Telegram-Android/TMessagesProj/jni/third_party/libyuv/source/row_neon64.cc
2023-02-19 01:24:25 +04:00

4520 lines
209 KiB
C++

/*
* Copyright 2014 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
// Enable LIBYUV_USE_ST2, LIBYUV_USE_ST3, LIBYUV_USE_ST4 for CPUs that prefer
// STn over ZIP1+ST1
// Exynos M1, M2, M3 are slow with ST2, ST3 and ST4 instructions.
// This module is for GCC Neon armv8 64 bit.
#if !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__)
// v0.8h: Y
// v1.16b: 8U, 8V
// Read 8 Y, 4 U and 4 V from 422
#define READYUV422 \
"ldr d0, [%[src_y]], #8 \n" \
"ld1 {v1.s}[0], [%[src_u]], #4 \n" \
"ld1 {v1.s}[1], [%[src_v]], #4 \n" \
"zip1 v0.16b, v0.16b, v0.16b \n" \
"prfm pldl1keep, [%[src_y], 448] \n" \
"zip1 v1.16b, v1.16b, v1.16b \n" \
"prfm pldl1keep, [%[src_u], 128] \n" \
"prfm pldl1keep, [%[src_v], 128] \n"
// Read 8 Y, 8 U and 8 V from 444
#define READYUV444 \
"ldr d0, [%[src_y]], #8 \n" \
"ld1 {v1.d}[0], [%[src_u]], #8 \n" \
"prfm pldl1keep, [%[src_y], 448] \n" \
"ld1 {v1.d}[1], [%[src_v]], #8 \n" \
"prfm pldl1keep, [%[src_u], 448] \n" \
"zip1 v0.16b, v0.16b, v0.16b \n" \
"prfm pldl1keep, [%[src_v], 448] \n"
// Read 8 Y, and set 4 U and 4 V to 128
#define READYUV400 \
"ldr d0, [%[src_y]], #8 \n" \
"movi v1.16b, #128 \n" \
"prfm pldl1keep, [%[src_y], 448] \n" \
"zip1 v0.16b, v0.16b, v0.16b \n"
static const uvec8 kNV12Table = {0, 0, 2, 2, 4, 4, 6, 6,
1, 1, 3, 3, 5, 5, 7, 7};
static const uvec8 kNV21Table = {1, 1, 3, 3, 5, 5, 7, 7,
0, 0, 2, 2, 4, 4, 6, 6};
// Read 8 Y and 4 UV from NV12 or NV21
#define READNV12 \
"ldr d0, [%[src_y]], #8 \n" \
"ldr d1, [%[src_uv]], #8 \n" \
"zip1 v0.16b, v0.16b, v0.16b \n" \
"prfm pldl1keep, [%[src_y], 448] \n" \
"tbl v1.16b, {v1.16b}, v2.16b \n" \
"prfm pldl1keep, [%[src_uv], 448] \n"
// Read 8 YUY2
#define READYUY2 \
"ld2 {v0.8b, v1.8b}, [%[src_yuy2]], #16 \n" \
"zip1 v0.16b, v0.16b, v0.16b \n" \
"prfm pldl1keep, [%[src_yuy2], 448] \n" \
"tbl v1.16b, {v1.16b}, v2.16b \n"
// Read 8 UYVY
#define READUYVY \
"ld2 {v3.8b, v4.8b}, [%[src_uyvy]], #16 \n" \
"zip1 v0.16b, v4.16b, v4.16b \n" \
"prfm pldl1keep, [%[src_uyvy], 448] \n" \
"tbl v1.16b, {v3.16b}, v2.16b \n"
// UB VR UG VG
// YG BB BG BR
#define YUVTORGB_SETUP \
"ld4r {v28.16b, v29.16b, v30.16b, v31.16b}, [%[kUVCoeff]] \n" \
"ld4r {v24.8h, v25.8h, v26.8h, v27.8h}, [%[kRGBCoeffBias]] \n"
// v16.8h: B
// v17.8h: G
// v18.8h: R
// Convert from YUV to 2.14 fixed point RGB
#define YUVTORGB \
"umull2 v3.4s, v0.8h, v24.8h \n" \
"umull v6.8h, v1.8b, v30.8b \n" \
"umull v0.4s, v0.4h, v24.4h \n" \
"umlal2 v6.8h, v1.16b, v31.16b \n" /* DG */ \
"uqshrn v0.4h, v0.4s, #16 \n" \
"uqshrn2 v0.8h, v3.4s, #16 \n" /* Y */ \
"umull v4.8h, v1.8b, v28.8b \n" /* DB */ \
"umull2 v5.8h, v1.16b, v29.16b \n" /* DR */ \
"add v17.8h, v0.8h, v26.8h \n" /* G */ \
"add v16.8h, v0.8h, v4.8h \n" /* B */ \
"add v18.8h, v0.8h, v5.8h \n" /* R */ \
"uqsub v17.8h, v17.8h, v6.8h \n" /* G */ \
"uqsub v16.8h, v16.8h, v25.8h \n" /* B */ \
"uqsub v18.8h, v18.8h, v27.8h \n" /* R */
// Convert from 2.14 fixed point RGB To 8 bit RGB
#define RGBTORGB8 \
"uqshrn v17.8b, v17.8h, #6 \n" \
"uqshrn v16.8b, v16.8h, #6 \n" \
"uqshrn v18.8b, v18.8h, #6 \n"
#define YUVTORGB_REGS \
"v0", "v1", "v3", "v4", "v5", "v6", "v7", "v16", "v17", "v18", "v24", "v25", \
"v26", "v27", "v28", "v29", "v30", "v31"
void I444ToARGBRow_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v19.8b, #255 \n" /* A */
"1: \n" READYUV444 YUVTORGB
RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS, "v19");
}
void I444ToRGB24Row_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"1: \n" READYUV444 YUVTORGB
RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st3 {v16.8b,v17.8b,v18.8b}, [%[dst_rgb24]], #24 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_rgb24] "+r"(dst_rgb24), // %[dst_rgb24]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS);
}
void I422ToARGBRow_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v19.8b, #255 \n" /* A */
"1: \n" READYUV422 YUVTORGB
RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS, "v19");
}
void I444AlphaToARGBRow_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
const uint8_t* src_a,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"1: \n"
"ld1 {v19.8b}, [%[src_a]], #8 \n" READYUV444
"prfm pldl1keep, [%[src_a], 448] \n" YUVTORGB RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[src_a] "+r"(src_a), // %[src_a]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS, "v19");
}
void I422AlphaToARGBRow_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
const uint8_t* src_a,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"1: \n"
"ld1 {v19.8b}, [%[src_a]], #8 \n" READYUV422
"prfm pldl1keep, [%[src_a], 448] \n" YUVTORGB RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[src_a] "+r"(src_a), // %[src_a]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS, "v19");
}
void I422ToRGBARow_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgba,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v15.8b, #255 \n" /* A */
"1: \n" READYUV422 YUVTORGB
RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v15.8b,v16.8b,v17.8b,v18.8b}, [%[dst_rgba]], #32 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_rgba] "+r"(dst_rgba), // %[dst_rgba]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS, "v15");
}
void I422ToRGB24Row_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"1: \n" READYUV422 YUVTORGB
RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st3 {v16.8b,v17.8b,v18.8b}, [%[dst_rgb24]], #24 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_rgb24] "+r"(dst_rgb24), // %[dst_rgb24]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS);
}
#define ARGBTORGB565 \
"shll v18.8h, v18.8b, #8 \n" /* R */ \
"shll v17.8h, v17.8b, #8 \n" /* G */ \
"shll v16.8h, v16.8b, #8 \n" /* B */ \
"sri v18.8h, v17.8h, #5 \n" /* RG */ \
"sri v18.8h, v16.8h, #11 \n" /* RGB */
void I422ToRGB565Row_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"1: \n" READYUV422 YUVTORGB
RGBTORGB8 "subs %w[width], %w[width], #8 \n" ARGBTORGB565
"st1 {v18.8h}, [%[dst_rgb565]], #16 \n" // store 8 pixels RGB565.
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_rgb565] "+r"(dst_rgb565), // %[dst_rgb565]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS);
}
#define ARGBTOARGB1555 \
"shll v0.8h, v19.8b, #8 \n" /* A */ \
"shll v18.8h, v18.8b, #8 \n" /* R */ \
"shll v17.8h, v17.8b, #8 \n" /* G */ \
"shll v16.8h, v16.8b, #8 \n" /* B */ \
"sri v0.8h, v18.8h, #1 \n" /* AR */ \
"sri v0.8h, v17.8h, #6 \n" /* ARG */ \
"sri v0.8h, v16.8h, #11 \n" /* ARGB */
void I422ToARGB1555Row_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb1555,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v19.8b, #255 \n"
"1: \n" READYUV422 YUVTORGB
RGBTORGB8
"subs %w[width], %w[width], #8 \n" ARGBTOARGB1555
"st1 {v0.8h}, [%[dst_argb1555]], #16 \n" // store 8 pixels
// RGB565.
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_argb1555] "+r"(dst_argb1555), // %[dst_argb1555]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS, "v19");
}
#define ARGBTOARGB4444 \
/* Input v16.8b<=B, v17.8b<=G, v18.8b<=R, v19.8b<=A, v23.8b<=0x0f */ \
"ushr v16.8b, v16.8b, #4 \n" /* B */ \
"bic v17.8b, v17.8b, v23.8b \n" /* G */ \
"ushr v18.8b, v18.8b, #4 \n" /* R */ \
"bic v19.8b, v19.8b, v23.8b \n" /* A */ \
"orr v0.8b, v16.8b, v17.8b \n" /* BG */ \
"orr v1.8b, v18.8b, v19.8b \n" /* RA */ \
"zip1 v0.16b, v0.16b, v1.16b \n" /* BGRA */
void I422ToARGB4444Row_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_argb4444,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v23.16b, #0x0f \n" // bits to clear with
// vbic.
"1: \n" READYUV422 YUVTORGB
RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"movi v19.8b, #255 \n" ARGBTOARGB4444
"st1 {v0.8h}, [%[dst_argb4444]], #16 \n" // store 8
// pixels
// ARGB4444.
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_u] "+r"(src_u), // %[src_u]
[src_v] "+r"(src_v), // %[src_v]
[dst_argb4444] "+r"(dst_argb4444), // %[dst_argb4444]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS, "v19", "v23");
}
void I400ToARGBRow_NEON(const uint8_t* src_y,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v19.8b, #255 \n"
"1: \n" READYUV400 YUVTORGB
RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias) // %[kRGBCoeffBias]
: "cc", "memory", YUVTORGB_REGS, "v19");
}
#if LIBYUV_USE_ST4
void J400ToARGBRow_NEON(const uint8_t* src_y, uint8_t* dst_argb, int width) {
asm volatile(
"movi v23.8b, #255 \n"
"1: \n"
"ld1 {v20.8b}, [%0], #8 \n"
"prfm pldl1keep, [%0, 448] \n"
"orr v21.8b, v20.8b, v20.8b \n"
"orr v22.8b, v20.8b, v20.8b \n"
"subs %w2, %w2, #8 \n"
"st4 {v20.8b,v21.8b,v22.8b,v23.8b}, [%1], #32 \n"
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "cc", "memory", "v20", "v21", "v22", "v23");
}
#else
void J400ToARGBRow_NEON(const uint8_t* src_y, uint8_t* dst_argb, int width) {
asm volatile(
"movi v20.8b, #255 \n"
"1: \n"
"ldr d16, [%0], #8 \n"
"subs %w2, %w2, #8 \n"
"zip1 v18.16b, v16.16b, v16.16b \n" // YY
"zip1 v19.16b, v16.16b, v20.16b \n" // YA
"prfm pldl1keep, [%0, 448] \n"
"zip1 v16.16b, v18.16b, v19.16b \n" // YYYA
"zip2 v17.16b, v18.16b, v19.16b \n"
"stp q16, q17, [%1], #32 \n"
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "cc", "memory", "v16", "v17", "v18", "v19", "v20");
}
#endif // LIBYUV_USE_ST4
void NV12ToARGBRow_NEON(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v19.8b, #255 \n"
"ldr q2, [%[kNV12Table]] \n"
"1: \n" READNV12 YUVTORGB RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_uv] "+r"(src_uv), // %[src_uv]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias]
[kNV12Table] "r"(&kNV12Table)
: "cc", "memory", YUVTORGB_REGS, "v2", "v19");
}
void NV21ToARGBRow_NEON(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v19.8b, #255 \n"
"ldr q2, [%[kNV12Table]] \n"
"1: \n" READNV12 YUVTORGB RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_uv] "+r"(src_vu), // %[src_uv]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias]
[kNV12Table] "r"(&kNV21Table)
: "cc", "memory", YUVTORGB_REGS, "v2", "v19");
}
void NV12ToRGB24Row_NEON(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"ldr q2, [%[kNV12Table]] \n"
"1: \n" READNV12 YUVTORGB RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st3 {v16.8b,v17.8b,v18.8b}, [%[dst_rgb24]], #24 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_uv] "+r"(src_uv), // %[src_uv]
[dst_rgb24] "+r"(dst_rgb24), // %[dst_rgb24]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias]
[kNV12Table] "r"(&kNV12Table)
: "cc", "memory", YUVTORGB_REGS, "v2");
}
void NV21ToRGB24Row_NEON(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* dst_rgb24,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"ldr q2, [%[kNV12Table]] \n"
"1: \n" READNV12 YUVTORGB RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st3 {v16.8b,v17.8b,v18.8b}, [%[dst_rgb24]], #24 \n"
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_uv] "+r"(src_vu), // %[src_uv]
[dst_rgb24] "+r"(dst_rgb24), // %[dst_rgb24]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias]
[kNV12Table] "r"(&kNV21Table)
: "cc", "memory", YUVTORGB_REGS, "v2");
}
void NV12ToRGB565Row_NEON(const uint8_t* src_y,
const uint8_t* src_uv,
uint8_t* dst_rgb565,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"ldr q2, [%[kNV12Table]] \n"
"1: \n" READNV12 YUVTORGB RGBTORGB8
"subs %w[width], %w[width], #8 \n" ARGBTORGB565
"st1 {v18.8h}, [%[dst_rgb565]], #16 \n" // store 8
// pixels
// RGB565.
"b.gt 1b \n"
: [src_y] "+r"(src_y), // %[src_y]
[src_uv] "+r"(src_uv), // %[src_uv]
[dst_rgb565] "+r"(dst_rgb565), // %[dst_rgb565]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias]
[kNV12Table] "r"(&kNV12Table)
: "cc", "memory", YUVTORGB_REGS, "v2");
}
void YUY2ToARGBRow_NEON(const uint8_t* src_yuy2,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v19.8b, #255 \n"
"ldr q2, [%[kNV12Table]] \n"
"1: \n" READYUY2 YUVTORGB RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n"
"b.gt 1b \n"
: [src_yuy2] "+r"(src_yuy2), // %[src_yuy2]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias]
[kNV12Table] "r"(&kNV12Table)
: "cc", "memory", YUVTORGB_REGS, "v2", "v19");
}
void UYVYToARGBRow_NEON(const uint8_t* src_uyvy,
uint8_t* dst_argb,
const struct YuvConstants* yuvconstants,
int width) {
asm volatile(
YUVTORGB_SETUP
"movi v19.8b, #255 \n"
"ldr q2, [%[kNV12Table]] \n"
"1: \n" READUYVY YUVTORGB RGBTORGB8
"subs %w[width], %w[width], #8 \n"
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%[dst_argb]], #32 \n"
"b.gt 1b \n"
: [src_uyvy] "+r"(src_uyvy), // %[src_yuy2]
[dst_argb] "+r"(dst_argb), // %[dst_argb]
[width] "+r"(width) // %[width]
: [kUVCoeff] "r"(&yuvconstants->kUVCoeff), // %[kUVCoeff]
[kRGBCoeffBias] "r"(&yuvconstants->kRGBCoeffBias), // %[kRGBCoeffBias]
[kNV12Table] "r"(&kNV12Table)
: "cc", "memory", YUVTORGB_REGS, "v2", "v19");
}
// Reads 16 pairs of UV and write even values to dst_u and odd to dst_v.
void SplitUVRow_NEON(const uint8_t* src_uv,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
asm volatile(
"1: \n"
"ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pairs of UV
"subs %w3, %w3, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 448] \n"
"st1 {v0.16b}, [%1], #16 \n" // store U
"st1 {v1.16b}, [%2], #16 \n" // store V
"b.gt 1b \n"
: "+r"(src_uv), // %0
"+r"(dst_u), // %1
"+r"(dst_v), // %2
"+r"(width) // %3 // Output registers
: // Input registers
: "cc", "memory", "v0", "v1" // Clobber List
);
}
// Reads 16 byte Y's from tile and writes out 16 Y's.
// MM21 Y tiles are 16x32 so src_tile_stride = 512 bytes
// MM21 UV tiles are 8x16 so src_tile_stride = 256 bytes
// width measured in bytes so 8 UV = 16.
void DetileRow_NEON(const uint8_t* src,
ptrdiff_t src_tile_stride,
uint8_t* dst,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%0], %3 \n" // load 16 bytes
"subs %w2, %w2, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 1792] \n" // 7 tiles of 256b ahead
"st1 {v0.16b}, [%1], #16 \n" // store 16 bytes
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width) // %2
: "r"(src_tile_stride) // %3
: "cc", "memory", "v0" // Clobber List
);
}
// Reads 16 byte Y's of 16 bits from tile and writes out 16 Y's.
void DetileRow_16_NEON(const uint16_t* src,
ptrdiff_t src_tile_stride,
uint16_t* dst,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.8h,v1.8h}, [%0], %3 \n" // load 16 pixels
"subs %w2, %w2, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 3584] \n" // 7 tiles of 512b ahead
"st1 {v0.8h,v1.8h}, [%1], #32 \n" // store 16 pixels
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width) // %2
: "r"(src_tile_stride * 2) // %3
: "cc", "memory", "v0", "v1" // Clobber List
);
}
// Read 16 bytes of UV, detile, and write 8 bytes of U and 8 bytes of V.
void DetileSplitUVRow_NEON(const uint8_t* src_uv,
ptrdiff_t src_tile_stride,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
asm volatile(
"1: \n"
"ld2 {v0.8b,v1.8b}, [%0], %4 \n"
"subs %w3, %w3, #16 \n"
"prfm pldl1keep, [%0, 1792] \n"
"st1 {v0.8b}, [%1], #8 \n"
"st1 {v1.8b}, [%2], #8 \n"
"b.gt 1b \n"
: "+r"(src_uv), // %0
"+r"(dst_u), // %1
"+r"(dst_v), // %2
"+r"(width) // %3
: "r"(src_tile_stride) // %4
: "cc", "memory", "v0", "v1" // Clobber List
);
}
#if LIBYUV_USE_ST2
// Read 16 Y, 8 UV, and write 8 YUY2
void DetileToYUY2_NEON(const uint8_t* src_y,
ptrdiff_t src_y_tile_stride,
const uint8_t* src_uv,
ptrdiff_t src_uv_tile_stride,
uint8_t* dst_yuy2,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%0], %4 \n" // load 16 Ys
"prfm pldl1keep, [%0, 1792] \n"
"ld1 {v1.16b}, [%1], %5 \n" // load 8 UVs
"prfm pldl1keep, [%1, 1792] \n"
"subs %w3, %w3, #16 \n" // store 8 YUY2
"st2 {v0.16b,v1.16b}, [%2], #32 \n"
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(src_uv), // %1
"+r"(dst_yuy2), // %2
"+r"(width) // %3
: "r"(src_y_tile_stride), // %4
"r"(src_uv_tile_stride) // %5
: "cc", "memory", "v0", "v1" // Clobber list
);
}
#else
// Read 16 Y, 8 UV, and write 8 YUY2
void DetileToYUY2_NEON(const uint8_t* src_y,
ptrdiff_t src_y_tile_stride,
const uint8_t* src_uv,
ptrdiff_t src_uv_tile_stride,
uint8_t* dst_yuy2,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%0], %4 \n" // load 16 Ys
"ld1 {v1.16b}, [%1], %5 \n" // load 8 UVs
"subs %w3, %w3, #16 \n"
"prfm pldl1keep, [%0, 1792] \n"
"zip1 v2.16b, v0.16b, v1.16b \n"
"prfm pldl1keep, [%1, 1792] \n"
"zip2 v3.16b, v0.16b, v1.16b \n"
"st1 {v2.16b,v3.16b}, [%2], #32 \n" // store 8 YUY2
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(src_uv), // %1
"+r"(dst_yuy2), // %2
"+r"(width) // %3
: "r"(src_y_tile_stride), // %4
"r"(src_uv_tile_stride) // %5
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber list
);
}
#endif
// Unpack MT2T into tiled P010 64 pixels at a time. See
// tinyurl.com/mtk-10bit-video-format for format documentation.
void UnpackMT2T_NEON(const uint8_t* src, uint16_t* dst, size_t size) {
const uint8_t* src_lower_bits = src;
const uint8_t* src_upper_bits = src + 16;
asm volatile(
"1: \n"
"ld4 {v0.8b, v1.8b, v2.8b, v3.8b}, [%1], #32 \n"
"ld1 {v7.8b}, [%0], #8 \n"
"shl v6.8b, v7.8b, #2 \n"
"shl v5.8b, v7.8b, #4 \n"
"shl v4.8b, v7.8b, #6 \n"
"zip1 v0.16b, v4.16b, v0.16b \n"
"zip1 v1.16b, v5.16b, v1.16b \n"
"zip1 v2.16b, v6.16b, v2.16b \n"
"zip1 v3.16b, v7.16b, v3.16b \n"
"sri v0.8h, v0.8h, #10 \n"
"sri v1.8h, v1.8h, #10 \n"
"sri v2.8h, v2.8h, #10 \n"
"sri v3.8h, v3.8h, #10 \n"
"st4 {v0.8h, v1.8h, v2.8h, v3.8h}, [%2], #64 \n"
"ld4 {v0.8b, v1.8b, v2.8b, v3.8b}, [%1], #32 \n"
"ld1 {v7.8b}, [%0], #8 \n"
"shl v6.8b, v7.8b, #2 \n"
"shl v5.8b, v7.8b, #4 \n"
"shl v4.8b, v7.8b, #6 \n"
"zip1 v0.16b, v4.16b, v0.16b \n"
"zip1 v1.16b, v5.16b, v1.16b \n"
"zip1 v2.16b, v6.16b, v2.16b \n"
"zip1 v3.16b, v7.16b, v3.16b \n"
"sri v0.8h, v0.8h, #10 \n"
"sri v1.8h, v1.8h, #10 \n"
"sri v2.8h, v2.8h, #10 \n"
"sri v3.8h, v3.8h, #10 \n"
"st4 {v0.8h, v1.8h, v2.8h, v3.8h}, [%2], #64 \n"
"mov %0, %1 \n"
"add %1, %0, #16 \n"
"subs %3, %3, #80 \n"
"b.gt 1b \n"
: "+r"(src_lower_bits), // %0
"+r"(src_upper_bits), // %1
"+r"(dst), // %2
"+r"(size) // %3
:
: "cc", "memory", "w0", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v8", "v9", "v10", "v11", "v12");
}
#if LIBYUV_USE_ST2
// Reads 16 U's and V's and writes out 16 pairs of UV.
void MergeUVRow_NEON(const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_uv,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load U
"ld1 {v1.16b}, [%1], #16 \n" // load V
"subs %w3, %w3, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 448] \n"
"prfm pldl1keep, [%1, 448] \n"
"st2 {v0.16b,v1.16b}, [%2], #32 \n" // store 16 pairs of UV
"b.gt 1b \n"
: "+r"(src_u), // %0
"+r"(src_v), // %1
"+r"(dst_uv), // %2
"+r"(width) // %3 // Output registers
: // Input registers
: "cc", "memory", "v0", "v1" // Clobber List
);
}
void MergeUVRow_16_NEON(const uint16_t* src_u,
const uint16_t* src_v,
uint16_t* dst_uv,
int depth,
int width) {
int shift = 16 - depth;
asm volatile(
"dup v2.8h, %w4 \n"
"1: \n"
"ld1 {v0.8h}, [%0], #16 \n" // load 8 U
"subs %w3, %w3, #8 \n" // 8 src pixels per loop
"ld1 {v1.8h}, [%1], #16 \n" // load 8 V
"ushl v0.8h, v0.8h, v2.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"ushl v1.8h, v1.8h, v2.8h \n"
"prfm pldl1keep, [%1, 448] \n"
"st2 {v0.8h, v1.8h}, [%2], #32 \n" // store 8 UV pixels
"b.gt 1b \n"
: "+r"(src_u), // %0
"+r"(src_v), // %1
"+r"(dst_uv), // %2
"+r"(width) // %3
: "r"(shift) // %4
: "cc", "memory", "v0", "v1", "v2");
}
#else
// Reads 16 U's and V's and writes out 16 pairs of UV.
void MergeUVRow_NEON(const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_uv,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load U
"ld1 {v1.16b}, [%1], #16 \n" // load V
"subs %w3, %w3, #16 \n" // 16 processed per loop
"zip1 v2.16b, v0.16b, v1.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"zip2 v3.16b, v0.16b, v1.16b \n"
"prfm pldl1keep, [%1, 448] \n"
"st1 {v2.16b,v3.16b}, [%2], #32 \n" // store 16 pairs of UV
"b.gt 1b \n"
: "+r"(src_u), // %0
"+r"(src_v), // %1
"+r"(dst_uv), // %2
"+r"(width) // %3 // Output registers
: // Input registers
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
void MergeUVRow_16_NEON(const uint16_t* src_u,
const uint16_t* src_v,
uint16_t* dst_uv,
int depth,
int width) {
int shift = 16 - depth;
asm volatile(
"dup v4.8h, %w4 \n"
"1: \n"
"ld1 {v0.8h}, [%0], #16 \n" // load 8 U
"subs %w3, %w3, #8 \n" // 8 src pixels per loop
"ld1 {v1.8h}, [%1], #16 \n" // load 8 V
"ushl v0.8h, v0.8h, v4.8h \n"
"ushl v1.8h, v1.8h, v4.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"zip1 v2.8h, v0.8h, v1.8h \n"
"zip2 v3.8h, v0.8h, v1.8h \n"
"prfm pldl1keep, [%1, 448] \n"
"st1 {v2.8h, v3.8h}, [%2], #32 \n" // store 8 UV pixels
"b.gt 1b \n"
: "+r"(src_u), // %0
"+r"(src_v), // %1
"+r"(dst_uv), // %2
"+r"(width) // %3
: "r"(shift) // %4
: "cc", "memory", "v0", "v1", "v2", "v1", "v2", "v3", "v4");
}
#endif // LIBYUV_USE_ST2
// Reads 16 packed RGB and write to planar dst_r, dst_g, dst_b.
void SplitRGBRow_NEON(const uint8_t* src_rgb,
uint8_t* dst_r,
uint8_t* dst_g,
uint8_t* dst_b,
int width) {
asm volatile(
"1: \n"
"ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 RGB
"subs %w4, %w4, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 448] \n"
"st1 {v0.16b}, [%1], #16 \n" // store R
"st1 {v1.16b}, [%2], #16 \n" // store G
"st1 {v2.16b}, [%3], #16 \n" // store B
"b.gt 1b \n"
: "+r"(src_rgb), // %0
"+r"(dst_r), // %1
"+r"(dst_g), // %2
"+r"(dst_b), // %3
"+r"(width) // %4
: // Input registers
: "cc", "memory", "v0", "v1", "v2" // Clobber List
);
}
// Reads 16 planar R's, G's and B's and writes out 16 packed RGB at a time
void MergeRGBRow_NEON(const uint8_t* src_r,
const uint8_t* src_g,
const uint8_t* src_b,
uint8_t* dst_rgb,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load R
"ld1 {v1.16b}, [%1], #16 \n" // load G
"ld1 {v2.16b}, [%2], #16 \n" // load B
"subs %w4, %w4, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 448] \n"
"prfm pldl1keep, [%1, 448] \n"
"prfm pldl1keep, [%2, 448] \n"
"st3 {v0.16b,v1.16b,v2.16b}, [%3], #48 \n" // store 16 RGB
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(dst_rgb), // %3
"+r"(width) // %4
: // Input registers
: "cc", "memory", "v0", "v1", "v2" // Clobber List
);
}
// Reads 16 packed ARGB and write to planar dst_r, dst_g, dst_b, dst_a.
void SplitARGBRow_NEON(const uint8_t* src_rgba,
uint8_t* dst_r,
uint8_t* dst_g,
uint8_t* dst_b,
uint8_t* dst_a,
int width) {
asm volatile(
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ARGB
"subs %w5, %w5, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 448] \n"
"st1 {v0.16b}, [%3], #16 \n" // store B
"st1 {v1.16b}, [%2], #16 \n" // store G
"st1 {v2.16b}, [%1], #16 \n" // store R
"st1 {v3.16b}, [%4], #16 \n" // store A
"b.gt 1b \n"
: "+r"(src_rgba), // %0
"+r"(dst_r), // %1
"+r"(dst_g), // %2
"+r"(dst_b), // %3
"+r"(dst_a), // %4
"+r"(width) // %5
: // Input registers
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
#if LIBYUV_USE_ST4
// Reads 16 planar R's, G's, B's and A's and writes out 16 packed ARGB at a time
void MergeARGBRow_NEON(const uint8_t* src_r,
const uint8_t* src_g,
const uint8_t* src_b,
const uint8_t* src_a,
uint8_t* dst_argb,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%2], #16 \n" // load B
"ld1 {v1.16b}, [%1], #16 \n" // load G
"ld1 {v2.16b}, [%0], #16 \n" // load R
"ld1 {v3.16b}, [%3], #16 \n" // load A
"subs %w5, %w5, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 448] \n"
"prfm pldl1keep, [%1, 448] \n"
"prfm pldl1keep, [%2, 448] \n"
"prfm pldl1keep, [%3, 448] \n"
"st4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%4], #64 \n" // store 16ARGB
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(src_a), // %3
"+r"(dst_argb), // %4
"+r"(width) // %5
: // Input registers
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
#else
// Reads 16 planar R's, G's, B's and A's and writes out 16 packed ARGB at a time
void MergeARGBRow_NEON(const uint8_t* src_r,
const uint8_t* src_g,
const uint8_t* src_b,
const uint8_t* src_a,
uint8_t* dst_argb,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%2], #16 \n" // load B
"ld1 {v1.16b}, [%1], #16 \n" // load G
"ld1 {v2.16b}, [%0], #16 \n" // load R
"ld1 {v3.16b}, [%3], #16 \n" // load A
"subs %w5, %w5, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%2, 448] \n"
"zip1 v4.16b, v0.16b, v1.16b \n" // BG
"zip1 v5.16b, v2.16b, v3.16b \n" // RA
"prfm pldl1keep, [%1, 448] \n"
"zip2 v6.16b, v0.16b, v1.16b \n" // BG
"zip2 v7.16b, v2.16b, v3.16b \n" // RA
"prfm pldl1keep, [%0, 448] \n"
"zip1 v0.8h, v4.8h, v5.8h \n" // BGRA
"zip2 v1.8h, v4.8h, v5.8h \n"
"prfm pldl1keep, [%3, 448] \n"
"zip1 v2.8h, v6.8h, v7.8h \n"
"zip2 v3.8h, v6.8h, v7.8h \n"
"st1 {v0.16b,v1.16b,v2.16b,v3.16b}, [%4], #64 \n" // store 16ARGB
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(src_a), // %3
"+r"(dst_argb), // %4
"+r"(width) // %5
: // Input registers
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6",
"v7" // Clobber List
);
}
#endif // LIBYUV_USE_ST4
// Reads 16 packed ARGB and write to planar dst_r, dst_g, dst_b.
void SplitXRGBRow_NEON(const uint8_t* src_rgba,
uint8_t* dst_r,
uint8_t* dst_g,
uint8_t* dst_b,
int width) {
asm volatile(
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ARGB
"subs %w4, %w4, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 448] \n"
"st1 {v0.16b}, [%3], #16 \n" // store B
"st1 {v1.16b}, [%2], #16 \n" // store G
"st1 {v2.16b}, [%1], #16 \n" // store R
"b.gt 1b \n"
: "+r"(src_rgba), // %0
"+r"(dst_r), // %1
"+r"(dst_g), // %2
"+r"(dst_b), // %3
"+r"(width) // %4
: // Input registers
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
// Reads 16 planar R's, G's and B's and writes out 16 packed ARGB at a time
void MergeXRGBRow_NEON(const uint8_t* src_r,
const uint8_t* src_g,
const uint8_t* src_b,
uint8_t* dst_argb,
int width) {
asm volatile(
"movi v3.16b, #255 \n" // load A(255)
"1: \n"
"ld1 {v2.16b}, [%0], #16 \n" // load R
"ld1 {v1.16b}, [%1], #16 \n" // load G
"ld1 {v0.16b}, [%2], #16 \n" // load B
"subs %w4, %w4, #16 \n" // 16 processed per loop
"prfm pldl1keep, [%0, 448] \n"
"prfm pldl1keep, [%1, 448] \n"
"prfm pldl1keep, [%2, 448] \n"
"st4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%3], #64 \n" // store 16ARGB
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(dst_argb), // %3
"+r"(width) // %4
: // Input registers
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
void MergeXR30Row_NEON(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
uint8_t* dst_ar30,
int depth,
int width) {
int shift = 10 - depth;
asm volatile(
"movi v30.16b, #255 \n"
"ushr v30.4s, v30.4s, #22 \n" // 1023
"dup v31.4s, %w5 \n"
"1: \n"
"ldr d2, [%2], #8 \n" // B
"ldr d1, [%1], #8 \n" // G
"ldr d0, [%0], #8 \n" // R
"ushll v2.4s, v2.4h, #0 \n" // B
"ushll v1.4s, v1.4h, #0 \n" // G
"ushll v0.4s, v0.4h, #0 \n" // R
"ushl v2.4s, v2.4s, v31.4s \n" // 000B
"ushl v1.4s, v1.4s, v31.4s \n" // G
"ushl v0.4s, v0.4s, v31.4s \n" // R
"umin v2.4s, v2.4s, v30.4s \n"
"umin v1.4s, v1.4s, v30.4s \n"
"umin v0.4s, v0.4s, v30.4s \n"
"sli v2.4s, v1.4s, #10 \n" // 00GB
"sli v2.4s, v0.4s, #20 \n" // 0RGB
"orr v2.4s, #0xc0, lsl #24 \n" // ARGB (AR30)
"subs %w4, %w4, #4 \n"
"str q2, [%3], #16 \n"
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(dst_ar30), // %3
"+r"(width) // %4
: "r"(shift) // %5
: "memory", "cc", "v0", "v1", "v2", "v30", "v31");
}
void MergeXR30Row_10_NEON(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
uint8_t* dst_ar30,
int /* depth */,
int width) {
asm volatile(
"movi v30.16b, #255 \n"
"ushr v30.4s, v30.4s, #22 \n" // 1023
"1: \n"
"ldr d2, [%2], #8 \n" // B
"ldr d1, [%1], #8 \n" // G
"ldr d0, [%0], #8 \n" // R
"ushll v2.4s, v2.4h, #0 \n" // 000B
"ushll v1.4s, v1.4h, #0 \n" // G
"ushll v0.4s, v0.4h, #0 \n" // R
"umin v2.4s, v2.4s, v30.4s \n"
"umin v1.4s, v1.4s, v30.4s \n"
"umin v0.4s, v0.4s, v30.4s \n"
"sli v2.4s, v1.4s, #10 \n" // 00GB
"sli v2.4s, v0.4s, #20 \n" // 0RGB
"orr v2.4s, #0xc0, lsl #24 \n" // ARGB (AR30)
"subs %w4, %w4, #4 \n"
"str q2, [%3], #16 \n"
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(dst_ar30), // %3
"+r"(width) // %4
:
: "memory", "cc", "v0", "v1", "v2", "v30");
}
void MergeAR64Row_NEON(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
const uint16_t* src_a,
uint16_t* dst_ar64,
int depth,
int width) {
int shift = 16 - depth;
int mask = (1 << depth) - 1;
asm volatile(
"dup v30.8h, %w7 \n"
"dup v31.8h, %w6 \n"
"1: \n"
"ldr q2, [%0], #16 \n" // R
"ldr q1, [%1], #16 \n" // G
"ldr q0, [%2], #16 \n" // B
"ldr q3, [%3], #16 \n" // A
"umin v2.8h, v2.8h, v30.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"umin v1.8h, v1.8h, v30.8h \n"
"prfm pldl1keep, [%1, 448] \n"
"umin v0.8h, v0.8h, v30.8h \n"
"prfm pldl1keep, [%2, 448] \n"
"umin v3.8h, v3.8h, v30.8h \n"
"prfm pldl1keep, [%3, 448] \n"
"ushl v2.8h, v2.8h, v31.8h \n"
"ushl v1.8h, v1.8h, v31.8h \n"
"ushl v0.8h, v0.8h, v31.8h \n"
"ushl v3.8h, v3.8h, v31.8h \n"
"subs %w5, %w5, #8 \n"
"st4 {v0.8h, v1.8h, v2.8h, v3.8h}, [%4], #64 \n"
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(src_a), // %3
"+r"(dst_ar64), // %4
"+r"(width) // %5
: "r"(shift), // %6
"r"(mask) // %7
: "memory", "cc", "v0", "v1", "v2", "v3", "v31");
}
void MergeXR64Row_NEON(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
uint16_t* dst_ar64,
int depth,
int width) {
int shift = 16 - depth;
int mask = (1 << depth) - 1;
asm volatile(
"movi v3.16b, #0xff \n" // A (0xffff)
"dup v30.8h, %w6 \n"
"dup v31.8h, %w5 \n"
"1: \n"
"ldr q2, [%0], #16 \n" // R
"ldr q1, [%1], #16 \n" // G
"ldr q0, [%2], #16 \n" // B
"umin v2.8h, v2.8h, v30.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"umin v1.8h, v1.8h, v30.8h \n"
"prfm pldl1keep, [%1, 448] \n"
"umin v0.8h, v0.8h, v30.8h \n"
"prfm pldl1keep, [%2, 448] \n"
"ushl v2.8h, v2.8h, v31.8h \n"
"ushl v1.8h, v1.8h, v31.8h \n"
"ushl v0.8h, v0.8h, v31.8h \n"
"subs %w4, %w4, #8 \n"
"st4 {v0.8h, v1.8h, v2.8h, v3.8h}, [%3], #64 \n"
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(dst_ar64), // %3
"+r"(width) // %4
: "r"(shift), // %5
"r"(mask) // %6
: "memory", "cc", "v0", "v1", "v2", "v3", "v31");
}
void MergeARGB16To8Row_NEON(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
const uint16_t* src_a,
uint8_t* dst_argb,
int depth,
int width) {
int shift = 8 - depth;
asm volatile(
"dup v31.8h, %w6 \n"
"1: \n"
"ldr q2, [%0], #16 \n" // R
"ldr q1, [%1], #16 \n" // G
"ldr q0, [%2], #16 \n" // B
"ldr q3, [%3], #16 \n" // A
"ushl v2.8h, v2.8h, v31.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"ushl v1.8h, v1.8h, v31.8h \n"
"prfm pldl1keep, [%1, 448] \n"
"ushl v0.8h, v0.8h, v31.8h \n"
"prfm pldl1keep, [%2, 448] \n"
"ushl v3.8h, v3.8h, v31.8h \n"
"prfm pldl1keep, [%3, 448] \n"
"uqxtn v2.8b, v2.8h \n"
"uqxtn v1.8b, v1.8h \n"
"uqxtn v0.8b, v0.8h \n"
"uqxtn v3.8b, v3.8h \n"
"subs %w5, %w5, #8 \n"
"st4 {v0.8b, v1.8b, v2.8b, v3.8b}, [%4], #32 \n"
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(src_a), // %3
"+r"(dst_argb), // %4
"+r"(width) // %5
: "r"(shift) // %6
: "memory", "cc", "v0", "v1", "v2", "v3", "v31");
}
void MergeXRGB16To8Row_NEON(const uint16_t* src_r,
const uint16_t* src_g,
const uint16_t* src_b,
uint8_t* dst_argb,
int depth,
int width) {
int shift = 8 - depth;
asm volatile(
"dup v31.8h, %w5 \n"
"movi v3.8b, #0xff \n" // A (0xff)
"1: \n"
"ldr q2, [%0], #16 \n" // R
"ldr q1, [%1], #16 \n" // G
"ldr q0, [%2], #16 \n" // B
"ushl v2.8h, v2.8h, v31.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"ushl v1.8h, v1.8h, v31.8h \n"
"prfm pldl1keep, [%1, 448] \n"
"ushl v0.8h, v0.8h, v31.8h \n"
"prfm pldl1keep, [%2, 448] \n"
"uqxtn v2.8b, v2.8h \n"
"uqxtn v1.8b, v1.8h \n"
"uqxtn v0.8b, v0.8h \n"
"subs %w4, %w4, #8 \n"
"st4 {v0.8b, v1.8b, v2.8b, v3.8b}, [%3], #32 \n"
"b.gt 1b \n"
: "+r"(src_r), // %0
"+r"(src_g), // %1
"+r"(src_b), // %2
"+r"(dst_argb), // %3
"+r"(width) // %4
: "r"(shift) // %5
: "memory", "cc", "v0", "v1", "v2", "v3", "v31");
}
// Copy multiple of 32.
void CopyRow_NEON(const uint8_t* src, uint8_t* dst, int width) {
asm volatile(
"1: \n"
"ldp q0, q1, [%0], #32 \n"
"prfm pldl1keep, [%0, 448] \n"
"subs %w2, %w2, #32 \n" // 32 processed per loop
"stp q0, q1, [%1], #32 \n"
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width) // %2 // Output registers
: // Input registers
: "cc", "memory", "v0", "v1" // Clobber List
);
}
// SetRow writes 'width' bytes using an 8 bit value repeated.
void SetRow_NEON(uint8_t* dst, uint8_t v8, int width) {
asm volatile(
"dup v0.16b, %w2 \n" // duplicate 16 bytes
"1: \n"
"subs %w1, %w1, #16 \n" // 16 bytes per loop
"st1 {v0.16b}, [%0], #16 \n" // store
"b.gt 1b \n"
: "+r"(dst), // %0
"+r"(width) // %1
: "r"(v8) // %2
: "cc", "memory", "v0");
}
void ARGBSetRow_NEON(uint8_t* dst, uint32_t v32, int width) {
asm volatile(
"dup v0.4s, %w2 \n" // duplicate 4 ints
"1: \n"
"subs %w1, %w1, #4 \n" // 4 ints per loop
"st1 {v0.16b}, [%0], #16 \n" // store
"b.gt 1b \n"
: "+r"(dst), // %0
"+r"(width) // %1
: "r"(v32) // %2
: "cc", "memory", "v0");
}
// Shuffle table for reversing the bytes.
static const uvec8 kShuffleMirror = {15u, 14u, 13u, 12u, 11u, 10u, 9u, 8u,
7u, 6u, 5u, 4u, 3u, 2u, 1u, 0u};
void MirrorRow_NEON(const uint8_t* src, uint8_t* dst, int width) {
asm volatile(
// Start at end of source row.
"ld1 {v3.16b}, [%3] \n" // shuffler
"add %0, %0, %w2, sxtw \n"
"sub %0, %0, #32 \n"
"1: \n"
"ldr q2, [%0, 16] \n"
"ldr q1, [%0], -32 \n" // src -= 32
"subs %w2, %w2, #32 \n" // 32 pixels per loop.
"tbl v0.16b, {v2.16b}, v3.16b \n"
"tbl v1.16b, {v1.16b}, v3.16b \n"
"st1 {v0.16b, v1.16b}, [%1], #32 \n" // store 32 pixels
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width) // %2
: "r"(&kShuffleMirror) // %3
: "cc", "memory", "v0", "v1", "v2", "v3");
}
// Shuffle table for reversing the UV.
static const uvec8 kShuffleMirrorUV = {14u, 15u, 12u, 13u, 10u, 11u, 8u, 9u,
6u, 7u, 4u, 5u, 2u, 3u, 0u, 1u};
void MirrorUVRow_NEON(const uint8_t* src_uv, uint8_t* dst_uv, int width) {
asm volatile(
// Start at end of source row.
"ld1 {v4.16b}, [%3] \n" // shuffler
"add %0, %0, %w2, sxtw #1 \n"
"sub %0, %0, #32 \n"
"1: \n"
"ldr q1, [%0, 16] \n"
"ldr q0, [%0], -32 \n" // src -= 32
"subs %w2, %w2, #16 \n" // 16 pixels per loop.
"tbl v2.16b, {v1.16b}, v4.16b \n"
"tbl v3.16b, {v0.16b}, v4.16b \n"
"st1 {v2.16b, v3.16b}, [%1], #32 \n" // dst += 32
"b.gt 1b \n"
: "+r"(src_uv), // %0
"+r"(dst_uv), // %1
"+r"(width) // %2
: "r"(&kShuffleMirrorUV) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4");
}
void MirrorSplitUVRow_NEON(const uint8_t* src_uv,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
asm volatile(
// Start at end of source row.
"ld1 {v4.16b}, [%4] \n" // shuffler
"add %0, %0, %w3, sxtw #1 \n"
"sub %0, %0, #32 \n"
"1: \n"
"ldr q1, [%0, 16] \n"
"ldr q0, [%0], -32 \n" // src -= 32
"subs %w3, %w3, #16 \n" // 16 pixels per loop.
"tbl v2.16b, {v1.16b}, v4.16b \n"
"tbl v3.16b, {v0.16b}, v4.16b \n"
"uzp1 v0.16b, v2.16b, v3.16b \n" // U
"uzp2 v1.16b, v2.16b, v3.16b \n" // V
"st1 {v0.16b}, [%1], #16 \n" // dst += 16
"st1 {v1.16b}, [%2], #16 \n"
"b.gt 1b \n"
: "+r"(src_uv), // %0
"+r"(dst_u), // %1
"+r"(dst_v), // %2
"+r"(width) // %3
: "r"(&kShuffleMirrorUV) // %4
: "cc", "memory", "v0", "v1", "v2", "v3", "v4");
}
// Shuffle table for reversing the ARGB.
static const uvec8 kShuffleMirrorARGB = {12u, 13u, 14u, 15u, 8u, 9u, 10u, 11u,
4u, 5u, 6u, 7u, 0u, 1u, 2u, 3u};
void ARGBMirrorRow_NEON(const uint8_t* src_argb, uint8_t* dst_argb, int width) {
asm volatile(
// Start at end of source row.
"ld1 {v4.16b}, [%3] \n" // shuffler
"add %0, %0, %w2, sxtw #2 \n"
"sub %0, %0, #32 \n"
"1: \n"
"ldr q1, [%0, 16] \n"
"ldr q0, [%0], -32 \n" // src -= 32
"subs %w2, %w2, #8 \n" // 8 pixels per loop.
"tbl v2.16b, {v1.16b}, v4.16b \n"
"tbl v3.16b, {v0.16b}, v4.16b \n"
"st1 {v2.16b, v3.16b}, [%1], #32 \n" // dst += 32
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
: "r"(&kShuffleMirrorARGB) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4");
}
void RGB24MirrorRow_NEON(const uint8_t* src_rgb24,
uint8_t* dst_rgb24,
int width) {
asm volatile(
"ld1 {v3.16b}, [%4] \n" // shuffler
"add %0, %0, %w2, sxtw #1 \n" // Start at end of row.
"add %0, %0, %w2, sxtw \n"
"sub %0, %0, #48 \n"
"1: \n"
"ld3 {v0.16b, v1.16b, v2.16b}, [%0], %3 \n" // src -= 48
"subs %w2, %w2, #16 \n" // 16 pixels per loop.
"tbl v0.16b, {v0.16b}, v3.16b \n"
"tbl v1.16b, {v1.16b}, v3.16b \n"
"tbl v2.16b, {v2.16b}, v3.16b \n"
"st3 {v0.16b, v1.16b, v2.16b}, [%1], #48 \n" // dst += 48
"b.gt 1b \n"
: "+r"(src_rgb24), // %0
"+r"(dst_rgb24), // %1
"+r"(width) // %2
: "r"((ptrdiff_t)-48), // %3
"r"(&kShuffleMirror) // %4
: "cc", "memory", "v0", "v1", "v2", "v3");
}
void RGB24ToARGBRow_NEON(const uint8_t* src_rgb24,
uint8_t* dst_argb,
int width) {
asm volatile(
"movi v4.8b, #255 \n" // Alpha
"1: \n"
"ld3 {v1.8b,v2.8b,v3.8b}, [%0], #24 \n" // load 8 pixels of
// RGB24.
"prfm pldl1keep, [%0, 448] \n"
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"st4 {v1.8b,v2.8b,v3.8b,v4.8b}, [%1], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_rgb24), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "cc", "memory", "v1", "v2", "v3", "v4" // Clobber List
);
}
void RAWToARGBRow_NEON(const uint8_t* src_raw, uint8_t* dst_argb, int width) {
asm volatile(
"movi v5.8b, #255 \n" // Alpha
"1: \n"
"ld3 {v0.8b,v1.8b,v2.8b}, [%0], #24 \n" // read r g b
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"orr v3.8b, v1.8b, v1.8b \n" // move g
"prfm pldl1keep, [%0, 448] \n"
"orr v4.8b, v0.8b, v0.8b \n" // move r
"st4 {v2.8b,v3.8b,v4.8b,v5.8b}, [%1], #32 \n" // store b g r a
"b.gt 1b \n"
: "+r"(src_raw), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5" // Clobber List
);
}
void RAWToRGBARow_NEON(const uint8_t* src_raw, uint8_t* dst_rgba, int width) {
asm volatile(
"movi v0.8b, #255 \n" // Alpha
"1: \n"
"ld3 {v3.8b,v4.8b,v5.8b}, [%0], #24 \n" // read r g b
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"orr v2.8b, v4.8b, v4.8b \n" // move g
"prfm pldl1keep, [%0, 448] \n"
"orr v1.8b, v5.8b, v5.8b \n" // move r
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store a b g r
"b.gt 1b \n"
: "+r"(src_raw), // %0
"+r"(dst_rgba), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5" // Clobber List
);
}
void RAWToRGB24Row_NEON(const uint8_t* src_raw, uint8_t* dst_rgb24, int width) {
asm volatile(
"1: \n"
"ld3 {v0.8b,v1.8b,v2.8b}, [%0], #24 \n" // read r g b
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"orr v3.8b, v1.8b, v1.8b \n" // move g
"prfm pldl1keep, [%0, 448] \n"
"orr v4.8b, v0.8b, v0.8b \n" // move r
"st3 {v2.8b,v3.8b,v4.8b}, [%1], #24 \n" // store b g r
"b.gt 1b \n"
: "+r"(src_raw), // %0
"+r"(dst_rgb24), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4" // Clobber List
);
}
#define RGB565TOARGB \
"shrn v6.8b, v0.8h, #5 \n" /* G xxGGGGGG */ \
"shl v6.8b, v6.8b, #2 \n" /* G GGGGGG00 upper 6 */ \
"ushr v4.8b, v6.8b, #6 \n" /* G 000000GG lower 2 */ \
"orr v1.8b, v4.8b, v6.8b \n" /* G */ \
"xtn v2.8b, v0.8h \n" /* B xxxBBBBB */ \
"ushr v0.8h, v0.8h, #11 \n" /* R 000RRRRR */ \
"xtn2 v2.16b,v0.8h \n" /* R in upper part */ \
"shl v2.16b, v2.16b, #3 \n" /* R,B BBBBB000 upper 5 */ \
"ushr v0.16b, v2.16b, #5 \n" /* R,B 00000BBB lower 3 */ \
"orr v0.16b, v0.16b, v2.16b \n" /* R,B */ \
"dup v2.2D, v0.D[1] \n" /* R */
void RGB565ToARGBRow_NEON(const uint8_t* src_rgb565,
uint8_t* dst_argb,
int width) {
asm volatile(
"movi v3.8b, #255 \n" // Alpha
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 8 RGB565 pixels.
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"prfm pldl1keep, [%0, 448] \n" RGB565TOARGB
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_rgb565), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v6" // Clobber List
);
}
#define ARGB1555TOARGB \
"ushr v2.8h, v0.8h, #10 \n" /* R xxxRRRRR */ \
"shl v2.8h, v2.8h, #3 \n" /* R RRRRR000 upper 5 */ \
"xtn v3.8b, v2.8h \n" /* RRRRR000 AAAAAAAA */ \
\
"sshr v2.8h, v0.8h, #15 \n" /* A AAAAAAAA */ \
"xtn2 v3.16b, v2.8h \n" \
\
"xtn v2.8b, v0.8h \n" /* B xxxBBBBB */ \
"shrn2 v2.16b,v0.8h, #5 \n" /* G xxxGGGGG */ \
\
"ushr v1.16b, v3.16b, #5 \n" /* R,A 00000RRR lower 3 */ \
"shl v0.16b, v2.16b, #3 \n" /* B,G BBBBB000 upper 5 */ \
"ushr v2.16b, v0.16b, #5 \n" /* B,G 00000BBB lower 3 */ \
\
"orr v0.16b, v0.16b, v2.16b \n" /* B,G */ \
"orr v2.16b, v1.16b, v3.16b \n" /* R,A */ \
"dup v1.2D, v0.D[1] \n" \
"dup v3.2D, v2.D[1] \n"
// RGB555TOARGB is same as ARGB1555TOARGB but ignores alpha.
#define RGB555TOARGB \
"ushr v2.8h, v0.8h, #10 \n" /* R xxxRRRRR */ \
"shl v2.8h, v2.8h, #3 \n" /* R RRRRR000 upper 5 */ \
"xtn v3.8b, v2.8h \n" /* RRRRR000 */ \
\
"xtn v2.8b, v0.8h \n" /* B xxxBBBBB */ \
"shrn2 v2.16b,v0.8h, #5 \n" /* G xxxGGGGG */ \
\
"ushr v1.16b, v3.16b, #5 \n" /* R 00000RRR lower 3 */ \
"shl v0.16b, v2.16b, #3 \n" /* B,G BBBBB000 upper 5 */ \
"ushr v2.16b, v0.16b, #5 \n" /* B,G 00000BBB lower 3 */ \
\
"orr v0.16b, v0.16b, v2.16b \n" /* B,G */ \
"orr v2.16b, v1.16b, v3.16b \n" /* R */ \
"dup v1.2D, v0.D[1] \n" /* G */
void ARGB1555ToARGBRow_NEON(const uint8_t* src_argb1555,
uint8_t* dst_argb,
int width) {
asm volatile(
"movi v3.8b, #255 \n" // Alpha
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB1555 pixels.
"prfm pldl1keep, [%0, 448] \n"
"subs %w2, %w2, #8 \n" // 8 processed per loop.
ARGB1555TOARGB
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_argb1555), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
// Convert v0.8h to b = v0.8b g = v1.8b r = v2.8b
// clobbers v3
#define ARGB4444TOARGB \
"shrn v1.8b, v0.8h, #8 \n" /* v1(l) AR */ \
"xtn2 v1.16b, v0.8h \n" /* v1(h) GB */ \
"shl v2.16b, v1.16b, #4 \n" /* B,R BBBB0000 */ \
"ushr v3.16b, v1.16b, #4 \n" /* G,A 0000GGGG */ \
"ushr v0.16b, v2.16b, #4 \n" /* B,R 0000BBBB */ \
"shl v1.16b, v3.16b, #4 \n" /* G,A GGGG0000 */ \
"orr v2.16b, v0.16b, v2.16b \n" /* B,R BBBBBBBB */ \
"orr v3.16b, v1.16b, v3.16b \n" /* G,A GGGGGGGG */ \
"dup v0.2D, v2.D[1] \n" \
"dup v1.2D, v3.D[1] \n"
void ARGB4444ToARGBRow_NEON(const uint8_t* src_argb4444,
uint8_t* dst_argb,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB4444 pixels.
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"prfm pldl1keep, [%0, 448] \n" ARGB4444TOARGB
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_argb4444), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4" // Clobber List
);
}
void ARGBToRGB24Row_NEON(const uint8_t* src_argb,
uint8_t* dst_rgb24,
int width) {
asm volatile(
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ARGB
"subs %w2, %w2, #16 \n" // 16 pixels per loop.
"prfm pldl1keep, [%0, 448] \n"
"st3 {v0.16b,v1.16b,v2.16b}, [%1], #48 \n" // store 8 RGB24
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_rgb24), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
void ARGBToRAWRow_NEON(const uint8_t* src_argb, uint8_t* dst_raw, int width) {
asm volatile(
"1: \n"
"ld4 {v1.8b,v2.8b,v3.8b,v4.8b}, [%0], #32 \n" // load b g r a
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"orr v4.8b, v2.8b, v2.8b \n" // mov g
"prfm pldl1keep, [%0, 448] \n"
"orr v5.8b, v1.8b, v1.8b \n" // mov b
"st3 {v3.8b,v4.8b,v5.8b}, [%1], #24 \n" // store r g b
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_raw), // %1
"+r"(width) // %2
:
: "cc", "memory", "v1", "v2", "v3", "v4", "v5" // Clobber List
);
}
void YUY2ToYRow_NEON(const uint8_t* src_yuy2, uint8_t* dst_y, int width) {
asm volatile(
"1: \n"
"ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pixels of YUY2.
"subs %w2, %w2, #16 \n" // 16 processed per loop.
"prfm pldl1keep, [%0, 448] \n"
"st1 {v0.16b}, [%1], #16 \n" // store 16 pixels of Y.
"b.gt 1b \n"
: "+r"(src_yuy2), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1" // Clobber List
);
}
void UYVYToYRow_NEON(const uint8_t* src_uyvy, uint8_t* dst_y, int width) {
asm volatile(
"1: \n"
"ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pixels of UYVY.
"subs %w2, %w2, #16 \n" // 16 processed per loop.
"prfm pldl1keep, [%0, 448] \n"
"st1 {v1.16b}, [%1], #16 \n" // store 16 pixels of Y.
"b.gt 1b \n"
: "+r"(src_uyvy), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1" // Clobber List
);
}
void YUY2ToUV422Row_NEON(const uint8_t* src_yuy2,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
asm volatile(
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 YUY2
"subs %w3, %w3, #16 \n" // 16 pixels = 8 UVs.
"prfm pldl1keep, [%0, 448] \n"
"st1 {v1.8b}, [%1], #8 \n" // store 8 U.
"st1 {v3.8b}, [%2], #8 \n" // store 8 V.
"b.gt 1b \n"
: "+r"(src_yuy2), // %0
"+r"(dst_u), // %1
"+r"(dst_v), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
void UYVYToUV422Row_NEON(const uint8_t* src_uyvy,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
asm volatile(
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 UYVY
"subs %w3, %w3, #16 \n" // 16 pixels = 8 UVs.
"prfm pldl1keep, [%0, 448] \n"
"st1 {v0.8b}, [%1], #8 \n" // store 8 U.
"st1 {v2.8b}, [%2], #8 \n" // store 8 V.
"b.gt 1b \n"
: "+r"(src_uyvy), // %0
"+r"(dst_u), // %1
"+r"(dst_v), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
void YUY2ToUVRow_NEON(const uint8_t* src_yuy2,
int stride_yuy2,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_yuy2b = src_yuy2 + stride_yuy2;
asm volatile(
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 pixels
"subs %w4, %w4, #16 \n" // 16 pixels = 8 UVs.
"ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load next row
"urhadd v1.8b, v1.8b, v5.8b \n" // average rows of U
"prfm pldl1keep, [%0, 448] \n"
"urhadd v3.8b, v3.8b, v7.8b \n" // average rows of V
"st1 {v1.8b}, [%2], #8 \n" // store 8 U.
"st1 {v3.8b}, [%3], #8 \n" // store 8 V.
"b.gt 1b \n"
: "+r"(src_yuy2), // %0
"+r"(src_yuy2b), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6",
"v7" // Clobber List
);
}
void UYVYToUVRow_NEON(const uint8_t* src_uyvy,
int stride_uyvy,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_uyvyb = src_uyvy + stride_uyvy;
asm volatile(
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 16 pixels
"subs %w4, %w4, #16 \n" // 16 pixels = 8 UVs.
"ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load next row
"urhadd v0.8b, v0.8b, v4.8b \n" // average rows of U
"prfm pldl1keep, [%0, 448] \n"
"urhadd v2.8b, v2.8b, v6.8b \n" // average rows of V
"st1 {v0.8b}, [%2], #8 \n" // store 8 U.
"st1 {v2.8b}, [%3], #8 \n" // store 8 V.
"b.gt 1b \n"
: "+r"(src_uyvy), // %0
"+r"(src_uyvyb), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6",
"v7" // Clobber List
);
}
void YUY2ToNVUVRow_NEON(const uint8_t* src_yuy2,
int stride_yuy2,
uint8_t* dst_uv,
int width) {
const uint8_t* src_yuy2b = src_yuy2 + stride_yuy2;
asm volatile(
"1: \n"
"ld2 {v0.16b,v1.16b}, [%0], #32 \n" // load 16 pixels
"subs %w3, %w3, #16 \n" // 16 pixels = 8 UVs.
"ld2 {v2.16b,v3.16b}, [%1], #32 \n" // load next row
"urhadd v4.16b, v1.16b, v3.16b \n" // average rows of UV
"prfm pldl1keep, [%0, 448] \n"
"st1 {v4.16b}, [%2], #16 \n" // store 8 UV.
"b.gt 1b \n"
: "+r"(src_yuy2), // %0
"+r"(src_yuy2b), // %1
"+r"(dst_uv), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4" // Clobber List
);
}
// For BGRAToARGB, ABGRToARGB, RGBAToARGB, and ARGBToRGBA.
void ARGBShuffleRow_NEON(const uint8_t* src_argb,
uint8_t* dst_argb,
const uint8_t* shuffler,
int width) {
asm volatile(
"ld1 {v2.16b}, [%3] \n" // shuffler
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 4 pixels.
"subs %w2, %w2, #4 \n" // 4 processed per loop
"prfm pldl1keep, [%0, 448] \n"
"tbl v1.16b, {v0.16b}, v2.16b \n" // look up 4 pixels
"st1 {v1.16b}, [%1], #16 \n" // store 4.
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
: "r"(shuffler) // %3
: "cc", "memory", "v0", "v1", "v2" // Clobber List
);
}
void I422ToYUY2Row_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_yuy2,
int width) {
asm volatile(
"1: \n"
"ld2 {v0.8b, v1.8b}, [%0], #16 \n" // load 16 Ys
"subs %w4, %w4, #16 \n" // 16 pixels
"orr v2.8b, v1.8b, v1.8b \n"
"prfm pldl1keep, [%0, 448] \n"
"ld1 {v1.8b}, [%1], #8 \n" // load 8 Us
"ld1 {v3.8b}, [%2], #8 \n" // load 8 Vs
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%3], #32 \n" // Store 16 pixels.
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(src_u), // %1
"+r"(src_v), // %2
"+r"(dst_yuy2), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3");
}
void I422ToUYVYRow_NEON(const uint8_t* src_y,
const uint8_t* src_u,
const uint8_t* src_v,
uint8_t* dst_uyvy,
int width) {
asm volatile(
"1: \n"
"ld2 {v1.8b,v2.8b}, [%0], #16 \n" // load 16 Ys
"orr v3.8b, v2.8b, v2.8b \n"
"prfm pldl1keep, [%0, 448] \n"
"ld1 {v0.8b}, [%1], #8 \n" // load 8 Us
"ld1 {v2.8b}, [%2], #8 \n" // load 8 Vs
"subs %w4, %w4, #16 \n" // 16 pixels
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%3], #32 \n" // Store 16 pixels.
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(src_u), // %1
"+r"(src_v), // %2
"+r"(dst_uyvy), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3");
}
void ARGBToRGB565Row_NEON(const uint8_t* src_argb,
uint8_t* dst_rgb565,
int width) {
asm volatile(
"1: \n"
"ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%0], #32 \n" // load 8
// pixels
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"prfm pldl1keep, [%0, 448] \n" ARGBTORGB565
"st1 {v18.16b}, [%1], #16 \n" // store 8 pixels RGB565.
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_rgb565), // %1
"+r"(width) // %2
:
: "cc", "memory", "v16", "v17", "v18", "v19");
}
void ARGBToRGB565DitherRow_NEON(const uint8_t* src_argb,
uint8_t* dst_rgb,
const uint32_t dither4,
int width) {
asm volatile(
"dup v1.4s, %w2 \n" // dither4
"1: \n"
"ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%1], #32 \n" // load 8
// pixels
"subs %w3, %w3, #8 \n" // 8 processed per loop.
"uqadd v16.8b, v16.8b, v1.8b \n"
"prfm pldl1keep, [%0, 448] \n"
"uqadd v17.8b, v17.8b, v1.8b \n"
"uqadd v18.8b, v18.8b, v1.8b \n" ARGBTORGB565
"st1 {v18.16b}, [%0], #16 \n" // store 8 pixels RGB565.
"b.gt 1b \n"
: "+r"(dst_rgb) // %0
: "r"(src_argb), // %1
"r"(dither4), // %2
"r"(width) // %3
: "cc", "memory", "v1", "v16", "v17", "v18", "v19");
}
void ARGBToARGB1555Row_NEON(const uint8_t* src_argb,
uint8_t* dst_argb1555,
int width) {
asm volatile(
"1: \n"
"ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%0], #32 \n" // load 8
// pixels
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"prfm pldl1keep, [%0, 448] \n" ARGBTOARGB1555
"st1 {v0.16b}, [%1], #16 \n" // store 8 pixels
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_argb1555), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v16", "v17", "v18", "v19");
}
void ARGBToARGB4444Row_NEON(const uint8_t* src_argb,
uint8_t* dst_argb4444,
int width) {
asm volatile(
"movi v23.16b, #0x0f \n" // bits to clear with
// vbic.
"1: \n"
"ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%0], #32 \n" // load 8
// pixels
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"prfm pldl1keep, [%0, 448] \n" ARGBTOARGB4444
"st1 {v0.16b}, [%1], #16 \n" // store 8 pixels
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_argb4444), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v16", "v17", "v18", "v19", "v23");
}
#if LIBYUV_USE_ST2
void ARGBToAR64Row_NEON(const uint8_t* src_argb,
uint16_t* dst_ar64,
int width) {
asm volatile(
"1: \n"
"ldp q0, q2, [%0], #32 \n" // load 8 pixels
"mov v1.16b, v0.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"mov v3.16b, v2.16b \n"
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"st2 {v0.16b, v1.16b}, [%1], #32 \n" // store 4 pixels
"st2 {v2.16b, v3.16b}, [%1], #32 \n" // store 4 pixels
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_ar64), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3");
}
static const uvec8 kShuffleARGBToABGR = {2, 1, 0, 3, 6, 5, 4, 7,
10, 9, 8, 11, 14, 13, 12, 15};
void ARGBToAB64Row_NEON(const uint8_t* src_argb,
uint16_t* dst_ab64,
int width) {
asm volatile(
"ldr q4, [%3] \n" // shuffler
"1: \n"
"ldp q0, q2, [%0], #32 \n" // load 8 pixels
"tbl v0.16b, {v0.16b}, v4.16b \n"
"tbl v2.16b, {v2.16b}, v4.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"mov v1.16b, v0.16b \n"
"mov v3.16b, v2.16b \n"
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"st2 {v0.16b, v1.16b}, [%1], #32 \n" // store 4 pixels
"st2 {v2.16b, v3.16b}, [%1], #32 \n" // store 4 pixels
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_ab64), // %1
"+r"(width) // %2
: "r"(&kShuffleARGBToABGR) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4");
}
#else
void ARGBToAR64Row_NEON(const uint8_t* src_argb,
uint16_t* dst_ar64,
int width) {
asm volatile(
"1: \n"
"ldp q0, q1, [%0], #32 \n" // load 8 ARGB pixels
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"zip1 v2.16b, v0.16b, v0.16b \n"
"zip2 v3.16b, v0.16b, v0.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"zip1 v4.16b, v1.16b, v1.16b \n"
"zip2 v5.16b, v1.16b, v1.16b \n"
"st1 {v2.8h, v3.8h, v4.8h, v5.8h}, [%1], #64 \n" // 8 AR64
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_ar64), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5");
}
static const uvec8 kShuffleARGBToAB64[2] = {
{2, 2, 1, 1, 0, 0, 3, 3, 6, 6, 5, 5, 4, 4, 7, 7},
{10, 10, 9, 9, 8, 8, 11, 11, 14, 14, 13, 13, 12, 12, 15, 15}};
void ARGBToAB64Row_NEON(const uint8_t* src_argb,
uint16_t* dst_ab64,
int width) {
asm volatile(
"ldp q6, q7, [%3] \n" // 2 shufflers
"1: \n"
"ldp q0, q1, [%0], #32 \n" // load 8 pixels
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"tbl v2.16b, {v0.16b}, v6.16b \n" // ARGB to AB64
"tbl v3.16b, {v0.16b}, v7.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"tbl v4.16b, {v1.16b}, v6.16b \n"
"tbl v5.16b, {v1.16b}, v7.16b \n"
"st1 {v2.8h, v3.8h, v4.8h, v5.8h}, [%1], #64 \n" // 8 AR64
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_ab64), // %1
"+r"(width) // %2
: "r"(&kShuffleARGBToAB64[0]) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4");
}
#endif // LIBYUV_USE_ST2
static const uvec8 kShuffleAR64ToARGB = {1, 3, 5, 7, 9, 11, 13, 15,
17, 19, 21, 23, 25, 27, 29, 31};
void AR64ToARGBRow_NEON(const uint16_t* src_ar64,
uint8_t* dst_argb,
int width) {
asm volatile(
"ldr q4, [%3] \n" // shuffler
"1: \n"
"ldp q0, q1, [%0], #32 \n" // load 4 pixels
"ldp q2, q3, [%0], #32 \n" // load 4 pixels
"tbl v0.16b, {v0.16b, v1.16b}, v4.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"tbl v2.16b, {v2.16b, v3.16b}, v4.16b \n"
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"stp q0, q2, [%1], #32 \n" // store 8 pixels
"b.gt 1b \n"
: "+r"(src_ar64), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
: "r"(&kShuffleAR64ToARGB) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4");
}
static const uvec8 kShuffleAB64ToARGB = {5, 3, 1, 7, 13, 11, 9, 15,
21, 19, 17, 23, 29, 27, 25, 31};
void AB64ToARGBRow_NEON(const uint16_t* src_ab64,
uint8_t* dst_argb,
int width) {
asm volatile(
"ldr q4, [%3] \n" // shuffler
"1: \n"
"ldp q0, q1, [%0], #32 \n" // load 4 pixels
"ldp q2, q3, [%0], #32 \n" // load 4 pixels
"tbl v0.16b, {v0.16b, v1.16b}, v4.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"tbl v2.16b, {v2.16b, v3.16b}, v4.16b \n"
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"stp q0, q2, [%1], #32 \n" // store 8 pixels
"b.gt 1b \n"
: "+r"(src_ab64), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
: "r"(&kShuffleAB64ToARGB) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4");
}
void ARGBExtractAlphaRow_NEON(const uint8_t* src_argb,
uint8_t* dst_a,
int width) {
asm volatile(
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16
"prfm pldl1keep, [%0, 448] \n"
"subs %w2, %w2, #16 \n" // 16 processed per loop
"st1 {v3.16b}, [%1], #16 \n" // store 16 A's.
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_a), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
// 8x1 pixels.
void ARGBToUV444Row_NEON(const uint8_t* src_argb,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
asm volatile(
"movi v24.8b, #112 \n" // UB / VR 0.875
// coefficient
"movi v25.8b, #74 \n" // UG -0.5781 coefficient
"movi v26.8b, #38 \n" // UR -0.2969 coefficient
"movi v27.8b, #18 \n" // VB -0.1406 coefficient
"movi v28.8b, #94 \n" // VG -0.7344 coefficient
"movi v29.16b,#0x80 \n" // 128.5
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB
"subs %w3, %w3, #8 \n" // 8 processed per loop.
"umull v4.8h, v0.8b, v24.8b \n" // B
"umlsl v4.8h, v1.8b, v25.8b \n" // G
"umlsl v4.8h, v2.8b, v26.8b \n" // R
"prfm pldl1keep, [%0, 448] \n"
"umull v3.8h, v2.8b, v24.8b \n" // R
"umlsl v3.8h, v1.8b, v28.8b \n" // G
"umlsl v3.8h, v0.8b, v27.8b \n" // B
"addhn v0.8b, v4.8h, v29.8h \n" // +128 -> unsigned
"addhn v1.8b, v3.8h, v29.8h \n" // +128 -> unsigned
"st1 {v0.8b}, [%1], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%2], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_u), // %1
"+r"(dst_v), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v24", "v25", "v26",
"v27", "v28", "v29");
}
#define RGBTOUV_SETUP_REG \
"movi v20.8h, #56, lsl #0 \n" /* UB/VR coefficient (0.875) / 2 */ \
"movi v21.8h, #37, lsl #0 \n" /* UG coefficient (-0.5781) / 2 */ \
"movi v22.8h, #19, lsl #0 \n" /* UR coefficient (-0.2969) / 2 */ \
"movi v23.8h, #9, lsl #0 \n" /* VB coefficient (-0.1406) / 2 */ \
"movi v24.8h, #47, lsl #0 \n" /* VG coefficient (-0.7344) / 2 */ \
"movi v25.16b, #0x80 \n" /* 128.5 (0x8080 in 16-bit) */
// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16.
// clang-format off
#define RGBTOUV(QB, QG, QR) \
"mul v3.8h, " #QB ",v20.8h \n" /* B */ \
"mul v4.8h, " #QR ",v20.8h \n" /* R */ \
"mls v3.8h, " #QG ",v21.8h \n" /* G */ \
"mls v4.8h, " #QG ",v24.8h \n" /* G */ \
"mls v3.8h, " #QR ",v22.8h \n" /* R */ \
"mls v4.8h, " #QB ",v23.8h \n" /* B */ \
"addhn v0.8b, v3.8h, v25.8h \n" /* +128 -> unsigned */ \
"addhn v1.8b, v4.8h, v25.8h \n" /* +128 -> unsigned */
// clang-format on
// TODO(fbarchard): Consider vhadd vertical, then vpaddl horizontal, avoid shr.
// TODO(fbarchard): consider ptrdiff_t for all strides.
void ARGBToUVRow_NEON(const uint8_t* src_argb,
int src_stride_argb,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_argb_1 = src_argb + src_stride_argb;
asm volatile (
RGBTOUV_SETUP_REG
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels.
"uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts.
"ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16
"uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts.
"urshr v0.8h, v0.8h, #1 \n" // 2x average
"urshr v1.8h, v1.8h, #1 \n"
"urshr v2.8h, v2.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v1.8h, v2.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(src_argb_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
// TODO(fbarchard): Subsample match Intel code.
void ARGBToUVJRow_NEON(const uint8_t* src_argb,
int src_stride_argb,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_argb_1 = src_argb + src_stride_argb;
asm volatile (
"movi v20.8h, #63, lsl #0 \n" // UB/VR coeff (0.500) / 2
"movi v21.8h, #42, lsl #0 \n" // UG coeff (-0.33126) / 2
"movi v22.8h, #21, lsl #0 \n" // UR coeff (-0.16874) / 2
"movi v23.8h, #10, lsl #0 \n" // VB coeff (-0.08131) / 2
"movi v24.8h, #53, lsl #0 \n" // VG coeff (-0.41869) / 2
"movi v25.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit)
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels.
"uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts.
"ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16
"uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts.
"urshr v0.8h, v0.8h, #1 \n" // 2x average
"urshr v1.8h, v1.8h, #1 \n"
"urshr v2.8h, v2.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v1.8h, v2.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(src_argb_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
void ABGRToUVJRow_NEON(const uint8_t* src_abgr,
int src_stride_abgr,
uint8_t* dst_uj,
uint8_t* dst_vj,
int width) {
const uint8_t* src_abgr_1 = src_abgr + src_stride_abgr;
asm volatile (
"movi v20.8h, #63, lsl #0 \n" // UB/VR coeff (0.500) / 2
"movi v21.8h, #42, lsl #0 \n" // UG coeff (-0.33126) / 2
"movi v22.8h, #21, lsl #0 \n" // UR coeff (-0.16874) / 2
"movi v23.8h, #10, lsl #0 \n" // VB coeff (-0.08131) / 2
"movi v24.8h, #53, lsl #0 \n" // VG coeff (-0.41869) / 2
"movi v25.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit)
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels.
"uaddlp v0.8h, v0.16b \n" // R 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v2.8h, v2.16b \n" // B 16 bytes -> 8 shorts.
"ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16
"uadalp v0.8h, v4.16b \n" // R 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v2.8h, v6.16b \n" // B 16 bytes -> 8 shorts.
"urshr v0.8h, v0.8h, #1 \n" // 2x average
"urshr v1.8h, v1.8h, #1 \n"
"urshr v2.8h, v2.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v2.8h, v1.8h, v0.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_abgr), // %0
"+r"(src_abgr_1), // %1
"+r"(dst_uj), // %2
"+r"(dst_vj), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
void RGB24ToUVJRow_NEON(const uint8_t* src_rgb24,
int src_stride_rgb24,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_rgb24_1 = src_rgb24 + src_stride_rgb24;
asm volatile (
"movi v20.8h, #63, lsl #0 \n" // UB/VR coeff (0.500) / 2
"movi v21.8h, #42, lsl #0 \n" // UG coeff (-0.33126) / 2
"movi v22.8h, #21, lsl #0 \n" // UR coeff (-0.16874) / 2
"movi v23.8h, #10, lsl #0 \n" // VB coeff (-0.08131) / 2
"movi v24.8h, #53, lsl #0 \n" // VG coeff (-0.41869) / 2
"movi v25.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit)
"1: \n"
"ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 pixels.
"uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts.
"ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load next 16
"uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts.
"urshr v0.8h, v0.8h, #1 \n" // 2x average
"urshr v1.8h, v1.8h, #1 \n"
"urshr v2.8h, v2.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v1.8h, v2.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_rgb24), // %0
"+r"(src_rgb24_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
void RAWToUVJRow_NEON(const uint8_t* src_raw,
int src_stride_raw,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_raw_1 = src_raw + src_stride_raw;
asm volatile (
"movi v20.8h, #63, lsl #0 \n" // UB/VR coeff (0.500) / 2
"movi v21.8h, #42, lsl #0 \n" // UG coeff (-0.33126) / 2
"movi v22.8h, #21, lsl #0 \n" // UR coeff (-0.16874) / 2
"movi v23.8h, #10, lsl #0 \n" // VB coeff (-0.08131) / 2
"movi v24.8h, #53, lsl #0 \n" // VG coeff (-0.41869) / 2
"movi v25.16b, #0x80 \n" // 128.5 (0x8080 in 16-bit)
"1: \n"
"ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 pixels.
"uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts.
"ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load next 16
"uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts.
"urshr v0.8h, v0.8h, #1 \n" // 2x average
"urshr v1.8h, v1.8h, #1 \n"
"urshr v2.8h, v2.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v2.8h, v1.8h, v0.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_raw), // %0
"+r"(src_raw_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
void BGRAToUVRow_NEON(const uint8_t* src_bgra,
int src_stride_bgra,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_bgra_1 = src_bgra + src_stride_bgra;
asm volatile (
RGBTOUV_SETUP_REG
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels.
"uaddlp v0.8h, v3.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v3.8h, v2.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v2.8h, v1.16b \n" // R 16 bytes -> 8 shorts.
"ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load 16 more
"uadalp v0.8h, v7.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v3.8h, v6.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v2.8h, v5.16b \n" // R 16 bytes -> 8 shorts.
"urshr v0.8h, v0.8h, #1 \n" // 2x average
"urshr v1.8h, v3.8h, #1 \n"
"urshr v2.8h, v2.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v1.8h, v2.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_bgra), // %0
"+r"(src_bgra_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
void ABGRToUVRow_NEON(const uint8_t* src_abgr,
int src_stride_abgr,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_abgr_1 = src_abgr + src_stride_abgr;
asm volatile (
RGBTOUV_SETUP_REG
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels.
"uaddlp v3.8h, v2.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v2.8h, v1.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v1.8h, v0.16b \n" // R 16 bytes -> 8 shorts.
"ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load 16 more.
"uadalp v3.8h, v6.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v2.8h, v5.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v1.8h, v4.16b \n" // R 16 bytes -> 8 shorts.
"urshr v0.8h, v3.8h, #1 \n" // 2x average
"urshr v2.8h, v2.8h, #1 \n"
"urshr v1.8h, v1.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v2.8h, v1.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_abgr), // %0
"+r"(src_abgr_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
void RGBAToUVRow_NEON(const uint8_t* src_rgba,
int src_stride_rgba,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_rgba_1 = src_rgba + src_stride_rgba;
asm volatile (
RGBTOUV_SETUP_REG
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 pixels.
"uaddlp v0.8h, v1.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v2.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v2.8h, v3.16b \n" // R 16 bytes -> 8 shorts.
"ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load 16 more.
"uadalp v0.8h, v5.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v1.8h, v6.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v2.8h, v7.16b \n" // R 16 bytes -> 8 shorts.
"urshr v0.8h, v0.8h, #1 \n" // 2x average
"urshr v1.8h, v1.8h, #1 \n"
"urshr v2.8h, v2.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v1.8h, v2.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_rgba), // %0
"+r"(src_rgba_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
void RGB24ToUVRow_NEON(const uint8_t* src_rgb24,
int src_stride_rgb24,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_rgb24_1 = src_rgb24 + src_stride_rgb24;
asm volatile (
RGBTOUV_SETUP_REG
"1: \n"
"ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 pixels.
"uaddlp v0.8h, v0.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v2.8h, v2.16b \n" // R 16 bytes -> 8 shorts.
"ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load 16 more.
"uadalp v0.8h, v4.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v2.8h, v6.16b \n" // R 16 bytes -> 8 shorts.
"urshr v0.8h, v0.8h, #1 \n" // 2x average
"urshr v1.8h, v1.8h, #1 \n"
"urshr v2.8h, v2.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v1.8h, v2.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_rgb24), // %0
"+r"(src_rgb24_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
void RAWToUVRow_NEON(const uint8_t* src_raw,
int src_stride_raw,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_raw_1 = src_raw + src_stride_raw;
asm volatile (
RGBTOUV_SETUP_REG
"1: \n"
"ld3 {v0.16b,v1.16b,v2.16b}, [%0], #48 \n" // load 16 RAW pixels.
"uaddlp v2.8h, v2.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n" // G 16 bytes -> 8 shorts.
"uaddlp v0.8h, v0.16b \n" // R 16 bytes -> 8 shorts.
"ld3 {v4.16b,v5.16b,v6.16b}, [%1], #48 \n" // load 8 more RAW pixels
"uadalp v2.8h, v6.16b \n" // B 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v1.8h, v5.16b \n" // G 16 bytes -> 8 shorts.
"uadalp v0.8h, v4.16b \n" // R 16 bytes -> 8 shorts.
"urshr v2.8h, v2.8h, #1 \n" // 2x average
"urshr v1.8h, v1.8h, #1 \n"
"urshr v0.8h, v0.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v2.8h, v1.8h, v0.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_raw), // %0
"+r"(src_raw_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7",
"v20", "v21", "v22", "v23", "v24", "v25"
);
}
// 16x2 pixels -> 8x1. width is number of rgb pixels. e.g. 16.
void RGB565ToUVRow_NEON(const uint8_t* src_rgb565,
int src_stride_rgb565,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_rgb565_1 = src_rgb565 + src_stride_rgb565;
asm volatile(
RGBTOUV_SETUP_REG
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 8 RGB565 pixels.
RGB565TOARGB
"uaddlp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uaddlp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ld1 {v0.16b}, [%0], #16 \n" // next 8 RGB565 pixels.
RGB565TOARGB
"uaddlp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"uaddlp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uaddlp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ld1 {v0.16b}, [%1], #16 \n" // load 8 RGB565 pixels.
RGB565TOARGB
"uadalp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uadalp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ld1 {v0.16b}, [%1], #16 \n" // next 8 RGB565 pixels.
RGB565TOARGB
"uadalp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"uadalp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uadalp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ins v16.D[1], v26.D[0] \n"
"ins v17.D[1], v27.D[0] \n"
"ins v18.D[1], v28.D[0] \n"
"urshr v0.8h, v16.8h, #1 \n" // 2x average
"urshr v1.8h, v17.8h, #1 \n"
"urshr v2.8h, v18.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v1.8h, v2.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_rgb565), // %0
"+r"(src_rgb565_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v16", "v17",
"v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
"v28");
}
// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16.
void ARGB1555ToUVRow_NEON(const uint8_t* src_argb1555,
int src_stride_argb1555,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_argb1555_1 = src_argb1555 + src_stride_argb1555;
asm volatile(
RGBTOUV_SETUP_REG
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB1555 pixels.
RGB555TOARGB
"uaddlp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uaddlp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ld1 {v0.16b}, [%0], #16 \n" // next 8 ARGB1555 pixels.
RGB555TOARGB
"uaddlp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"uaddlp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uaddlp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ld1 {v0.16b}, [%1], #16 \n" // load 8 ARGB1555 pixels.
RGB555TOARGB
"uadalp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uadalp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ld1 {v0.16b}, [%1], #16 \n" // next 8 ARGB1555 pixels.
RGB555TOARGB
"uadalp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"uadalp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uadalp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ins v16.D[1], v26.D[0] \n"
"ins v17.D[1], v27.D[0] \n"
"ins v18.D[1], v28.D[0] \n"
"urshr v0.8h, v16.8h, #1 \n" // 2x average
"urshr v1.8h, v17.8h, #1 \n"
"urshr v2.8h, v18.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v1.8h, v2.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_argb1555), // %0
"+r"(src_argb1555_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v16", "v17",
"v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
"v28");
}
// 16x2 pixels -> 8x1. width is number of argb pixels. e.g. 16.
void ARGB4444ToUVRow_NEON(const uint8_t* src_argb4444,
int src_stride_argb4444,
uint8_t* dst_u,
uint8_t* dst_v,
int width) {
const uint8_t* src_argb4444_1 = src_argb4444 + src_stride_argb4444;
asm volatile(
RGBTOUV_SETUP_REG // sets v20-v25
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB4444 pixels.
ARGB4444TOARGB
"uaddlp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uaddlp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ld1 {v0.16b}, [%0], #16 \n" // next 8 ARGB4444 pixels.
ARGB4444TOARGB
"uaddlp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"uaddlp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uaddlp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ld1 {v0.16b}, [%1], #16 \n" // load 8 ARGB4444 pixels.
ARGB4444TOARGB
"uadalp v16.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uadalp v17.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uadalp v18.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ld1 {v0.16b}, [%1], #16 \n" // next 8 ARGB4444 pixels.
ARGB4444TOARGB
"uadalp v26.4h, v0.8b \n" // B 8 bytes -> 4 shorts.
"uadalp v27.4h, v1.8b \n" // G 8 bytes -> 4 shorts.
"uadalp v28.4h, v2.8b \n" // R 8 bytes -> 4 shorts.
"ins v16.D[1], v26.D[0] \n"
"ins v17.D[1], v27.D[0] \n"
"ins v18.D[1], v28.D[0] \n"
"urshr v0.8h, v16.8h, #1 \n" // 2x average
"urshr v1.8h, v17.8h, #1 \n"
"urshr v2.8h, v18.8h, #1 \n"
"subs %w4, %w4, #16 \n" // 16 processed per loop.
RGBTOUV(v0.8h, v1.8h, v2.8h)
"st1 {v0.8b}, [%2], #8 \n" // store 8 pixels U.
"st1 {v1.8b}, [%3], #8 \n" // store 8 pixels V.
"b.gt 1b \n"
: "+r"(src_argb4444), // %0
"+r"(src_argb4444_1), // %1
"+r"(dst_u), // %2
"+r"(dst_v), // %3
"+r"(width) // %4
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v16", "v17",
"v18", "v19", "v20", "v21", "v22", "v23", "v24", "v25", "v26", "v27",
"v28"
);
}
void RGB565ToYRow_NEON(const uint8_t* src_rgb565, uint8_t* dst_y, int width) {
asm volatile(
"movi v24.8b, #25 \n" // B * 0.1016 coefficient
"movi v25.8b, #129 \n" // G * 0.5078 coefficient
"movi v26.8b, #66 \n" // R * 0.2578 coefficient
"movi v27.8b, #16 \n" // Add 16 constant
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 8 RGB565 pixels.
"subs %w2, %w2, #8 \n" // 8 processed per loop.
RGB565TOARGB
"umull v3.8h, v0.8b, v24.8b \n" // B
"prfm pldl1keep, [%0, 448] \n"
"umlal v3.8h, v1.8b, v25.8b \n" // G
"umlal v3.8h, v2.8b, v26.8b \n" // R
"uqrshrn v0.8b, v3.8h, #8 \n" // 16 bit to 8 bit Y
"uqadd v0.8b, v0.8b, v27.8b \n"
"st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y.
"b.gt 1b \n"
: "+r"(src_rgb565), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v6", "v24", "v25", "v26",
"v27");
}
void ARGB1555ToYRow_NEON(const uint8_t* src_argb1555,
uint8_t* dst_y,
int width) {
asm volatile(
"movi v4.8b, #25 \n" // B * 0.1016 coefficient
"movi v5.8b, #129 \n" // G * 0.5078 coefficient
"movi v6.8b, #66 \n" // R * 0.2578 coefficient
"movi v7.8b, #16 \n" // Add 16 constant
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB1555 pixels.
"subs %w2, %w2, #8 \n" // 8 processed per loop.
ARGB1555TOARGB
"umull v3.8h, v0.8b, v4.8b \n" // B
"prfm pldl1keep, [%0, 448] \n"
"umlal v3.8h, v1.8b, v5.8b \n" // G
"umlal v3.8h, v2.8b, v6.8b \n" // R
"uqrshrn v0.8b, v3.8h, #8 \n" // 16 bit to 8 bit Y
"uqadd v0.8b, v0.8b, v7.8b \n"
"st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y.
"b.gt 1b \n"
: "+r"(src_argb1555), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
}
void ARGB4444ToYRow_NEON(const uint8_t* src_argb4444,
uint8_t* dst_y,
int width) {
asm volatile(
"movi v24.8b, #25 \n" // B * 0.1016 coefficient
"movi v25.8b, #129 \n" // G * 0.5078 coefficient
"movi v26.8b, #66 \n" // R * 0.2578 coefficient
"movi v27.8b, #16 \n" // Add 16 constant
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 8 ARGB4444 pixels.
"subs %w2, %w2, #8 \n" // 8 processed per loop.
ARGB4444TOARGB
"umull v3.8h, v0.8b, v24.8b \n" // B
"prfm pldl1keep, [%0, 448] \n"
"umlal v3.8h, v1.8b, v25.8b \n" // G
"umlal v3.8h, v2.8b, v26.8b \n" // R
"uqrshrn v0.8b, v3.8h, #8 \n" // 16 bit to 8 bit Y
"uqadd v0.8b, v0.8b, v27.8b \n"
"st1 {v0.8b}, [%1], #8 \n" // store 8 pixels Y.
"b.gt 1b \n"
: "+r"(src_argb4444), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v24", "v25", "v26", "v27");
}
struct RgbConstants {
uint8_t kRGBToY[4];
uint16_t kAddY;
uint16_t pad;
};
// RGB to JPeg coefficients
// B * 0.1140 coefficient = 29
// G * 0.5870 coefficient = 150
// R * 0.2990 coefficient = 77
// Add 0.5 = 0x80
static const struct RgbConstants kRgb24JPEGConstants = {{29, 150, 77, 0},
128,
0};
static const struct RgbConstants kRawJPEGConstants = {{77, 150, 29, 0}, 128, 0};
// RGB to BT.601 coefficients
// B * 0.1016 coefficient = 25
// G * 0.5078 coefficient = 129
// R * 0.2578 coefficient = 66
// Add 16.5 = 0x1080
static const struct RgbConstants kRgb24I601Constants = {{25, 129, 66, 0},
0x1080,
0};
static const struct RgbConstants kRawI601Constants = {{66, 129, 25, 0},
0x1080,
0};
// ARGB expects first 3 values to contain RGB and 4th value is ignored.
void ARGBToYMatrixRow_NEON(const uint8_t* src_argb,
uint8_t* dst_y,
int width,
const struct RgbConstants* rgbconstants) {
asm volatile(
"ldr d0, [%3] \n" // load rgbconstants
"dup v6.16b, v0.b[0] \n"
"dup v7.16b, v0.b[1] \n"
"dup v16.16b, v0.b[2] \n"
"dup v17.8h, v0.h[2] \n"
"1: \n"
"ld4 {v2.16b,v3.16b,v4.16b,v5.16b}, [%0], #64 \n" // load 16
// pixels.
"subs %w2, %w2, #16 \n" // 16 processed per loop.
"umull v0.8h, v2.8b, v6.8b \n" // B
"umull2 v1.8h, v2.16b, v6.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"umlal v0.8h, v3.8b, v7.8b \n" // G
"umlal2 v1.8h, v3.16b, v7.16b \n"
"umlal v0.8h, v4.8b, v16.8b \n" // R
"umlal2 v1.8h, v4.16b, v16.16b \n"
"addhn v0.8b, v0.8h, v17.8h \n" // 16 bit to 8 bit Y
"addhn v1.8b, v1.8h, v17.8h \n"
"st1 {v0.8b, v1.8b}, [%1], #16 \n" // store 16 pixels Y.
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
: "r"(rgbconstants) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16",
"v17");
}
void ARGBToYRow_NEON(const uint8_t* src_argb, uint8_t* dst_y, int width) {
ARGBToYMatrixRow_NEON(src_argb, dst_y, width, &kRgb24I601Constants);
}
void ARGBToYJRow_NEON(const uint8_t* src_argb, uint8_t* dst_yj, int width) {
ARGBToYMatrixRow_NEON(src_argb, dst_yj, width, &kRgb24JPEGConstants);
}
void ABGRToYRow_NEON(const uint8_t* src_abgr, uint8_t* dst_y, int width) {
ARGBToYMatrixRow_NEON(src_abgr, dst_y, width, &kRawI601Constants);
}
void ABGRToYJRow_NEON(const uint8_t* src_abgr, uint8_t* dst_yj, int width) {
ARGBToYMatrixRow_NEON(src_abgr, dst_yj, width, &kRawJPEGConstants);
}
// RGBA expects first value to be A and ignored, then 3 values to contain RGB.
// Same code as ARGB, except the LD4
void RGBAToYMatrixRow_NEON(const uint8_t* src_rgba,
uint8_t* dst_y,
int width,
const struct RgbConstants* rgbconstants) {
asm volatile(
"ldr d0, [%3] \n" // load rgbconstants
"dup v6.16b, v0.b[0] \n"
"dup v7.16b, v0.b[1] \n"
"dup v16.16b, v0.b[2] \n"
"dup v17.8h, v0.h[2] \n"
"1: \n"
"ld4 {v1.16b,v2.16b,v3.16b,v4.16b}, [%0], #64 \n" // load 16
// pixels.
"subs %w2, %w2, #16 \n" // 16 processed per loop.
"umull v0.8h, v2.8b, v6.8b \n" // B
"umull2 v1.8h, v2.16b, v6.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"umlal v0.8h, v3.8b, v7.8b \n" // G
"umlal2 v1.8h, v3.16b, v7.16b \n"
"umlal v0.8h, v4.8b, v16.8b \n" // R
"umlal2 v1.8h, v4.16b, v16.16b \n"
"addhn v0.8b, v0.8h, v17.8h \n" // 16 bit to 8 bit Y
"addhn v1.8b, v1.8h, v17.8h \n"
"st1 {v0.8b, v1.8b}, [%1], #16 \n" // store 16 pixels Y.
"b.gt 1b \n"
: "+r"(src_rgba), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
: "r"(rgbconstants) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16",
"v17");
}
void RGBAToYRow_NEON(const uint8_t* src_rgba, uint8_t* dst_y, int width) {
RGBAToYMatrixRow_NEON(src_rgba, dst_y, width, &kRgb24I601Constants);
}
void RGBAToYJRow_NEON(const uint8_t* src_rgba, uint8_t* dst_yj, int width) {
RGBAToYMatrixRow_NEON(src_rgba, dst_yj, width, &kRgb24JPEGConstants);
}
void BGRAToYRow_NEON(const uint8_t* src_bgra, uint8_t* dst_y, int width) {
RGBAToYMatrixRow_NEON(src_bgra, dst_y, width, &kRawI601Constants);
}
void RGBToYMatrixRow_NEON(const uint8_t* src_rgb,
uint8_t* dst_y,
int width,
const struct RgbConstants* rgbconstants) {
asm volatile(
"ldr d0, [%3] \n" // load rgbconstants
"dup v5.16b, v0.b[0] \n"
"dup v6.16b, v0.b[1] \n"
"dup v7.16b, v0.b[2] \n"
"dup v16.8h, v0.h[2] \n"
"1: \n"
"ld3 {v2.16b,v3.16b,v4.16b}, [%0], #48 \n" // load 16 pixels.
"subs %w2, %w2, #16 \n" // 16 processed per loop.
"umull v0.8h, v2.8b, v5.8b \n" // B
"umull2 v1.8h, v2.16b, v5.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"umlal v0.8h, v3.8b, v6.8b \n" // G
"umlal2 v1.8h, v3.16b, v6.16b \n"
"umlal v0.8h, v4.8b, v7.8b \n" // R
"umlal2 v1.8h, v4.16b, v7.16b \n"
"addhn v0.8b, v0.8h, v16.8h \n" // 16 bit to 8 bit Y
"addhn v1.8b, v1.8h, v16.8h \n"
"st1 {v0.8b, v1.8b}, [%1], #16 \n" // store 16 pixels Y.
"b.gt 1b \n"
: "+r"(src_rgb), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
: "r"(rgbconstants) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16");
}
void RGB24ToYJRow_NEON(const uint8_t* src_rgb24, uint8_t* dst_yj, int width) {
RGBToYMatrixRow_NEON(src_rgb24, dst_yj, width, &kRgb24JPEGConstants);
}
void RAWToYJRow_NEON(const uint8_t* src_raw, uint8_t* dst_yj, int width) {
RGBToYMatrixRow_NEON(src_raw, dst_yj, width, &kRawJPEGConstants);
}
void RGB24ToYRow_NEON(const uint8_t* src_rgb24, uint8_t* dst_y, int width) {
RGBToYMatrixRow_NEON(src_rgb24, dst_y, width, &kRgb24I601Constants);
}
void RAWToYRow_NEON(const uint8_t* src_raw, uint8_t* dst_y, int width) {
RGBToYMatrixRow_NEON(src_raw, dst_y, width, &kRawI601Constants);
}
// Bilinear filter 16x2 -> 16x1
void InterpolateRow_NEON(uint8_t* dst_ptr,
const uint8_t* src_ptr,
ptrdiff_t src_stride,
int dst_width,
int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint8_t* src_ptr1 = src_ptr + src_stride;
asm volatile(
"cmp %w4, #0 \n"
"b.eq 100f \n"
"cmp %w4, #128 \n"
"b.eq 50f \n"
"dup v5.16b, %w4 \n"
"dup v4.16b, %w5 \n"
// General purpose row blend.
"1: \n"
"ld1 {v0.16b}, [%1], #16 \n"
"ld1 {v1.16b}, [%2], #16 \n"
"subs %w3, %w3, #16 \n"
"umull v2.8h, v0.8b, v4.8b \n"
"prfm pldl1keep, [%1, 448] \n"
"umull2 v3.8h, v0.16b, v4.16b \n"
"prfm pldl1keep, [%2, 448] \n"
"umlal v2.8h, v1.8b, v5.8b \n"
"umlal2 v3.8h, v1.16b, v5.16b \n"
"rshrn v0.8b, v2.8h, #8 \n"
"rshrn2 v0.16b, v3.8h, #8 \n"
"st1 {v0.16b}, [%0], #16 \n"
"b.gt 1b \n"
"b 99f \n"
// Blend 50 / 50.
"50: \n"
"ld1 {v0.16b}, [%1], #16 \n"
"ld1 {v1.16b}, [%2], #16 \n"
"subs %w3, %w3, #16 \n"
"prfm pldl1keep, [%1, 448] \n"
"urhadd v0.16b, v0.16b, v1.16b \n"
"prfm pldl1keep, [%2, 448] \n"
"st1 {v0.16b}, [%0], #16 \n"
"b.gt 50b \n"
"b 99f \n"
// Blend 100 / 0 - Copy row unchanged.
"100: \n"
"ld1 {v0.16b}, [%1], #16 \n"
"subs %w3, %w3, #16 \n"
"prfm pldl1keep, [%1, 448] \n"
"st1 {v0.16b}, [%0], #16 \n"
"b.gt 100b \n"
"99: \n"
: "+r"(dst_ptr), // %0
"+r"(src_ptr), // %1
"+r"(src_ptr1), // %2
"+r"(dst_width), // %3
"+r"(y1_fraction), // %4
"+r"(y0_fraction) // %5
:
: "cc", "memory", "v0", "v1", "v3", "v4", "v5");
}
// Bilinear filter 8x2 -> 8x1
void InterpolateRow_16_NEON(uint16_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
int dst_width,
int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint16_t* src_ptr1 = src_ptr + src_stride;
asm volatile(
"cmp %w4, #0 \n"
"b.eq 100f \n"
"cmp %w4, #128 \n"
"b.eq 50f \n"
"dup v5.8h, %w4 \n"
"dup v4.8h, %w5 \n"
// General purpose row blend.
"1: \n"
"ld1 {v0.8h}, [%1], #16 \n"
"ld1 {v1.8h}, [%2], #16 \n"
"subs %w3, %w3, #8 \n"
"umull v2.4s, v0.4h, v4.4h \n"
"prfm pldl1keep, [%1, 448] \n"
"umull2 v3.4s, v0.8h, v4.8h \n"
"prfm pldl1keep, [%2, 448] \n"
"umlal v2.4s, v1.4h, v5.4h \n"
"umlal2 v3.4s, v1.8h, v5.8h \n"
"rshrn v0.4h, v2.4s, #8 \n"
"rshrn2 v0.8h, v3.4s, #8 \n"
"st1 {v0.8h}, [%0], #16 \n"
"b.gt 1b \n"
"b 99f \n"
// Blend 50 / 50.
"50: \n"
"ld1 {v0.8h}, [%1], #16 \n"
"ld1 {v1.8h}, [%2], #16 \n"
"subs %w3, %w3, #8 \n"
"prfm pldl1keep, [%1, 448] \n"
"urhadd v0.8h, v0.8h, v1.8h \n"
"prfm pldl1keep, [%2, 448] \n"
"st1 {v0.8h}, [%0], #16 \n"
"b.gt 50b \n"
"b 99f \n"
// Blend 100 / 0 - Copy row unchanged.
"100: \n"
"ld1 {v0.8h}, [%1], #16 \n"
"subs %w3, %w3, #8 \n"
"prfm pldl1keep, [%1, 448] \n"
"st1 {v0.8h}, [%0], #16 \n"
"b.gt 100b \n"
"99: \n"
: "+r"(dst_ptr), // %0
"+r"(src_ptr), // %1
"+r"(src_ptr1), // %2
"+r"(dst_width) // %3
: "r"(y1_fraction), // %4
"r"(y0_fraction) // %5
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5");
}
// Bilinear filter 8x2 -> 8x1
// Use scale to convert lsb formats to msb, depending how many bits there are:
// 32768 = 9 bits
// 16384 = 10 bits
// 4096 = 12 bits
// 256 = 16 bits
void InterpolateRow_16To8_NEON(uint8_t* dst_ptr,
const uint16_t* src_ptr,
ptrdiff_t src_stride,
int scale,
int dst_width,
int source_y_fraction) {
int y1_fraction = source_y_fraction;
int y0_fraction = 256 - y1_fraction;
const uint16_t* src_ptr1 = src_ptr + src_stride;
int shift = 15 - __builtin_clz((int32_t)scale); // Negative shl is shr
asm volatile(
"dup v6.8h, %w6 \n"
"cmp %w4, #0 \n"
"b.eq 100f \n"
"cmp %w4, #128 \n"
"b.eq 50f \n"
"dup v5.8h, %w4 \n"
"dup v4.8h, %w5 \n"
// General purpose row blend.
"1: \n"
"ld1 {v0.8h}, [%1], #16 \n"
"ld1 {v1.8h}, [%2], #16 \n"
"subs %w3, %w3, #8 \n"
"umull v2.4s, v0.4h, v4.4h \n"
"prfm pldl1keep, [%1, 448] \n"
"umull2 v3.4s, v0.8h, v4.8h \n"
"prfm pldl1keep, [%2, 448] \n"
"umlal v2.4s, v1.4h, v5.4h \n"
"umlal2 v3.4s, v1.8h, v5.8h \n"
"rshrn v0.4h, v2.4s, #8 \n"
"rshrn2 v0.8h, v3.4s, #8 \n"
"ushl v0.8h, v0.8h, v6.8h \n"
"uqxtn v0.8b, v0.8h \n"
"st1 {v0.8b}, [%0], #8 \n"
"b.gt 1b \n"
"b 99f \n"
// Blend 50 / 50.
"50: \n"
"ld1 {v0.8h}, [%1], #16 \n"
"ld1 {v1.8h}, [%2], #16 \n"
"subs %w3, %w3, #8 \n"
"prfm pldl1keep, [%1, 448] \n"
"urhadd v0.8h, v0.8h, v1.8h \n"
"prfm pldl1keep, [%2, 448] \n"
"ushl v0.8h, v0.8h, v6.8h \n"
"uqxtn v0.8b, v0.8h \n"
"st1 {v0.8b}, [%0], #8 \n"
"b.gt 50b \n"
"b 99f \n"
// Blend 100 / 0 - Copy row unchanged.
"100: \n"
"ldr q0, [%1], #16 \n"
"ushl v0.8h, v0.8h, v2.8h \n" // shr = v2 is negative
"prfm pldl1keep, [%1, 448] \n"
"uqxtn v0.8b, v0.8h \n"
"subs %w3, %w3, #8 \n" // 8 src pixels per loop
"str d0, [%0], #8 \n" // store 8 pixels
"b.gt 100b \n"
"99: \n"
: "+r"(dst_ptr), // %0
"+r"(src_ptr), // %1
"+r"(src_ptr1), // %2
"+r"(dst_width) // %3
: "r"(y1_fraction), // %4
"r"(y0_fraction), // %5
"r"(shift) // %6
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6");
}
// dr * (256 - sa) / 256 + sr = dr - dr * sa / 256 + sr
void ARGBBlendRow_NEON(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
asm volatile(
"subs %w3, %w3, #8 \n"
"b.lt 89f \n"
// Blend 8 pixels.
"8: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB0
"ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 ARGB1
"subs %w3, %w3, #8 \n" // 8 processed per loop.
"umull v16.8h, v4.8b, v3.8b \n" // db * a
"prfm pldl1keep, [%0, 448] \n"
"umull v17.8h, v5.8b, v3.8b \n" // dg * a
"prfm pldl1keep, [%1, 448] \n"
"umull v18.8h, v6.8b, v3.8b \n" // dr * a
"uqrshrn v16.8b, v16.8h, #8 \n" // db >>= 8
"uqrshrn v17.8b, v17.8h, #8 \n" // dg >>= 8
"uqrshrn v18.8b, v18.8h, #8 \n" // dr >>= 8
"uqsub v4.8b, v4.8b, v16.8b \n" // db - (db * a / 256)
"uqsub v5.8b, v5.8b, v17.8b \n" // dg - (dg * a / 256)
"uqsub v6.8b, v6.8b, v18.8b \n" // dr - (dr * a / 256)
"uqadd v0.8b, v0.8b, v4.8b \n" // + sb
"uqadd v1.8b, v1.8b, v5.8b \n" // + sg
"uqadd v2.8b, v2.8b, v6.8b \n" // + sr
"movi v3.8b, #255 \n" // a = 255
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB
// pixels
"b.ge 8b \n"
"89: \n"
"adds %w3, %w3, #8-1 \n"
"b.lt 99f \n"
// Blend 1 pixels.
"1: \n"
"ld4 {v0.b,v1.b,v2.b,v3.b}[0], [%0], #4 \n" // load 1 pixel
// ARGB0.
"ld4 {v4.b,v5.b,v6.b,v7.b}[0], [%1], #4 \n" // load 1 pixel
// ARGB1.
"subs %w3, %w3, #1 \n" // 1 processed per loop.
"umull v16.8h, v4.8b, v3.8b \n" // db * a
"prfm pldl1keep, [%0, 448] \n"
"umull v17.8h, v5.8b, v3.8b \n" // dg * a
"prfm pldl1keep, [%1, 448] \n"
"umull v18.8h, v6.8b, v3.8b \n" // dr * a
"uqrshrn v16.8b, v16.8h, #8 \n" // db >>= 8
"uqrshrn v17.8b, v17.8h, #8 \n" // dg >>= 8
"uqrshrn v18.8b, v18.8h, #8 \n" // dr >>= 8
"uqsub v4.8b, v4.8b, v16.8b \n" // db - (db * a / 256)
"uqsub v5.8b, v5.8b, v17.8b \n" // dg - (dg * a / 256)
"uqsub v6.8b, v6.8b, v18.8b \n" // dr - (dr * a / 256)
"uqadd v0.8b, v0.8b, v4.8b \n" // + sb
"uqadd v1.8b, v1.8b, v5.8b \n" // + sg
"uqadd v2.8b, v2.8b, v6.8b \n" // + sr
"movi v3.8b, #255 \n" // a = 255
"st4 {v0.b,v1.b,v2.b,v3.b}[0], [%2], #4 \n" // store 1 pixel.
"b.ge 1b \n"
"99: \n"
: "+r"(src_argb), // %0
"+r"(src_argb1), // %1
"+r"(dst_argb), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16",
"v17", "v18");
}
// Attenuate 8 pixels at a time.
void ARGBAttenuateRow_NEON(const uint8_t* src_argb,
uint8_t* dst_argb,
int width) {
asm volatile(
// Attenuate 8 pixels.
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"umull v4.8h, v0.8b, v3.8b \n" // b * a
"prfm pldl1keep, [%0, 448] \n"
"umull v5.8h, v1.8b, v3.8b \n" // g * a
"umull v6.8h, v2.8b, v3.8b \n" // r * a
"uqrshrn v0.8b, v4.8h, #8 \n" // b >>= 8
"uqrshrn v1.8b, v5.8h, #8 \n" // g >>= 8
"uqrshrn v2.8b, v6.8h, #8 \n" // r >>= 8
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6");
}
// Quantize 8 ARGB pixels (32 bytes).
// dst = (dst * scale >> 16) * interval_size + interval_offset;
void ARGBQuantizeRow_NEON(uint8_t* dst_argb,
int scale,
int interval_size,
int interval_offset,
int width) {
asm volatile(
"dup v4.8h, %w2 \n"
"ushr v4.8h, v4.8h, #1 \n" // scale >>= 1
"dup v5.8h, %w3 \n" // interval multiply.
"dup v6.8h, %w4 \n" // interval add
// 8 pixel loop.
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0] \n" // load 8 ARGB.
"subs %w1, %w1, #8 \n" // 8 processed per loop.
"uxtl v0.8h, v0.8b \n" // b (0 .. 255)
"prfm pldl1keep, [%0, 448] \n"
"uxtl v1.8h, v1.8b \n"
"uxtl v2.8h, v2.8b \n"
"sqdmulh v0.8h, v0.8h, v4.8h \n" // b * scale
"sqdmulh v1.8h, v1.8h, v4.8h \n" // g
"sqdmulh v2.8h, v2.8h, v4.8h \n" // r
"mul v0.8h, v0.8h, v5.8h \n" // b * interval_size
"mul v1.8h, v1.8h, v5.8h \n" // g
"mul v2.8h, v2.8h, v5.8h \n" // r
"add v0.8h, v0.8h, v6.8h \n" // b + interval_offset
"add v1.8h, v1.8h, v6.8h \n" // g
"add v2.8h, v2.8h, v6.8h \n" // r
"uqxtn v0.8b, v0.8h \n"
"uqxtn v1.8b, v1.8h \n"
"uqxtn v2.8b, v2.8h \n"
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(dst_argb), // %0
"+r"(width) // %1
: "r"(scale), // %2
"r"(interval_size), // %3
"r"(interval_offset) // %4
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6");
}
// Shade 8 pixels at a time by specified value.
// NOTE vqrdmulh.s16 q10, q10, d0[0] must use a scaler register from 0 to 8.
// Rounding in vqrdmulh does +1 to high if high bit of low s16 is set.
void ARGBShadeRow_NEON(const uint8_t* src_argb,
uint8_t* dst_argb,
int width,
uint32_t value) {
asm volatile(
"dup v0.4s, %w3 \n" // duplicate scale value.
"zip1 v0.8b, v0.8b, v0.8b \n" // v0.8b aarrggbb.
"ushr v0.8h, v0.8h, #1 \n" // scale / 2.
// 8 pixel loop.
"1: \n"
"ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%0], #32 \n" // load 8 ARGB
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"uxtl v4.8h, v4.8b \n" // b (0 .. 255)
"prfm pldl1keep, [%0, 448] \n"
"uxtl v5.8h, v5.8b \n"
"uxtl v6.8h, v6.8b \n"
"uxtl v7.8h, v7.8b \n"
"sqrdmulh v4.8h, v4.8h, v0.h[0] \n" // b * scale * 2
"sqrdmulh v5.8h, v5.8h, v0.h[1] \n" // g
"sqrdmulh v6.8h, v6.8h, v0.h[2] \n" // r
"sqrdmulh v7.8h, v7.8h, v0.h[3] \n" // a
"uqxtn v4.8b, v4.8h \n"
"uqxtn v5.8b, v5.8h \n"
"uqxtn v6.8b, v6.8h \n"
"uqxtn v7.8b, v7.8h \n"
"st4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
: "r"(value) // %3
: "cc", "memory", "v0", "v4", "v5", "v6", "v7");
}
// Convert 8 ARGB pixels (64 bytes) to 8 Gray ARGB pixels
// Similar to ARGBToYJ but stores ARGB.
// C code is (29 * b + 150 * g + 77 * r + 128) >> 8;
void ARGBGrayRow_NEON(const uint8_t* src_argb, uint8_t* dst_argb, int width) {
asm volatile(
"movi v24.8b, #29 \n" // B * 0.1140 coefficient
"movi v25.8b, #150 \n" // G * 0.5870 coefficient
"movi v26.8b, #77 \n" // R * 0.2990 coefficient
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"umull v4.8h, v0.8b, v24.8b \n" // B
"prfm pldl1keep, [%0, 448] \n"
"umlal v4.8h, v1.8b, v25.8b \n" // G
"umlal v4.8h, v2.8b, v26.8b \n" // R
"uqrshrn v0.8b, v4.8h, #8 \n" // 16 bit to 8 bit B
"orr v1.8b, v0.8b, v0.8b \n" // G
"orr v2.8b, v0.8b, v0.8b \n" // R
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%1], #32 \n" // store 8 pixels.
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v24", "v25", "v26");
}
// Convert 8 ARGB pixels (32 bytes) to 8 Sepia ARGB pixels.
// b = (r * 35 + g * 68 + b * 17) >> 7
// g = (r * 45 + g * 88 + b * 22) >> 7
// r = (r * 50 + g * 98 + b * 24) >> 7
void ARGBSepiaRow_NEON(uint8_t* dst_argb, int width) {
asm volatile(
"movi v20.8b, #17 \n" // BB coefficient
"movi v21.8b, #68 \n" // BG coefficient
"movi v22.8b, #35 \n" // BR coefficient
"movi v24.8b, #22 \n" // GB coefficient
"movi v25.8b, #88 \n" // GG coefficient
"movi v26.8b, #45 \n" // GR coefficient
"movi v28.8b, #24 \n" // BB coefficient
"movi v29.8b, #98 \n" // BG coefficient
"movi v30.8b, #50 \n" // BR coefficient
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0] \n" // load 8 ARGB pixels.
"subs %w1, %w1, #8 \n" // 8 processed per loop.
"umull v4.8h, v0.8b, v20.8b \n" // B to Sepia B
"prfm pldl1keep, [%0, 448] \n"
"umlal v4.8h, v1.8b, v21.8b \n" // G
"umlal v4.8h, v2.8b, v22.8b \n" // R
"umull v5.8h, v0.8b, v24.8b \n" // B to Sepia G
"umlal v5.8h, v1.8b, v25.8b \n" // G
"umlal v5.8h, v2.8b, v26.8b \n" // R
"umull v6.8h, v0.8b, v28.8b \n" // B to Sepia R
"umlal v6.8h, v1.8b, v29.8b \n" // G
"umlal v6.8h, v2.8b, v30.8b \n" // R
"uqshrn v0.8b, v4.8h, #7 \n" // 16 bit to 8 bit B
"uqshrn v1.8b, v5.8h, #7 \n" // 16 bit to 8 bit G
"uqshrn v2.8b, v6.8h, #7 \n" // 16 bit to 8 bit R
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // store 8 pixels.
"b.gt 1b \n"
: "+r"(dst_argb), // %0
"+r"(width) // %1
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v20",
"v21", "v22", "v24", "v25", "v26", "v28", "v29", "v30");
}
// Tranform 8 ARGB pixels (32 bytes) with color matrix.
// TODO(fbarchard): Was same as Sepia except matrix is provided. This function
// needs to saturate. Consider doing a non-saturating version.
void ARGBColorMatrixRow_NEON(const uint8_t* src_argb,
uint8_t* dst_argb,
const int8_t* matrix_argb,
int width) {
asm volatile(
"ld1 {v2.16b}, [%3] \n" // load 3 ARGB vectors.
"sxtl v0.8h, v2.8b \n" // B,G coefficients s16.
"sxtl2 v1.8h, v2.16b \n" // R,A coefficients s16.
"1: \n"
"ld4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%0], #32 \n" // load 8 ARGB
"subs %w2, %w2, #8 \n" // 8 processed per loop.
"uxtl v16.8h, v16.8b \n" // b (0 .. 255) 16 bit
"prfm pldl1keep, [%0, 448] \n"
"uxtl v17.8h, v17.8b \n" // g
"uxtl v18.8h, v18.8b \n" // r
"uxtl v19.8h, v19.8b \n" // a
"mul v22.8h, v16.8h, v0.h[0] \n" // B = B * Matrix B
"mul v23.8h, v16.8h, v0.h[4] \n" // G = B * Matrix G
"mul v24.8h, v16.8h, v1.h[0] \n" // R = B * Matrix R
"mul v25.8h, v16.8h, v1.h[4] \n" // A = B * Matrix A
"mul v4.8h, v17.8h, v0.h[1] \n" // B += G * Matrix B
"mul v5.8h, v17.8h, v0.h[5] \n" // G += G * Matrix G
"mul v6.8h, v17.8h, v1.h[1] \n" // R += G * Matrix R
"mul v7.8h, v17.8h, v1.h[5] \n" // A += G * Matrix A
"sqadd v22.8h, v22.8h, v4.8h \n" // Accumulate B
"sqadd v23.8h, v23.8h, v5.8h \n" // Accumulate G
"sqadd v24.8h, v24.8h, v6.8h \n" // Accumulate R
"sqadd v25.8h, v25.8h, v7.8h \n" // Accumulate A
"mul v4.8h, v18.8h, v0.h[2] \n" // B += R * Matrix B
"mul v5.8h, v18.8h, v0.h[6] \n" // G += R * Matrix G
"mul v6.8h, v18.8h, v1.h[2] \n" // R += R * Matrix R
"mul v7.8h, v18.8h, v1.h[6] \n" // A += R * Matrix A
"sqadd v22.8h, v22.8h, v4.8h \n" // Accumulate B
"sqadd v23.8h, v23.8h, v5.8h \n" // Accumulate G
"sqadd v24.8h, v24.8h, v6.8h \n" // Accumulate R
"sqadd v25.8h, v25.8h, v7.8h \n" // Accumulate A
"mul v4.8h, v19.8h, v0.h[3] \n" // B += A * Matrix B
"mul v5.8h, v19.8h, v0.h[7] \n" // G += A * Matrix G
"mul v6.8h, v19.8h, v1.h[3] \n" // R += A * Matrix R
"mul v7.8h, v19.8h, v1.h[7] \n" // A += A * Matrix A
"sqadd v22.8h, v22.8h, v4.8h \n" // Accumulate B
"sqadd v23.8h, v23.8h, v5.8h \n" // Accumulate G
"sqadd v24.8h, v24.8h, v6.8h \n" // Accumulate R
"sqadd v25.8h, v25.8h, v7.8h \n" // Accumulate A
"sqshrun v16.8b, v22.8h, #6 \n" // 16 bit to 8 bit B
"sqshrun v17.8b, v23.8h, #6 \n" // 16 bit to 8 bit G
"sqshrun v18.8b, v24.8h, #6 \n" // 16 bit to 8 bit R
"sqshrun v19.8b, v25.8h, #6 \n" // 16 bit to 8 bit A
"st4 {v16.8b,v17.8b,v18.8b,v19.8b}, [%1], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(dst_argb), // %1
"+r"(width) // %2
: "r"(matrix_argb) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v16",
"v17", "v18", "v19", "v22", "v23", "v24", "v25");
}
// TODO(fbarchard): fix vqshrun in ARGBMultiplyRow_NEON and reenable.
// Multiply 2 rows of ARGB pixels together, 8 pixels at a time.
void ARGBMultiplyRow_NEON(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
asm volatile(
// 8 pixel loop.
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB
"ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 more
"subs %w3, %w3, #8 \n" // 8 processed per loop.
"umull v0.8h, v0.8b, v4.8b \n" // multiply B
"prfm pldl1keep, [%0, 448] \n"
"umull v1.8h, v1.8b, v5.8b \n" // multiply G
"prfm pldl1keep, [%1, 448] \n"
"umull v2.8h, v2.8b, v6.8b \n" // multiply R
"umull v3.8h, v3.8b, v7.8b \n" // multiply A
"rshrn v0.8b, v0.8h, #8 \n" // 16 bit to 8 bit B
"rshrn v1.8b, v1.8h, #8 \n" // 16 bit to 8 bit G
"rshrn v2.8b, v2.8h, #8 \n" // 16 bit to 8 bit R
"rshrn v3.8b, v3.8h, #8 \n" // 16 bit to 8 bit A
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(src_argb1), // %1
"+r"(dst_argb), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
}
// Add 2 rows of ARGB pixels together, 8 pixels at a time.
void ARGBAddRow_NEON(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
asm volatile(
// 8 pixel loop.
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB
"ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 more
"subs %w3, %w3, #8 \n" // 8 processed per loop.
"uqadd v0.8b, v0.8b, v4.8b \n"
"prfm pldl1keep, [%0, 448] \n"
"uqadd v1.8b, v1.8b, v5.8b \n"
"prfm pldl1keep, [%1, 448] \n"
"uqadd v2.8b, v2.8b, v6.8b \n"
"uqadd v3.8b, v3.8b, v7.8b \n"
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(src_argb1), // %1
"+r"(dst_argb), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
}
// Subtract 2 rows of ARGB pixels, 8 pixels at a time.
void ARGBSubtractRow_NEON(const uint8_t* src_argb,
const uint8_t* src_argb1,
uint8_t* dst_argb,
int width) {
asm volatile(
// 8 pixel loop.
"1: \n"
"ld4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%0], #32 \n" // load 8 ARGB
"ld4 {v4.8b,v5.8b,v6.8b,v7.8b}, [%1], #32 \n" // load 8 more
"subs %w3, %w3, #8 \n" // 8 processed per loop.
"uqsub v0.8b, v0.8b, v4.8b \n"
"prfm pldl1keep, [%0, 448] \n"
"uqsub v1.8b, v1.8b, v5.8b \n"
"prfm pldl1keep, [%1, 448] \n"
"uqsub v2.8b, v2.8b, v6.8b \n"
"uqsub v3.8b, v3.8b, v7.8b \n"
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_argb), // %0
"+r"(src_argb1), // %1
"+r"(dst_argb), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
}
// Adds Sobel X and Sobel Y and stores Sobel into ARGB.
// A = 255
// R = Sobel
// G = Sobel
// B = Sobel
void SobelRow_NEON(const uint8_t* src_sobelx,
const uint8_t* src_sobely,
uint8_t* dst_argb,
int width) {
asm volatile(
"movi v3.8b, #255 \n" // alpha
// 8 pixel loop.
"1: \n"
"ld1 {v0.8b}, [%0], #8 \n" // load 8 sobelx.
"ld1 {v1.8b}, [%1], #8 \n" // load 8 sobely.
"subs %w3, %w3, #8 \n" // 8 processed per loop.
"uqadd v0.8b, v0.8b, v1.8b \n" // add
"prfm pldl1keep, [%0, 448] \n"
"orr v1.8b, v0.8b, v0.8b \n"
"prfm pldl1keep, [%1, 448] \n"
"orr v2.8b, v0.8b, v0.8b \n"
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_sobelx), // %0
"+r"(src_sobely), // %1
"+r"(dst_argb), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3");
}
// Adds Sobel X and Sobel Y and stores Sobel into plane.
void SobelToPlaneRow_NEON(const uint8_t* src_sobelx,
const uint8_t* src_sobely,
uint8_t* dst_y,
int width) {
asm volatile(
// 16 pixel loop.
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 16 sobelx.
"ld1 {v1.16b}, [%1], #16 \n" // load 16 sobely.
"subs %w3, %w3, #16 \n" // 16 processed per loop.
"prfm pldl1keep, [%0, 448] \n"
"uqadd v0.16b, v0.16b, v1.16b \n" // add
"prfm pldl1keep, [%1, 448] \n"
"st1 {v0.16b}, [%2], #16 \n" // store 16 pixels.
"b.gt 1b \n"
: "+r"(src_sobelx), // %0
"+r"(src_sobely), // %1
"+r"(dst_y), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1");
}
// Mixes Sobel X, Sobel Y and Sobel into ARGB.
// A = 255
// R = Sobel X
// G = Sobel
// B = Sobel Y
void SobelXYRow_NEON(const uint8_t* src_sobelx,
const uint8_t* src_sobely,
uint8_t* dst_argb,
int width) {
asm volatile(
"movi v3.8b, #255 \n" // alpha
// 8 pixel loop.
"1: \n"
"ld1 {v2.8b}, [%0], #8 \n" // load 8 sobelx.
"ld1 {v0.8b}, [%1], #8 \n" // load 8 sobely.
"subs %w3, %w3, #8 \n" // 8 processed per loop.
"prfm pldl1keep, [%0, 448] \n"
"uqadd v1.8b, v0.8b, v2.8b \n" // add
"prfm pldl1keep, [%1, 448] \n"
"st4 {v0.8b,v1.8b,v2.8b,v3.8b}, [%2], #32 \n" // store 8 ARGB
"b.gt 1b \n"
: "+r"(src_sobelx), // %0
"+r"(src_sobely), // %1
"+r"(dst_argb), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3");
}
// SobelX as a matrix is
// -1 0 1
// -2 0 2
// -1 0 1
void SobelXRow_NEON(const uint8_t* src_y0,
const uint8_t* src_y1,
const uint8_t* src_y2,
uint8_t* dst_sobelx,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.8b}, [%0],%5 \n" // top
"ld1 {v1.8b}, [%0],%6 \n"
"usubl v0.8h, v0.8b, v1.8b \n"
"prfm pldl1keep, [%0, 448] \n"
"ld1 {v2.8b}, [%1],%5 \n" // center * 2
"ld1 {v3.8b}, [%1],%6 \n"
"usubl v1.8h, v2.8b, v3.8b \n"
"prfm pldl1keep, [%1, 448] \n"
"add v0.8h, v0.8h, v1.8h \n"
"add v0.8h, v0.8h, v1.8h \n"
"ld1 {v2.8b}, [%2],%5 \n" // bottom
"ld1 {v3.8b}, [%2],%6 \n"
"subs %w4, %w4, #8 \n" // 8 pixels
"prfm pldl1keep, [%2, 448] \n"
"usubl v1.8h, v2.8b, v3.8b \n"
"add v0.8h, v0.8h, v1.8h \n"
"abs v0.8h, v0.8h \n"
"uqxtn v0.8b, v0.8h \n"
"st1 {v0.8b}, [%3], #8 \n" // store 8 sobelx
"b.gt 1b \n"
: "+r"(src_y0), // %0
"+r"(src_y1), // %1
"+r"(src_y2), // %2
"+r"(dst_sobelx), // %3
"+r"(width) // %4
: "r"(2LL), // %5
"r"(6LL) // %6
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
// SobelY as a matrix is
// -1 -2 -1
// 0 0 0
// 1 2 1
void SobelYRow_NEON(const uint8_t* src_y0,
const uint8_t* src_y1,
uint8_t* dst_sobely,
int width) {
asm volatile(
"1: \n"
"ld1 {v0.8b}, [%0],%4 \n" // left
"ld1 {v1.8b}, [%1],%4 \n"
"usubl v0.8h, v0.8b, v1.8b \n"
"ld1 {v2.8b}, [%0],%4 \n" // center * 2
"ld1 {v3.8b}, [%1],%4 \n"
"usubl v1.8h, v2.8b, v3.8b \n"
"add v0.8h, v0.8h, v1.8h \n"
"add v0.8h, v0.8h, v1.8h \n"
"ld1 {v2.8b}, [%0],%5 \n" // right
"ld1 {v3.8b}, [%1],%5 \n"
"subs %w3, %w3, #8 \n" // 8 pixels
"usubl v1.8h, v2.8b, v3.8b \n"
"prfm pldl1keep, [%0, 448] \n"
"add v0.8h, v0.8h, v1.8h \n"
"prfm pldl1keep, [%1, 448] \n"
"abs v0.8h, v0.8h \n"
"uqxtn v0.8b, v0.8h \n"
"st1 {v0.8b}, [%2], #8 \n" // store 8 sobely
"b.gt 1b \n"
: "+r"(src_y0), // %0
"+r"(src_y1), // %1
"+r"(dst_sobely), // %2
"+r"(width) // %3
: "r"(1LL), // %4
"r"(6LL) // %5
: "cc", "memory", "v0", "v1", "v2", "v3" // Clobber List
);
}
// Caveat - rounds float to half float whereas scaling version truncates.
void HalfFloat1Row_NEON(const uint16_t* src,
uint16_t* dst,
float /*unused*/,
int width) {
asm volatile(
"1: \n"
"ld1 {v1.16b}, [%0], #16 \n" // load 8 shorts
"subs %w2, %w2, #8 \n" // 8 pixels per loop
"uxtl v2.4s, v1.4h \n" // 8 int's
"prfm pldl1keep, [%0, 448] \n"
"uxtl2 v3.4s, v1.8h \n"
"scvtf v2.4s, v2.4s \n" // 8 floats
"scvtf v3.4s, v3.4s \n"
"fcvtn v1.4h, v2.4s \n" // 8 half floats
"fcvtn2 v1.8h, v3.4s \n"
"st1 {v1.16b}, [%1], #16 \n" // store 8 shorts
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width) // %2
:
: "cc", "memory", "v1", "v2", "v3");
}
void HalfFloatRow_NEON(const uint16_t* src,
uint16_t* dst,
float scale,
int width) {
asm volatile(
"1: \n"
"ld1 {v1.16b}, [%0], #16 \n" // load 8 shorts
"subs %w2, %w2, #8 \n" // 8 pixels per loop
"uxtl v2.4s, v1.4h \n" // 8 int's
"prfm pldl1keep, [%0, 448] \n"
"uxtl2 v3.4s, v1.8h \n"
"scvtf v2.4s, v2.4s \n" // 8 floats
"scvtf v3.4s, v3.4s \n"
"fmul v2.4s, v2.4s, %3.s[0] \n" // adjust exponent
"fmul v3.4s, v3.4s, %3.s[0] \n"
"uqshrn v1.4h, v2.4s, #13 \n" // isolate halffloat
"uqshrn2 v1.8h, v3.4s, #13 \n"
"st1 {v1.16b}, [%1], #16 \n" // store 8 shorts
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width) // %2
: "w"(scale * 1.9259299444e-34f) // %3
: "cc", "memory", "v1", "v2", "v3");
}
void ByteToFloatRow_NEON(const uint8_t* src,
float* dst,
float scale,
int width) {
asm volatile(
"1: \n"
"ld1 {v1.8b}, [%0], #8 \n" // load 8 bytes
"subs %w2, %w2, #8 \n" // 8 pixels per loop
"uxtl v1.8h, v1.8b \n" // 8 shorts
"prfm pldl1keep, [%0, 448] \n"
"uxtl v2.4s, v1.4h \n" // 8 ints
"uxtl2 v3.4s, v1.8h \n"
"scvtf v2.4s, v2.4s \n" // 8 floats
"scvtf v3.4s, v3.4s \n"
"fmul v2.4s, v2.4s, %3.s[0] \n" // scale
"fmul v3.4s, v3.4s, %3.s[0] \n"
"st1 {v2.16b, v3.16b}, [%1], #32 \n" // store 8 floats
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width) // %2
: "w"(scale) // %3
: "cc", "memory", "v1", "v2", "v3");
}
float ScaleMaxSamples_NEON(const float* src,
float* dst,
float scale,
int width) {
float fmax;
asm volatile(
"movi v5.4s, #0 \n" // max
"movi v6.4s, #0 \n"
"1: \n"
"ld1 {v1.4s, v2.4s}, [%0], #32 \n" // load 8 samples
"subs %w2, %w2, #8 \n" // 8 processed per loop
"fmul v3.4s, v1.4s, %4.s[0] \n" // scale
"prfm pldl1keep, [%0, 448] \n"
"fmul v4.4s, v2.4s, %4.s[0] \n" // scale
"fmax v5.4s, v5.4s, v1.4s \n" // max
"fmax v6.4s, v6.4s, v2.4s \n"
"st1 {v3.4s, v4.4s}, [%1], #32 \n" // store 8 samples
"b.gt 1b \n"
"fmax v5.4s, v5.4s, v6.4s \n" // max
"fmaxv %s3, v5.4s \n" // signed max acculator
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width), // %2
"=w"(fmax) // %3
: "w"(scale) // %4
: "cc", "memory", "v1", "v2", "v3", "v4", "v5", "v6");
return fmax;
}
float ScaleSumSamples_NEON(const float* src,
float* dst,
float scale,
int width) {
float fsum;
asm volatile(
"movi v5.4s, #0 \n" // max
"movi v6.4s, #0 \n" // max
"1: \n"
"ld1 {v1.4s, v2.4s}, [%0], #32 \n" // load 8 samples
"subs %w2, %w2, #8 \n" // 8 processed per loop
"fmul v3.4s, v1.4s, %4.s[0] \n" // scale
"prfm pldl1keep, [%0, 448] \n"
"fmul v4.4s, v2.4s, %4.s[0] \n"
"fmla v5.4s, v1.4s, v1.4s \n" // sum of squares
"fmla v6.4s, v2.4s, v2.4s \n"
"st1 {v3.4s, v4.4s}, [%1], #32 \n" // store 8 samples
"b.gt 1b \n"
"faddp v5.4s, v5.4s, v6.4s \n"
"faddp v5.4s, v5.4s, v5.4s \n"
"faddp %3.4s, v5.4s, v5.4s \n" // sum
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width), // %2
"=w"(fsum) // %3
: "w"(scale) // %4
: "cc", "memory", "v1", "v2", "v3", "v4", "v5", "v6");
return fsum;
}
void ScaleSamples_NEON(const float* src, float* dst, float scale, int width) {
asm volatile(
"1: \n"
"ld1 {v1.4s, v2.4s}, [%0], #32 \n" // load 8 samples
"prfm pldl1keep, [%0, 448] \n"
"subs %w2, %w2, #8 \n" // 8 processed per loop
"fmul v1.4s, v1.4s, %3.s[0] \n" // scale
"fmul v2.4s, v2.4s, %3.s[0] \n" // scale
"st1 {v1.4s, v2.4s}, [%1], #32 \n" // store 8 samples
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width) // %2
: "w"(scale) // %3
: "cc", "memory", "v1", "v2");
}
// filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row.
void GaussCol_NEON(const uint16_t* src0,
const uint16_t* src1,
const uint16_t* src2,
const uint16_t* src3,
const uint16_t* src4,
uint32_t* dst,
int width) {
asm volatile(
"movi v6.8h, #4 \n" // constant 4
"movi v7.8h, #6 \n" // constant 6
"1: \n"
"ld1 {v1.8h}, [%0], #16 \n" // load 8 samples, 5 rows
"ld1 {v2.8h}, [%4], #16 \n"
"uaddl v0.4s, v1.4h, v2.4h \n" // * 1
"prfm pldl1keep, [%0, 448] \n"
"uaddl2 v1.4s, v1.8h, v2.8h \n" // * 1
"ld1 {v2.8h}, [%1], #16 \n"
"umlal v0.4s, v2.4h, v6.4h \n" // * 4
"prfm pldl1keep, [%1, 448] \n"
"umlal2 v1.4s, v2.8h, v6.8h \n" // * 4
"ld1 {v2.8h}, [%2], #16 \n"
"umlal v0.4s, v2.4h, v7.4h \n" // * 6
"prfm pldl1keep, [%2, 448] \n"
"umlal2 v1.4s, v2.8h, v7.8h \n" // * 6
"ld1 {v2.8h}, [%3], #16 \n"
"umlal v0.4s, v2.4h, v6.4h \n" // * 4
"prfm pldl1keep, [%3, 448] \n"
"umlal2 v1.4s, v2.8h, v6.8h \n" // * 4
"subs %w6, %w6, #8 \n" // 8 processed per loop
"st1 {v0.4s,v1.4s}, [%5], #32 \n" // store 8 samples
"prfm pldl1keep, [%4, 448] \n"
"b.gt 1b \n"
: "+r"(src0), // %0
"+r"(src1), // %1
"+r"(src2), // %2
"+r"(src3), // %3
"+r"(src4), // %4
"+r"(dst), // %5
"+r"(width) // %6
:
: "cc", "memory", "v0", "v1", "v2", "v6", "v7");
}
// filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row.
void GaussRow_NEON(const uint32_t* src, uint16_t* dst, int width) {
const uint32_t* src1 = src + 1;
const uint32_t* src2 = src + 2;
const uint32_t* src3 = src + 3;
asm volatile(
"movi v6.4s, #4 \n" // constant 4
"movi v7.4s, #6 \n" // constant 6
"1: \n"
"ld1 {v0.4s,v1.4s,v2.4s}, [%0], %6 \n" // load 12 source samples
"add v0.4s, v0.4s, v1.4s \n" // * 1
"add v1.4s, v1.4s, v2.4s \n" // * 1
"ld1 {v2.4s,v3.4s}, [%2], #32 \n"
"mla v0.4s, v2.4s, v7.4s \n" // * 6
"mla v1.4s, v3.4s, v7.4s \n" // * 6
"ld1 {v2.4s,v3.4s}, [%1], #32 \n"
"ld1 {v4.4s,v5.4s}, [%3], #32 \n"
"add v2.4s, v2.4s, v4.4s \n" // add rows for * 4
"add v3.4s, v3.4s, v5.4s \n"
"prfm pldl1keep, [%0, 448] \n"
"mla v0.4s, v2.4s, v6.4s \n" // * 4
"mla v1.4s, v3.4s, v6.4s \n" // * 4
"subs %w5, %w5, #8 \n" // 8 processed per loop
"uqrshrn v0.4h, v0.4s, #8 \n" // round and pack
"uqrshrn2 v0.8h, v1.4s, #8 \n"
"st1 {v0.8h}, [%4], #16 \n" // store 8 samples
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(src1), // %1
"+r"(src2), // %2
"+r"(src3), // %3
"+r"(dst), // %4
"+r"(width) // %5
: "r"(32LL) // %6
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
}
static const vecf32 kGaussCoefficients = {4.0f, 6.0f, 1.0f / 256.0f, 0.0f};
// filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row.
void GaussCol_F32_NEON(const float* src0,
const float* src1,
const float* src2,
const float* src3,
const float* src4,
float* dst,
int width) {
asm volatile(
"ld2r {v6.4s, v7.4s}, [%7] \n" // constants 4 and 6
"1: \n"
"ld1 {v0.4s, v1.4s}, [%0], #32 \n" // load 8 samples, 5 rows
"ld1 {v2.4s, v3.4s}, [%1], #32 \n"
"fmla v0.4s, v2.4s, v6.4s \n" // * 4
"ld1 {v4.4s, v5.4s}, [%2], #32 \n"
"fmla v1.4s, v3.4s, v6.4s \n"
"prfm pldl1keep, [%0, 448] \n"
"fmla v0.4s, v4.4s, v7.4s \n" // * 6
"ld1 {v2.4s, v3.4s}, [%3], #32 \n"
"fmla v1.4s, v5.4s, v7.4s \n"
"prfm pldl1keep, [%1, 448] \n"
"fmla v0.4s, v2.4s, v6.4s \n" // * 4
"ld1 {v4.4s, v5.4s}, [%4], #32 \n"
"fmla v1.4s, v3.4s, v6.4s \n"
"prfm pldl1keep, [%2, 448] \n"
"fadd v0.4s, v0.4s, v4.4s \n" // * 1
"prfm pldl1keep, [%3, 448] \n"
"fadd v1.4s, v1.4s, v5.4s \n"
"prfm pldl1keep, [%4, 448] \n"
"subs %w6, %w6, #8 \n" // 8 processed per loop
"st1 {v0.4s, v1.4s}, [%5], #32 \n" // store 8 samples
"b.gt 1b \n"
: "+r"(src0), // %0
"+r"(src1), // %1
"+r"(src2), // %2
"+r"(src3), // %3
"+r"(src4), // %4
"+r"(dst), // %5
"+r"(width) // %6
: "r"(&kGaussCoefficients) // %7
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
}
// filter 5 rows with 1, 4, 6, 4, 1 coefficients to produce 1 row.
void GaussRow_F32_NEON(const float* src, float* dst, int width) {
asm volatile(
"ld3r {v6.4s, v7.4s, v8.4s}, [%3] \n" // constants 4, 6, 1/256
"1: \n"
"ld1 {v0.4s, v1.4s, v2.4s}, [%0], %4 \n" // load 12 samples, 5
// rows
"fadd v0.4s, v0.4s, v1.4s \n" // * 1
"ld1 {v4.4s, v5.4s}, [%0], %5 \n"
"fadd v1.4s, v1.4s, v2.4s \n"
"fmla v0.4s, v4.4s, v7.4s \n" // * 6
"ld1 {v2.4s, v3.4s}, [%0], %4 \n"
"fmla v1.4s, v5.4s, v7.4s \n"
"ld1 {v4.4s, v5.4s}, [%0], %6 \n"
"fadd v2.4s, v2.4s, v4.4s \n"
"fadd v3.4s, v3.4s, v5.4s \n"
"fmla v0.4s, v2.4s, v6.4s \n" // * 4
"fmla v1.4s, v3.4s, v6.4s \n"
"prfm pldl1keep, [%0, 448] \n"
"fmul v0.4s, v0.4s, v8.4s \n" // / 256
"fmul v1.4s, v1.4s, v8.4s \n"
"subs %w2, %w2, #8 \n" // 8 processed per loop
"st1 {v0.4s, v1.4s}, [%1], #32 \n" // store 8 samples
"b.gt 1b \n"
: "+r"(src), // %0
"+r"(dst), // %1
"+r"(width) // %2
: "r"(&kGaussCoefficients), // %3
"r"(8LL), // %4
"r"(-4LL), // %5
"r"(20LL) // %6
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7", "v8");
}
#if LIBYUV_USE_ST3
// Convert biplanar NV21 to packed YUV24
void NV21ToYUV24Row_NEON(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* dst_yuv24,
int width) {
asm volatile(
"1: \n"
"ld1 {v2.16b}, [%0], #16 \n" // load 16 Y values
"ld2 {v0.8b, v1.8b}, [%1], #16 \n" // load 8 VU values
"zip1 v0.16b, v0.16b, v0.16b \n" // replicate V values
"prfm pldl1keep, [%0, 448] \n"
"zip1 v1.16b, v1.16b, v1.16b \n" // replicate U values
"prfm pldl1keep, [%1, 448] \n"
"subs %w3, %w3, #16 \n" // 16 pixels per loop
"st3 {v0.16b,v1.16b,v2.16b}, [%2], #48 \n" // store 16 YUV pixels
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(src_vu), // %1
"+r"(dst_yuv24), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2");
}
#else
static const uvec8 kYUV24Shuffle[3] = {
{16, 17, 0, 16, 17, 1, 18, 19, 2, 18, 19, 3, 20, 21, 4, 20},
{21, 5, 22, 23, 6, 22, 23, 7, 24, 25, 8, 24, 25, 9, 26, 27},
{10, 26, 27, 11, 28, 29, 12, 28, 29, 13, 30, 31, 14, 30, 31, 15}};
// Convert biplanar NV21 to packed YUV24
// NV21 has VU in memory for chroma.
// YUV24 is VUY in memory
void NV21ToYUV24Row_NEON(const uint8_t* src_y,
const uint8_t* src_vu,
uint8_t* dst_yuv24,
int width) {
asm volatile(
"ld1 {v5.16b,v6.16b,v7.16b}, [%4] \n" // 3 shuffler constants
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 16 Y values
"ld1 {v1.16b}, [%1], #16 \n" // load 8 VU values
"tbl v2.16b, {v0.16b,v1.16b}, v5.16b \n" // weave into YUV24
"prfm pldl1keep, [%0, 448] \n"
"tbl v3.16b, {v0.16b,v1.16b}, v6.16b \n"
"prfm pldl1keep, [%1, 448] \n"
"tbl v4.16b, {v0.16b,v1.16b}, v7.16b \n"
"subs %w3, %w3, #16 \n" // 16 pixels per loop
"st1 {v2.16b,v3.16b,v4.16b}, [%2], #48 \n" // store 16 YUV pixels
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(src_vu), // %1
"+r"(dst_yuv24), // %2
"+r"(width) // %3
: "r"(&kYUV24Shuffle[0]) // %4
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
}
#endif // LIBYUV_USE_ST3
// Note ST2 8b version is faster than zip+ST1
// AYUV is VUYA in memory. UV for NV12 is UV order in memory.
void AYUVToUVRow_NEON(const uint8_t* src_ayuv,
int src_stride_ayuv,
uint8_t* dst_uv,
int width) {
const uint8_t* src_ayuv_1 = src_ayuv + src_stride_ayuv;
asm volatile(
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ayuv
"uaddlp v0.8h, v0.16b \n" // V 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n" // U 16 bytes -> 8 shorts.
"ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16
"uadalp v0.8h, v4.16b \n" // V 16 bytes -> 8 shorts.
"uadalp v1.8h, v5.16b \n" // U 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uqrshrn v3.8b, v0.8h, #2 \n" // 2x2 average
"uqrshrn v2.8b, v1.8h, #2 \n"
"subs %w3, %w3, #16 \n" // 16 processed per loop.
"st2 {v2.8b,v3.8b}, [%2], #16 \n" // store 8 pixels UV.
"b.gt 1b \n"
: "+r"(src_ayuv), // %0
"+r"(src_ayuv_1), // %1
"+r"(dst_uv), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
}
void AYUVToVURow_NEON(const uint8_t* src_ayuv,
int src_stride_ayuv,
uint8_t* dst_vu,
int width) {
const uint8_t* src_ayuv_1 = src_ayuv + src_stride_ayuv;
asm volatile(
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16 ayuv
"uaddlp v0.8h, v0.16b \n" // V 16 bytes -> 8 shorts.
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n" // U 16 bytes -> 8 shorts.
"ld4 {v4.16b,v5.16b,v6.16b,v7.16b}, [%1], #64 \n" // load next 16
"uadalp v0.8h, v4.16b \n" // V 16 bytes -> 8 shorts.
"uadalp v1.8h, v5.16b \n" // U 16 bytes -> 8 shorts.
"prfm pldl1keep, [%1, 448] \n"
"uqrshrn v0.8b, v0.8h, #2 \n" // 2x2 average
"uqrshrn v1.8b, v1.8h, #2 \n"
"subs %w3, %w3, #16 \n" // 16 processed per loop.
"st2 {v0.8b,v1.8b}, [%2], #16 \n" // store 8 pixels VU.
"b.gt 1b \n"
: "+r"(src_ayuv), // %0
"+r"(src_ayuv_1), // %1
"+r"(dst_vu), // %2
"+r"(width) // %3
:
: "cc", "memory", "v0", "v1", "v2", "v3", "v4", "v5", "v6", "v7");
}
// Copy row of AYUV Y's into Y
void AYUVToYRow_NEON(const uint8_t* src_ayuv, uint8_t* dst_y, int width) {
asm volatile(
"1: \n"
"ld4 {v0.16b,v1.16b,v2.16b,v3.16b}, [%0], #64 \n" // load 16
"subs %w2, %w2, #16 \n" // 16 pixels per loop
"prfm pldl1keep, [%0, 448] \n"
"st1 {v2.16b}, [%1], #16 \n" // store 16 Y pixels
"b.gt 1b \n"
: "+r"(src_ayuv), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
:
: "cc", "memory", "v0", "v1", "v2", "v3");
}
// Shuffle table for swapping UV bytes.
static const uvec8 kShuffleSwapUV = {1u, 0u, 3u, 2u, 5u, 4u, 7u, 6u,
9u, 8u, 11u, 10u, 13u, 12u, 15u, 14u};
// Convert UV plane of NV12 to VU of NV21.
void SwapUVRow_NEON(const uint8_t* src_uv, uint8_t* dst_vu, int width) {
asm volatile(
"ld1 {v2.16b}, [%3] \n" // shuffler
"1: \n"
"ld1 {v0.16b}, [%0], 16 \n" // load 16 UV values
"ld1 {v1.16b}, [%0], 16 \n"
"subs %w2, %w2, #16 \n" // 16 pixels per loop
"tbl v0.16b, {v0.16b}, v2.16b \n"
"prfm pldl1keep, [%0, 448] \n"
"tbl v1.16b, {v1.16b}, v2.16b \n"
"stp q0, q1, [%1], 32 \n" // store 16 VU pixels
"b.gt 1b \n"
: "+r"(src_uv), // %0
"+r"(dst_vu), // %1
"+r"(width) // %2
: "r"(&kShuffleSwapUV) // %3
: "cc", "memory", "v0", "v1", "v2");
}
void HalfMergeUVRow_NEON(const uint8_t* src_u,
int src_stride_u,
const uint8_t* src_v,
int src_stride_v,
uint8_t* dst_uv,
int width) {
const uint8_t* src_u_1 = src_u + src_stride_u;
const uint8_t* src_v_1 = src_v + src_stride_v;
asm volatile(
"1: \n"
"ld1 {v0.16b}, [%0], #16 \n" // load 16 U values
"ld1 {v1.16b}, [%2], #16 \n" // load 16 V values
"ld1 {v2.16b}, [%1], #16 \n"
"ld1 {v3.16b}, [%3], #16 \n"
"uaddlp v0.8h, v0.16b \n" // half size
"prfm pldl1keep, [%0, 448] \n"
"uaddlp v1.8h, v1.16b \n"
"prfm pldl1keep, [%2, 448] \n"
"uadalp v0.8h, v2.16b \n"
"prfm pldl1keep, [%1, 448] \n"
"uadalp v1.8h, v3.16b \n"
"prfm pldl1keep, [%3, 448] \n"
"uqrshrn v0.8b, v0.8h, #2 \n"
"uqrshrn v1.8b, v1.8h, #2 \n"
"subs %w5, %w5, #16 \n" // 16 src pixels per loop
"st2 {v0.8b, v1.8b}, [%4], #16 \n" // store 8 UV pixels
"b.gt 1b \n"
: "+r"(src_u), // %0
"+r"(src_u_1), // %1
"+r"(src_v), // %2
"+r"(src_v_1), // %3
"+r"(dst_uv), // %4
"+r"(width) // %5
:
: "cc", "memory", "v0", "v1", "v2", "v3");
}
void SplitUVRow_16_NEON(const uint16_t* src_uv,
uint16_t* dst_u,
uint16_t* dst_v,
int depth,
int width) {
int shift = depth - 16; // Negative for right shift.
asm volatile(
"dup v2.8h, %w4 \n"
"1: \n"
"ld2 {v0.8h, v1.8h}, [%0], #32 \n" // load 8 UV
"subs %w3, %w3, #8 \n" // 8 src pixels per loop
"ushl v0.8h, v0.8h, v2.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"ushl v1.8h, v1.8h, v2.8h \n"
"st1 {v0.8h}, [%1], #16 \n" // store 8 U pixels
"st1 {v1.8h}, [%2], #16 \n" // store 8 V pixels
"b.gt 1b \n"
: "+r"(src_uv), // %0
"+r"(dst_u), // %1
"+r"(dst_v), // %2
"+r"(width) // %3
: "r"(shift) // %4
: "cc", "memory", "v0", "v1", "v2");
}
void MultiplyRow_16_NEON(const uint16_t* src_y,
uint16_t* dst_y,
int scale,
int width) {
asm volatile(
"dup v2.8h, %w3 \n"
"1: \n"
"ldp q0, q1, [%0], #32 \n"
"mul v0.8h, v0.8h, v2.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"mul v1.8h, v1.8h, v2.8h \n"
"stp q0, q1, [%1], #32 \n" // store 16 pixels
"subs %w2, %w2, #16 \n" // 16 src pixels per loop
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
: "r"(scale) // %3
: "cc", "memory", "v0", "v1", "v2");
}
void DivideRow_16_NEON(const uint16_t* src_y,
uint16_t* dst_y,
int scale,
int width) {
asm volatile(
"dup v4.8h, %w3 \n"
"1: \n"
"ldp q2, q3, [%0], #32 \n"
"umull v0.4s, v2.4h, v4.4h \n"
"umull2 v1.4s, v2.8h, v4.8h \n"
"umull v2.4s, v3.4h, v4.4h \n"
"umull2 v3.4s, v3.8h, v4.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"shrn v0.4h, v0.4s, #16 \n"
"shrn2 v0.8h, v1.4s, #16 \n"
"shrn v1.4h, v2.4s, #16 \n"
"shrn2 v1.8h, v3.4s, #16 \n"
"stp q0, q1, [%1], #32 \n" // store 16 pixels
"subs %w2, %w2, #16 \n" // 16 src pixels per loop
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
: "r"(scale) // %3
: "cc", "memory", "v0", "v1", "v2", "v3", "v4");
}
// Use scale to convert lsb formats to msb, depending how many bits there are:
// 32768 = 9 bits = shr 1
// 16384 = 10 bits = shr 2
// 4096 = 12 bits = shr 4
// 256 = 16 bits = shr 8
void Convert16To8Row_NEON(const uint16_t* src_y,
uint8_t* dst_y,
int scale,
int width) {
int shift = 15 - __builtin_clz((int32_t)scale); // Negative shl is shr
asm volatile(
"dup v2.8h, %w3 \n"
"1: \n"
"ldp q0, q1, [%0], #32 \n"
"ushl v0.8h, v0.8h, v2.8h \n" // shr = v2 is negative
"ushl v1.8h, v1.8h, v2.8h \n"
"prfm pldl1keep, [%0, 448] \n"
"uqxtn v0.8b, v0.8h \n"
"uqxtn2 v0.16b, v1.8h \n"
"subs %w2, %w2, #16 \n" // 16 src pixels per loop
"str q0, [%1], #16 \n" // store 16 pixels
"b.gt 1b \n"
: "+r"(src_y), // %0
"+r"(dst_y), // %1
"+r"(width) // %2
: "r"(shift) // %3
: "cc", "memory", "v0", "v1", "v2");
}
#endif // !defined(LIBYUV_DISABLE_NEON) && defined(__aarch64__)
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif