Telegram-Android/TMessagesProj/jni/boringssl/crypto/fipsmodule/cipher/e_aes.c
2019-12-31 16:08:08 +03:00

1304 lines
38 KiB
C

/* ====================================================================
* Copyright (c) 2001-2011 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* openssl-core@openssl.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ==================================================================== */
#include <assert.h>
#include <string.h>
#include <openssl/aead.h>
#include <openssl/aes.h>
#include <openssl/cipher.h>
#include <openssl/cpu.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/nid.h>
#include <openssl/rand.h>
#include "internal.h"
#include "../../internal.h"
#include "../aes/internal.h"
#include "../modes/internal.h"
#include "../delocate.h"
OPENSSL_MSVC_PRAGMA(warning(push))
OPENSSL_MSVC_PRAGMA(warning(disable: 4702)) // Unreachable code.
#if defined(BSAES)
static void vpaes_ctr32_encrypt_blocks_with_bsaes(const uint8_t *in,
uint8_t *out, size_t blocks,
const AES_KEY *key,
const uint8_t ivec[16]) {
// |bsaes_ctr32_encrypt_blocks| is faster than |vpaes_ctr32_encrypt_blocks|,
// but it takes at least one full 8-block batch to amortize the conversion.
if (blocks < 8) {
vpaes_ctr32_encrypt_blocks(in, out, blocks, key, ivec);
return;
}
size_t bsaes_blocks = blocks;
if (bsaes_blocks % 8 < 6) {
// |bsaes_ctr32_encrypt_blocks| internally works in 8-block batches. If the
// final batch is too small (under six blocks), it is faster to loop over
// |vpaes_encrypt|. Round |bsaes_blocks| down to a multiple of 8.
bsaes_blocks -= bsaes_blocks % 8;
}
AES_KEY bsaes;
vpaes_encrypt_key_to_bsaes(&bsaes, key);
bsaes_ctr32_encrypt_blocks(in, out, bsaes_blocks, &bsaes, ivec);
OPENSSL_cleanse(&bsaes, sizeof(bsaes));
in += 16 * bsaes_blocks;
out += 16 * bsaes_blocks;
blocks -= bsaes_blocks;
union {
uint32_t u32[4];
uint8_t u8[16];
} new_ivec;
memcpy(new_ivec.u8, ivec, 16);
uint32_t ctr = CRYPTO_bswap4(new_ivec.u32[3]) + bsaes_blocks;
new_ivec.u32[3] = CRYPTO_bswap4(ctr);
// Finish any remaining blocks with |vpaes_ctr32_encrypt_blocks|.
vpaes_ctr32_encrypt_blocks(in, out, blocks, key, new_ivec.u8);
}
#endif // BSAES
typedef struct {
union {
double align;
AES_KEY ks;
} ks;
block128_f block;
union {
cbc128_f cbc;
ctr128_f ctr;
} stream;
} EVP_AES_KEY;
typedef struct {
GCM128_CONTEXT gcm;
union {
double align;
AES_KEY ks;
} ks; // AES key schedule to use
int key_set; // Set if key initialised
int iv_set; // Set if an iv is set
uint8_t *iv; // Temporary IV store
int ivlen; // IV length
int taglen;
int iv_gen; // It is OK to generate IVs
ctr128_f ctr;
} EVP_AES_GCM_CTX;
static int aes_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
const uint8_t *iv, int enc) {
int ret, mode;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
mode = ctx->cipher->flags & EVP_CIPH_MODE_MASK;
if ((mode == EVP_CIPH_ECB_MODE || mode == EVP_CIPH_CBC_MODE) && !enc) {
if (hwaes_capable()) {
ret = aes_hw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = aes_hw_decrypt;
dat->stream.cbc = NULL;
if (mode == EVP_CIPH_CBC_MODE) {
dat->stream.cbc = aes_hw_cbc_encrypt;
}
} else if (bsaes_capable() && mode == EVP_CIPH_CBC_MODE) {
assert(vpaes_capable());
ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
if (ret == 0) {
vpaes_decrypt_key_to_bsaes(&dat->ks.ks, &dat->ks.ks);
}
// If |dat->stream.cbc| is provided, |dat->block| is never used.
dat->block = NULL;
dat->stream.cbc = bsaes_cbc_encrypt;
} else if (vpaes_capable()) {
ret = vpaes_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = vpaes_decrypt;
dat->stream.cbc = NULL;
#if defined(VPAES_CBC)
if (mode == EVP_CIPH_CBC_MODE) {
dat->stream.cbc = vpaes_cbc_encrypt;
}
#endif
} else {
ret = aes_nohw_set_decrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = aes_nohw_decrypt;
dat->stream.cbc = NULL;
#if defined(AES_NOHW_CBC)
if (mode == EVP_CIPH_CBC_MODE) {
dat->stream.cbc = aes_nohw_cbc_encrypt;
}
#endif
}
} else if (hwaes_capable()) {
ret = aes_hw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = aes_hw_encrypt;
dat->stream.cbc = NULL;
if (mode == EVP_CIPH_CBC_MODE) {
dat->stream.cbc = aes_hw_cbc_encrypt;
} else if (mode == EVP_CIPH_CTR_MODE) {
dat->stream.ctr = aes_hw_ctr32_encrypt_blocks;
}
} else if (vpaes_capable()) {
ret = vpaes_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = vpaes_encrypt;
dat->stream.cbc = NULL;
#if defined(VPAES_CBC)
if (mode == EVP_CIPH_CBC_MODE) {
dat->stream.cbc = vpaes_cbc_encrypt;
}
#endif
if (mode == EVP_CIPH_CTR_MODE) {
#if defined(BSAES)
assert(bsaes_capable());
dat->stream.ctr = vpaes_ctr32_encrypt_blocks_with_bsaes;
#elif defined(VPAES_CTR32)
dat->stream.ctr = vpaes_ctr32_encrypt_blocks;
#endif
}
} else {
ret = aes_nohw_set_encrypt_key(key, ctx->key_len * 8, &dat->ks.ks);
dat->block = aes_nohw_encrypt;
dat->stream.cbc = NULL;
#if defined(AES_NOHW_CBC)
if (mode == EVP_CIPH_CBC_MODE) {
dat->stream.cbc = aes_nohw_cbc_encrypt;
}
#endif
}
if (ret < 0) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_AES_KEY_SETUP_FAILED);
return 0;
}
return 1;
}
static int aes_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t len) {
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (dat->stream.cbc) {
(*dat->stream.cbc)(in, out, len, &dat->ks.ks, ctx->iv, ctx->encrypt);
} else if (ctx->encrypt) {
CRYPTO_cbc128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block);
} else {
CRYPTO_cbc128_decrypt(in, out, len, &dat->ks.ks, ctx->iv, dat->block);
}
return 1;
}
static int aes_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t len) {
size_t bl = ctx->cipher->block_size;
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (len < bl) {
return 1;
}
len -= bl;
for (size_t i = 0; i <= len; i += bl) {
(*dat->block)(in + i, out + i, &dat->ks.ks);
}
return 1;
}
static int aes_ctr_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t len) {
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
if (dat->stream.ctr) {
CRYPTO_ctr128_encrypt_ctr32(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf,
&ctx->num, dat->stream.ctr);
} else {
CRYPTO_ctr128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, ctx->buf,
&ctx->num, dat->block);
}
return 1;
}
static int aes_ofb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t len) {
EVP_AES_KEY *dat = (EVP_AES_KEY *)ctx->cipher_data;
CRYPTO_ofb128_encrypt(in, out, len, &dat->ks.ks, ctx->iv, &ctx->num,
dat->block);
return 1;
}
ctr128_f aes_ctr_set_key(AES_KEY *aes_key, GCM128_KEY *gcm_key,
block128_f *out_block, const uint8_t *key,
size_t key_bytes) {
if (hwaes_capable()) {
aes_hw_set_encrypt_key(key, key_bytes * 8, aes_key);
if (gcm_key != NULL) {
CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_hw_encrypt, 1);
}
if (out_block) {
*out_block = aes_hw_encrypt;
}
return aes_hw_ctr32_encrypt_blocks;
}
if (vpaes_capable()) {
vpaes_set_encrypt_key(key, key_bytes * 8, aes_key);
if (out_block) {
*out_block = vpaes_encrypt;
}
if (gcm_key != NULL) {
CRYPTO_gcm128_init_key(gcm_key, aes_key, vpaes_encrypt, 0);
}
#if defined(BSAES)
assert(bsaes_capable());
return vpaes_ctr32_encrypt_blocks_with_bsaes;
#elif defined(VPAES_CTR32)
return vpaes_ctr32_encrypt_blocks;
#else
return NULL;
#endif
}
aes_nohw_set_encrypt_key(key, key_bytes * 8, aes_key);
if (gcm_key != NULL) {
CRYPTO_gcm128_init_key(gcm_key, aes_key, aes_nohw_encrypt, 0);
}
if (out_block) {
*out_block = aes_nohw_encrypt;
}
return NULL;
}
#if defined(OPENSSL_32_BIT)
#define EVP_AES_GCM_CTX_PADDING (4+8)
#else
#define EVP_AES_GCM_CTX_PADDING 8
#endif
static EVP_AES_GCM_CTX *aes_gcm_from_cipher_ctx(EVP_CIPHER_CTX *ctx) {
#if defined(__GNUC__) || defined(__clang__)
OPENSSL_STATIC_ASSERT(
alignof(EVP_AES_GCM_CTX) <= 16,
"EVP_AES_GCM_CTX needs more alignment than this function provides");
#endif
// |malloc| guarantees up to 4-byte alignment on 32-bit and 8-byte alignment
// on 64-bit systems, so we need to adjust to reach 16-byte alignment.
assert(ctx->cipher->ctx_size ==
sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING);
char *ptr = ctx->cipher_data;
#if defined(OPENSSL_32_BIT)
assert((uintptr_t)ptr % 4 == 0);
ptr += (uintptr_t)ptr & 4;
#endif
assert((uintptr_t)ptr % 8 == 0);
ptr += (uintptr_t)ptr & 8;
return (EVP_AES_GCM_CTX *)ptr;
}
static int aes_gcm_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
const uint8_t *iv, int enc) {
EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx);
if (!iv && !key) {
return 1;
}
if (key) {
OPENSSL_memset(&gctx->gcm, 0, sizeof(gctx->gcm));
gctx->ctr = aes_ctr_set_key(&gctx->ks.ks, &gctx->gcm.gcm_key, NULL, key,
ctx->key_len);
// If we have an iv can set it directly, otherwise use saved IV.
if (iv == NULL && gctx->iv_set) {
iv = gctx->iv;
}
if (iv) {
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
gctx->iv_set = 1;
}
gctx->key_set = 1;
} else {
// If key set use IV, otherwise copy
if (gctx->key_set) {
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, iv, gctx->ivlen);
} else {
OPENSSL_memcpy(gctx->iv, iv, gctx->ivlen);
}
gctx->iv_set = 1;
gctx->iv_gen = 0;
}
return 1;
}
static void aes_gcm_cleanup(EVP_CIPHER_CTX *c) {
EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c);
OPENSSL_cleanse(&gctx->gcm, sizeof(gctx->gcm));
if (gctx->iv != c->iv) {
OPENSSL_free(gctx->iv);
}
}
// increment counter (64-bit int) by 1
static void ctr64_inc(uint8_t *counter) {
int n = 8;
uint8_t c;
do {
--n;
c = counter[n];
++c;
counter[n] = c;
if (c) {
return;
}
} while (n);
}
static int aes_gcm_ctrl(EVP_CIPHER_CTX *c, int type, int arg, void *ptr) {
EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(c);
switch (type) {
case EVP_CTRL_INIT:
gctx->key_set = 0;
gctx->iv_set = 0;
gctx->ivlen = c->cipher->iv_len;
gctx->iv = c->iv;
gctx->taglen = -1;
gctx->iv_gen = 0;
return 1;
case EVP_CTRL_AEAD_SET_IVLEN:
if (arg <= 0) {
return 0;
}
// Allocate memory for IV if needed
if (arg > EVP_MAX_IV_LENGTH && arg > gctx->ivlen) {
if (gctx->iv != c->iv) {
OPENSSL_free(gctx->iv);
}
gctx->iv = OPENSSL_malloc(arg);
if (!gctx->iv) {
return 0;
}
}
gctx->ivlen = arg;
return 1;
case EVP_CTRL_AEAD_SET_TAG:
if (arg <= 0 || arg > 16 || c->encrypt) {
return 0;
}
OPENSSL_memcpy(c->buf, ptr, arg);
gctx->taglen = arg;
return 1;
case EVP_CTRL_AEAD_GET_TAG:
if (arg <= 0 || arg > 16 || !c->encrypt || gctx->taglen < 0) {
return 0;
}
OPENSSL_memcpy(ptr, c->buf, arg);
return 1;
case EVP_CTRL_AEAD_SET_IV_FIXED:
// Special case: -1 length restores whole IV
if (arg == -1) {
OPENSSL_memcpy(gctx->iv, ptr, gctx->ivlen);
gctx->iv_gen = 1;
return 1;
}
// Fixed field must be at least 4 bytes and invocation field
// at least 8.
if (arg < 4 || (gctx->ivlen - arg) < 8) {
return 0;
}
if (arg) {
OPENSSL_memcpy(gctx->iv, ptr, arg);
}
if (c->encrypt && !RAND_bytes(gctx->iv + arg, gctx->ivlen - arg)) {
return 0;
}
gctx->iv_gen = 1;
return 1;
case EVP_CTRL_GCM_IV_GEN:
if (gctx->iv_gen == 0 || gctx->key_set == 0) {
return 0;
}
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
if (arg <= 0 || arg > gctx->ivlen) {
arg = gctx->ivlen;
}
OPENSSL_memcpy(ptr, gctx->iv + gctx->ivlen - arg, arg);
// Invocation field will be at least 8 bytes in size and
// so no need to check wrap around or increment more than
// last 8 bytes.
ctr64_inc(gctx->iv + gctx->ivlen - 8);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_GCM_SET_IV_INV:
if (gctx->iv_gen == 0 || gctx->key_set == 0 || c->encrypt) {
return 0;
}
OPENSSL_memcpy(gctx->iv + gctx->ivlen - arg, ptr, arg);
CRYPTO_gcm128_setiv(&gctx->gcm, &gctx->ks.ks, gctx->iv, gctx->ivlen);
gctx->iv_set = 1;
return 1;
case EVP_CTRL_COPY: {
EVP_CIPHER_CTX *out = ptr;
EVP_AES_GCM_CTX *gctx_out = aes_gcm_from_cipher_ctx(out);
// |EVP_CIPHER_CTX_copy| copies this generically, but we must redo it in
// case |out->cipher_data| and |in->cipher_data| are differently aligned.
OPENSSL_memcpy(gctx_out, gctx, sizeof(EVP_AES_GCM_CTX));
if (gctx->iv == c->iv) {
gctx_out->iv = out->iv;
} else {
gctx_out->iv = OPENSSL_malloc(gctx->ivlen);
if (!gctx_out->iv) {
return 0;
}
OPENSSL_memcpy(gctx_out->iv, gctx->iv, gctx->ivlen);
}
return 1;
}
default:
return -1;
}
}
static int aes_gcm_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
size_t len) {
EVP_AES_GCM_CTX *gctx = aes_gcm_from_cipher_ctx(ctx);
// If not set up, return error
if (!gctx->key_set) {
return -1;
}
if (!gctx->iv_set) {
return -1;
}
if (in) {
if (out == NULL) {
if (!CRYPTO_gcm128_aad(&gctx->gcm, in, len)) {
return -1;
}
} else if (ctx->encrypt) {
if (gctx->ctr) {
if (!CRYPTO_gcm128_encrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
gctx->ctr)) {
return -1;
}
} else {
if (!CRYPTO_gcm128_encrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
return -1;
}
}
} else {
if (gctx->ctr) {
if (!CRYPTO_gcm128_decrypt_ctr32(&gctx->gcm, &gctx->ks.ks, in, out, len,
gctx->ctr)) {
return -1;
}
} else {
if (!CRYPTO_gcm128_decrypt(&gctx->gcm, &gctx->ks.ks, in, out, len)) {
return -1;
}
}
}
return len;
} else {
if (!ctx->encrypt) {
if (gctx->taglen < 0 ||
!CRYPTO_gcm128_finish(&gctx->gcm, ctx->buf, gctx->taglen)) {
return -1;
}
gctx->iv_set = 0;
return 0;
}
CRYPTO_gcm128_tag(&gctx->gcm, ctx->buf, 16);
gctx->taglen = 16;
// Don't reuse the IV
gctx->iv_set = 0;
return 0;
}
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_cbc_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_128_cbc;
out->block_size = 16;
out->key_len = 16;
out->iv_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_CBC_MODE;
out->init = aes_init_key;
out->cipher = aes_cbc_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ctr_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_128_ctr;
out->block_size = 1;
out->key_len = 16;
out->iv_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_CTR_MODE;
out->init = aes_init_key;
out->cipher = aes_ctr_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ecb_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_128_ecb;
out->block_size = 16;
out->key_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_ECB_MODE;
out->init = aes_init_key;
out->cipher = aes_ecb_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_ofb_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_128_ofb128;
out->block_size = 1;
out->key_len = 16;
out->iv_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_OFB_MODE;
out->init = aes_init_key;
out->cipher = aes_ofb_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_128_gcm_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_128_gcm;
out->block_size = 1;
out->key_len = 16;
out->iv_len = 12;
out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING;
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY |
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
out->init = aes_gcm_init_key;
out->cipher = aes_gcm_cipher;
out->cleanup = aes_gcm_cleanup;
out->ctrl = aes_gcm_ctrl;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_cbc_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_192_cbc;
out->block_size = 16;
out->key_len = 24;
out->iv_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_CBC_MODE;
out->init = aes_init_key;
out->cipher = aes_cbc_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ctr_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_192_ctr;
out->block_size = 1;
out->key_len = 24;
out->iv_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_CTR_MODE;
out->init = aes_init_key;
out->cipher = aes_ctr_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ecb_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_192_ecb;
out->block_size = 16;
out->key_len = 24;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_ECB_MODE;
out->init = aes_init_key;
out->cipher = aes_ecb_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_ofb_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_192_ofb128;
out->block_size = 1;
out->key_len = 24;
out->iv_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_OFB_MODE;
out->init = aes_init_key;
out->cipher = aes_ofb_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_192_gcm_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_192_gcm;
out->block_size = 1;
out->key_len = 24;
out->iv_len = 12;
out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING;
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY |
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
out->init = aes_gcm_init_key;
out->cipher = aes_gcm_cipher;
out->cleanup = aes_gcm_cleanup;
out->ctrl = aes_gcm_ctrl;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_cbc_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_256_cbc;
out->block_size = 16;
out->key_len = 32;
out->iv_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_CBC_MODE;
out->init = aes_init_key;
out->cipher = aes_cbc_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ctr_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_256_ctr;
out->block_size = 1;
out->key_len = 32;
out->iv_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_CTR_MODE;
out->init = aes_init_key;
out->cipher = aes_ctr_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ecb_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_256_ecb;
out->block_size = 16;
out->key_len = 32;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_ECB_MODE;
out->init = aes_init_key;
out->cipher = aes_ecb_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_ofb_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_256_ofb128;
out->block_size = 1;
out->key_len = 32;
out->iv_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_OFB_MODE;
out->init = aes_init_key;
out->cipher = aes_ofb_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_256_gcm_generic) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_256_gcm;
out->block_size = 1;
out->key_len = 32;
out->iv_len = 12;
out->ctx_size = sizeof(EVP_AES_GCM_CTX) + EVP_AES_GCM_CTX_PADDING;
out->flags = EVP_CIPH_GCM_MODE | EVP_CIPH_CUSTOM_IV | EVP_CIPH_CUSTOM_COPY |
EVP_CIPH_FLAG_CUSTOM_CIPHER | EVP_CIPH_ALWAYS_CALL_INIT |
EVP_CIPH_CTRL_INIT | EVP_CIPH_FLAG_AEAD_CIPHER;
out->init = aes_gcm_init_key;
out->cipher = aes_gcm_cipher;
out->cleanup = aes_gcm_cleanup;
out->ctrl = aes_gcm_ctrl;
}
#if defined(HWAES_ECB)
static int aes_hw_ecb_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out,
const uint8_t *in, size_t len) {
size_t bl = ctx->cipher->block_size;
if (len < bl) {
return 1;
}
aes_hw_ecb_encrypt(in, out, len, ctx->cipher_data, ctx->encrypt);
return 1;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_128_ecb) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_128_ecb;
out->block_size = 16;
out->key_len = 16;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_ECB_MODE;
out->init = aes_init_key;
out->cipher = aes_hw_ecb_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_192_ecb) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_192_ecb;
out->block_size = 16;
out->key_len = 24;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_ECB_MODE;
out->init = aes_init_key;
out->cipher = aes_hw_ecb_cipher;
}
DEFINE_LOCAL_DATA(EVP_CIPHER, aes_hw_256_ecb) {
memset(out, 0, sizeof(EVP_CIPHER));
out->nid = NID_aes_256_ecb;
out->block_size = 16;
out->key_len = 32;
out->ctx_size = sizeof(EVP_AES_KEY);
out->flags = EVP_CIPH_ECB_MODE;
out->init = aes_init_key;
out->cipher = aes_hw_ecb_cipher;
}
#define EVP_ECB_CIPHER_FUNCTION(keybits) \
const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \
if (hwaes_capable()) { \
return aes_hw_##keybits##_ecb(); \
} \
return aes_##keybits##_ecb_generic(); \
}
#else
#define EVP_ECB_CIPHER_FUNCTION(keybits) \
const EVP_CIPHER *EVP_aes_##keybits##_ecb(void) { \
return aes_##keybits##_ecb_generic(); \
}
#endif // HWAES_ECB
#define EVP_CIPHER_FUNCTION(keybits, mode) \
const EVP_CIPHER *EVP_aes_##keybits##_##mode(void) { \
return aes_##keybits##_##mode##_generic(); \
}
EVP_CIPHER_FUNCTION(128, cbc)
EVP_CIPHER_FUNCTION(128, ctr)
EVP_CIPHER_FUNCTION(128, ofb)
EVP_CIPHER_FUNCTION(128, gcm)
EVP_CIPHER_FUNCTION(192, cbc)
EVP_CIPHER_FUNCTION(192, ctr)
EVP_CIPHER_FUNCTION(192, ofb)
EVP_CIPHER_FUNCTION(192, gcm)
EVP_CIPHER_FUNCTION(256, cbc)
EVP_CIPHER_FUNCTION(256, ctr)
EVP_CIPHER_FUNCTION(256, ofb)
EVP_CIPHER_FUNCTION(256, gcm)
EVP_ECB_CIPHER_FUNCTION(128)
EVP_ECB_CIPHER_FUNCTION(192)
EVP_ECB_CIPHER_FUNCTION(256)
#define EVP_AEAD_AES_GCM_TAG_LEN 16
struct aead_aes_gcm_ctx {
union {
double align;
AES_KEY ks;
} ks;
GCM128_KEY gcm_key;
ctr128_f ctr;
};
static int aead_aes_gcm_init_impl(struct aead_aes_gcm_ctx *gcm_ctx,
size_t *out_tag_len, const uint8_t *key,
size_t key_len, size_t tag_len) {
const size_t key_bits = key_len * 8;
if (key_bits != 128 && key_bits != 192 && key_bits != 256) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
return 0; // EVP_AEAD_CTX_init should catch this.
}
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
}
if (tag_len > EVP_AEAD_AES_GCM_TAG_LEN) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
return 0;
}
gcm_ctx->ctr =
aes_ctr_set_key(&gcm_ctx->ks.ks, &gcm_ctx->gcm_key, NULL, key, key_len);
*out_tag_len = tag_len;
return 1;
}
OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
sizeof(struct aead_aes_gcm_ctx),
"AEAD state is too small");
#if defined(__GNUC__) || defined(__clang__)
OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >=
alignof(struct aead_aes_gcm_ctx),
"AEAD state has insufficient alignment");
#endif
static int aead_aes_gcm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t requested_tag_len) {
struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *) &ctx->state;
size_t actual_tag_len;
if (!aead_aes_gcm_init_impl(gcm_ctx, &actual_tag_len, key, key_len,
requested_tag_len)) {
return 0;
}
ctx->tag_len = actual_tag_len;
return 1;
}
static void aead_aes_gcm_cleanup(EVP_AEAD_CTX *ctx) {}
static int aead_aes_gcm_seal_scatter(const EVP_AEAD_CTX *ctx, uint8_t *out,
uint8_t *out_tag, size_t *out_tag_len,
size_t max_out_tag_len,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *extra_in,
size_t extra_in_len,
const uint8_t *ad, size_t ad_len) {
struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *) &ctx->state;
if (extra_in_len + ctx->tag_len < ctx->tag_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
return 0;
}
if (max_out_tag_len < extra_in_len + ctx->tag_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
return 0;
}
if (nonce_len == 0) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
const AES_KEY *key = &gcm_ctx->ks.ks;
GCM128_CONTEXT gcm;
OPENSSL_memset(&gcm, 0, sizeof(gcm));
OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key));
CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
if (ad_len > 0 && !CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
return 0;
}
if (gcm_ctx->ctr) {
if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, in, out, in_len,
gcm_ctx->ctr)) {
return 0;
}
} else {
if (!CRYPTO_gcm128_encrypt(&gcm, key, in, out, in_len)) {
return 0;
}
}
if (extra_in_len) {
if (gcm_ctx->ctr) {
if (!CRYPTO_gcm128_encrypt_ctr32(&gcm, key, extra_in, out_tag,
extra_in_len, gcm_ctx->ctr)) {
return 0;
}
} else {
if (!CRYPTO_gcm128_encrypt(&gcm, key, extra_in, out_tag, extra_in_len)) {
return 0;
}
}
}
CRYPTO_gcm128_tag(&gcm, out_tag + extra_in_len, ctx->tag_len);
*out_tag_len = ctx->tag_len + extra_in_len;
return 1;
}
static int aead_aes_gcm_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
const uint8_t *nonce, size_t nonce_len,
const uint8_t *in, size_t in_len,
const uint8_t *in_tag, size_t in_tag_len,
const uint8_t *ad, size_t ad_len) {
struct aead_aes_gcm_ctx *gcm_ctx = (struct aead_aes_gcm_ctx *) &ctx->state;
uint8_t tag[EVP_AEAD_AES_GCM_TAG_LEN];
if (nonce_len == 0) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE_SIZE);
return 0;
}
if (in_tag_len != ctx->tag_len) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
const AES_KEY *key = &gcm_ctx->ks.ks;
GCM128_CONTEXT gcm;
OPENSSL_memset(&gcm, 0, sizeof(gcm));
OPENSSL_memcpy(&gcm.gcm_key, &gcm_ctx->gcm_key, sizeof(gcm.gcm_key));
CRYPTO_gcm128_setiv(&gcm, key, nonce, nonce_len);
if (!CRYPTO_gcm128_aad(&gcm, ad, ad_len)) {
return 0;
}
if (gcm_ctx->ctr) {
if (!CRYPTO_gcm128_decrypt_ctr32(&gcm, key, in, out, in_len,
gcm_ctx->ctr)) {
return 0;
}
} else {
if (!CRYPTO_gcm128_decrypt(&gcm, key, in, out, in_len)) {
return 0;
}
}
CRYPTO_gcm128_tag(&gcm, tag, ctx->tag_len);
if (CRYPTO_memcmp(tag, in_tag, ctx->tag_len) != 0) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
return 0;
}
return 1;
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 16;
out->nonce_len = 12;
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
out->seal_scatter_supports_extra_in = 1;
out->init = aead_aes_gcm_init;
out->cleanup = aead_aes_gcm_cleanup;
out->seal_scatter = aead_aes_gcm_seal_scatter;
out->open_gather = aead_aes_gcm_open_gather;
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_192_gcm) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 24;
out->nonce_len = 12;
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
out->seal_scatter_supports_extra_in = 1;
out->init = aead_aes_gcm_init;
out->cleanup = aead_aes_gcm_cleanup;
out->seal_scatter = aead_aes_gcm_seal_scatter;
out->open_gather = aead_aes_gcm_open_gather;
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 32;
out->nonce_len = 12;
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
out->seal_scatter_supports_extra_in = 1;
out->init = aead_aes_gcm_init;
out->cleanup = aead_aes_gcm_cleanup;
out->seal_scatter = aead_aes_gcm_seal_scatter;
out->open_gather = aead_aes_gcm_open_gather;
}
struct aead_aes_gcm_tls12_ctx {
struct aead_aes_gcm_ctx gcm_ctx;
uint64_t min_next_nonce;
};
OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
sizeof(struct aead_aes_gcm_tls12_ctx),
"AEAD state is too small");
#if defined(__GNUC__) || defined(__clang__)
OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >=
alignof(struct aead_aes_gcm_tls12_ctx),
"AEAD state has insufficient alignment");
#endif
static int aead_aes_gcm_tls12_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t requested_tag_len) {
struct aead_aes_gcm_tls12_ctx *gcm_ctx =
(struct aead_aes_gcm_tls12_ctx *) &ctx->state;
gcm_ctx->min_next_nonce = 0;
size_t actual_tag_len;
if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len,
requested_tag_len)) {
return 0;
}
ctx->tag_len = actual_tag_len;
return 1;
}
static int aead_aes_gcm_tls12_seal_scatter(
const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
struct aead_aes_gcm_tls12_ctx *gcm_ctx =
(struct aead_aes_gcm_tls12_ctx *) &ctx->state;
if (nonce_len != 12) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
return 0;
}
// The given nonces must be strictly monotonically increasing.
uint64_t given_counter;
OPENSSL_memcpy(&given_counter, nonce + nonce_len - sizeof(given_counter),
sizeof(given_counter));
given_counter = CRYPTO_bswap8(given_counter);
if (given_counter == UINT64_MAX ||
given_counter < gcm_ctx->min_next_nonce) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE);
return 0;
}
gcm_ctx->min_next_nonce = given_counter + 1;
return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len,
max_out_tag_len, nonce, nonce_len, in,
in_len, extra_in, extra_in_len, ad, ad_len);
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls12) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 16;
out->nonce_len = 12;
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
out->seal_scatter_supports_extra_in = 1;
out->init = aead_aes_gcm_tls12_init;
out->cleanup = aead_aes_gcm_cleanup;
out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
out->open_gather = aead_aes_gcm_open_gather;
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls12) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 32;
out->nonce_len = 12;
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
out->seal_scatter_supports_extra_in = 1;
out->init = aead_aes_gcm_tls12_init;
out->cleanup = aead_aes_gcm_cleanup;
out->seal_scatter = aead_aes_gcm_tls12_seal_scatter;
out->open_gather = aead_aes_gcm_open_gather;
}
struct aead_aes_gcm_tls13_ctx {
struct aead_aes_gcm_ctx gcm_ctx;
uint64_t min_next_nonce;
uint64_t mask;
uint8_t first;
};
OPENSSL_STATIC_ASSERT(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
sizeof(struct aead_aes_gcm_tls13_ctx),
"AEAD state is too small");
#if defined(__GNUC__) || defined(__clang__)
OPENSSL_STATIC_ASSERT(alignof(union evp_aead_ctx_st_state) >=
alignof(struct aead_aes_gcm_tls13_ctx),
"AEAD state has insufficient alignment");
#endif
static int aead_aes_gcm_tls13_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
size_t key_len, size_t requested_tag_len) {
struct aead_aes_gcm_tls13_ctx *gcm_ctx =
(struct aead_aes_gcm_tls13_ctx *) &ctx->state;
gcm_ctx->min_next_nonce = 0;
gcm_ctx->first = 1;
size_t actual_tag_len;
if (!aead_aes_gcm_init_impl(&gcm_ctx->gcm_ctx, &actual_tag_len, key, key_len,
requested_tag_len)) {
return 0;
}
ctx->tag_len = actual_tag_len;
return 1;
}
static int aead_aes_gcm_tls13_seal_scatter(
const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
struct aead_aes_gcm_tls13_ctx *gcm_ctx =
(struct aead_aes_gcm_tls13_ctx *) &ctx->state;
if (nonce_len != 12) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
return 0;
}
// The given nonces must be strictly monotonically increasing. See
// https://tools.ietf.org/html/rfc8446#section-5.3 for details of the TLS 1.3
// nonce construction.
uint64_t given_counter;
OPENSSL_memcpy(&given_counter, nonce + nonce_len - sizeof(given_counter),
sizeof(given_counter));
given_counter = CRYPTO_bswap8(given_counter);
if (gcm_ctx->first) {
// In the first call the sequence number will be zero and therefore the
// given nonce will be 0 ^ mask = mask.
gcm_ctx->mask = given_counter;
gcm_ctx->first = 0;
}
given_counter ^= gcm_ctx->mask;
if (given_counter == UINT64_MAX ||
given_counter < gcm_ctx->min_next_nonce) {
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_INVALID_NONCE);
return 0;
}
gcm_ctx->min_next_nonce = given_counter + 1;
return aead_aes_gcm_seal_scatter(ctx, out, out_tag, out_tag_len,
max_out_tag_len, nonce, nonce_len, in,
in_len, extra_in, extra_in_len, ad, ad_len);
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_128_gcm_tls13) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 16;
out->nonce_len = 12;
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
out->seal_scatter_supports_extra_in = 1;
out->init = aead_aes_gcm_tls13_init;
out->cleanup = aead_aes_gcm_cleanup;
out->seal_scatter = aead_aes_gcm_tls13_seal_scatter;
out->open_gather = aead_aes_gcm_open_gather;
}
DEFINE_METHOD_FUNCTION(EVP_AEAD, EVP_aead_aes_256_gcm_tls13) {
memset(out, 0, sizeof(EVP_AEAD));
out->key_len = 32;
out->nonce_len = 12;
out->overhead = EVP_AEAD_AES_GCM_TAG_LEN;
out->max_tag_len = EVP_AEAD_AES_GCM_TAG_LEN;
out->seal_scatter_supports_extra_in = 1;
out->init = aead_aes_gcm_tls13_init;
out->cleanup = aead_aes_gcm_cleanup;
out->seal_scatter = aead_aes_gcm_tls13_seal_scatter;
out->open_gather = aead_aes_gcm_open_gather;
}
int EVP_has_aes_hardware(void) {
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
return hwaes_capable() && crypto_gcm_clmul_enabled();
#elif defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
return hwaes_capable() && CRYPTO_is_ARMv8_PMULL_capable();
#else
return 0;
#endif
}
OPENSSL_MSVC_PRAGMA(warning(pop))