSS_public_key) >= sizeof(struct public_key) + 15,
"HRSS public key too small");
uintptr_t p = (uintptr_t)ext;
p = (p + 15) & ~15;
return (struct public_key *)p;
}
// private_key_from_external does the same thing as |public_key_from_external|,
// but for private keys. See the comment on that function about alignment
// issues.
static struct private_key *private_key_from_external(
struct HRSS_private_key *ext) {
OPENSSL_STATIC_ASSERT(
sizeof(struct HRSS_private_key) >= sizeof(struct private_key) + 15,
"HRSS private key too small");
uintptr_t p = (uintptr_t)ext;
p = (p + 15) & ~15;
return (struct private_key *)p;
}
void HRSS_generate_key(
struct HRSS_public_key *out_pub, struct HRSS_private_key *out_priv,
const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES + 32]) {
struct public_key *pub = public_key_from_external(out_pub);
struct private_key *priv = private_key_from_external(out_priv);
OPENSSL_memcpy(priv->hmac_key, in + 2 * HRSS_SAMPLE_BYTES,
sizeof(priv->hmac_key));
struct poly f;
poly_short_sample_plus(&f, in);
poly3_from_poly(&priv->f, &f);
HRSS_poly3_invert(&priv->f_inverse, &priv->f);
// pg_phi1 is p (i.e. 3) × g × Φ(1) (i.e. 𝑥-1).
struct poly pg_phi1;
poly_short_sample_plus(&pg_phi1, in + HRSS_SAMPLE_BYTES);
for (unsigned i = 0; i < N; i++) {
pg_phi1.v[i] *= 3;
}
poly_mul_x_minus_1(&pg_phi1);
struct poly pfg_phi1;
poly_mul(&pfg_phi1, &f, &pg_phi1);
struct poly pfg_phi1_inverse;
poly_invert(&pfg_phi1_inverse, &pfg_phi1);
poly_mul(&pub->ph, &pfg_phi1_inverse, &pg_phi1);
poly_mul(&pub->ph, &pub->ph, &pg_phi1);
poly_clamp(&pub->ph);
poly_mul(&priv->ph_inverse, &pfg_phi1_inverse, &f);
poly_mul(&priv->ph_inverse, &priv->ph_inverse, &f);
poly_clamp(&priv->ph_inverse);
}
static const char kSharedKey[] = "shared key";
void HRSS_encap(uint8_t out_ciphertext[POLY_BYTES],
uint8_t out_shared_key[32],
const struct HRSS_public_key *in_pub,
const uint8_t in[HRSS_SAMPLE_BYTES + HRSS_SAMPLE_BYTES]) {
const struct public_key *pub =
public_key_from_external((struct HRSS_public_key *)in_pub);
struct poly m, r, m_lifted;
poly_short_sample(&m, in);
poly_short_sample(&r, in + HRSS_SAMPLE_BYTES);
poly_lift(&m_lifted, &m);
struct poly prh_plus_m;
poly_mul(&prh_plus_m, &r, &pub->ph);
for (unsigned i = 0; i < N; i++) {
prh_plus_m.v[i] += m_lifted.v[i];
}
poly_marshal(out_ciphertext, &prh_plus_m);
uint8_t m_bytes[HRSS_POLY3_BYTES], r_bytes[HRSS_POLY3_BYTES];
poly_marshal_mod3(m_bytes, &m);
poly_marshal_mod3(r_bytes, &r);
SHA256_CTX hash_ctx;
SHA256_Init(&hash_ctx);
SHA256_Update(&hash_ctx, kSharedKey, sizeof(kSharedKey));
SHA256_Update(&hash_ctx, m_bytes, sizeof(m_bytes));
SHA256_Update(&hash_ctx, r_bytes, sizeof(r_bytes));
SHA256_Update(&hash_ctx, out_ciphertext, POLY_BYTES);
SHA256_Final(out_shared_key, &hash_ctx);
}
void HRSS_decap(uint8_t out_shared_key[HRSS_KEY_BYTES],
const struct HRSS_private_key *in_priv,
const uint8_t *ciphertext, size_t ciphertext_len) {
const struct private_key *priv =
private_key_from_external((struct HRSS_private_key *)in_priv);
// This is HMAC, expanded inline rather than using the |HMAC| function so that
// we can avoid dealing with possible allocation failures and so keep this
// function infallible.
uint8_t masked_key[SHA256_CBLOCK];
OPENSSL_STATIC_ASSERT(sizeof(priv->hmac_key) <= sizeof(masked_key),
"HRSS HMAC key larger than SHA-256 block size");
for (size_t i = 0; i < sizeof(priv->hmac_key); i++) {
masked_key[i] = priv->hmac_key[i] ^ 0x36;
}
OPENSSL_memset(masked_key + sizeof(priv->hmac_key), 0x36,
sizeof(masked_key) - sizeof(priv->hmac_key));
SHA256_CTX hash_ctx;
SHA256_Init(&hash_ctx);
SHA256_Update(&hash_ctx, masked_key, sizeof(masked_key));
SHA256_Update(&hash_ctx, ciphertext, ciphertext_len);
uint8_t inner_digest[SHA256_DIGEST_LENGTH];
SHA256_Final(inner_digest, &hash_ctx);
for (size_t i = 0; i < sizeof(priv->hmac_key); i++) {
masked_key[i] ^= (0x5c ^ 0x36);
}
OPENSSL_memset(masked_key + sizeof(priv->hmac_key), 0x5c,
sizeof(masked_key) - sizeof(priv->hmac_key));
SHA256_Init(&hash_ctx);
SHA256_Update(&hash_ctx, masked_key, sizeof(masked_key));
SHA256_Update(&hash_ctx, inner_digest, sizeof(inner_digest));
OPENSSL_STATIC_ASSERT(HRSS_KEY_BYTES == SHA256_DIGEST_LENGTH,
"HRSS shared key length incorrect");
SHA256_Final(out_shared_key, &hash_ctx);
struct poly c;
// If the ciphertext is publicly invalid then a random shared key is still
// returned to simply the logic of the caller, but this path is not constant
// time.
if (ciphertext_len != HRSS_CIPHERTEXT_BYTES ||
!poly_unmarshal(&c, ciphertext)) {
return;
}
struct poly f, cf;
struct poly3 cf3, m3;
poly_from_poly3(&f, &priv->f);
poly_mul(&cf, &c, &f);
poly3_from_poly(&cf3, &cf);
// Note that cf3 is not reduced mod Φ(N). That reduction is deferred.
HRSS_poly3_mul(&m3, &cf3, &priv->f_inverse);
struct poly m, m_lifted;
poly_from_poly3(&m, &m3);
poly_lift(&m_lifted, &m);
struct poly r;
for (unsigned i = 0; i < N; i++) {
r.v[i] = c.v[i] - m_lifted.v[i];
}
poly_mul(&r, &r, &priv->ph_inverse);
poly_mod_phiN(&r);
poly_clamp(&r);
struct poly3 r3;
crypto_word_t ok = poly3_from_poly_checked(&r3, &r);
// [NTRUCOMP] section 5.1 includes ReEnc2 and a proof that it's valid. Rather
// than do an expensive |poly_mul|, it rebuilds |c'| from |c - lift(m)|
// (called |b|) with:
// t = (b(1)/N) mod Q
// c' = b + tΦ(N) + lift(m) mod Q
//
// When polynomials are transmitted, the final coefficient is omitted and
// |poly_unmarshal| sets it such that f(1) == 0. Thus c(1) == 0. Also,
// |poly_lift| multiplies the result by (x-1) and therefore evaluating a
// lifted polynomial at 1 is also zero. Thus lift(m)(1) == 0 and so
// (c - lift(m))(1) == 0.
//
// Although we defer the reduction above, |b| is conceptually reduced mod
// Φ(N). In order to do that reduction one subtracts |c[N-1]| from every
// coefficient. Therefore b(1) = -c[N-1]×N. The value of |t|, above, then is
// just recovering |c[N-1]|, and adding tΦ(N) is simply undoing the reduction.
// Therefore b + tΦ(N) + lift(m) = c by construction and we don't need to
// recover |c| at all so long as we do the checks in
// |poly3_from_poly_checked|.
//
// The |poly_marshal| here then is just confirming that |poly_unmarshal| is
// strict and could be omitted.
uint8_t expected_ciphertext[HRSS_CIPHERTEXT_BYTES];
OPENSSL_STATIC_ASSERT(HRSS_CIPHERTEXT_BYTES == POLY_BYTES,
"ciphertext is the wrong size");
assert(ciphertext_len == sizeof(expected_ciphertext));
poly_marshal(expected_ciphertext, &c);
uint8_t m_bytes[HRSS_POLY3_BYTES];
uint8_t r_bytes[HRSS_POLY3_BYTES];
poly_marshal_mod3(m_bytes, &m);
poly_marshal_mod3(r_bytes, &r);
ok &= constant_time_is_zero_w(CRYPTO_memcmp(ciphertext, expected_ciphertext,
sizeof(expected_ciphertext)));
uint8_t shared_key[32];
SHA256_Init(&hash_ctx);
SHA256_Update(&hash_ctx, kSharedKey, sizeof(kSharedKey));
SHA256_Update(&hash_ctx, m_bytes, sizeof(m_bytes));
SHA256_Update(&hash_ctx, r_bytes, sizeof(r_bytes));
SHA256_Update(&hash_ctx, expected_ciphertext, sizeof(expected_ciphertext));
SHA256_Final(shared_key, &hash_ctx);
for (unsigned i = 0; i < sizeof(shared_key); i++) {
out_shared_key[i] =
constant_time_select_8(ok, shared_key[i], out_shared_key[i]);
}
}
void HRSS_marshal_public_key(uint8_t out[HRSS_PUBLIC_KEY_BYTES],
const struct HRSS_public_key *in_pub) {
const struct public_key *pub =
public_key_from_external((struct HRSS_public_key *)in_pub);
poly_marshal(out, &pub->ph);
}
int HRSS_parse_public_key(struct HRSS_public_key *out,
const uint8_t in[HRSS_PUBLIC_KEY_BYTES]) {
struct public_key *pub = public_key_from_external(out);
if (!poly_unmarshal(&pub->ph, in)) {
return 0;
}
OPENSSL_memset(&pub->ph.v[N], 0, 3 * sizeof(uint16_t));
return 1;
}