mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-25 09:34:24 +01:00
1080 lines
36 KiB
C
1080 lines
36 KiB
C
/* Originally written by Bodo Moeller for the OpenSSL project.
|
||
* ====================================================================
|
||
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
||
*
|
||
* Redistribution and use in source and binary forms, with or without
|
||
* modification, are permitted provided that the following conditions
|
||
* are met:
|
||
*
|
||
* 1. Redistributions of source code must retain the above copyright
|
||
* notice, this list of conditions and the following disclaimer.
|
||
*
|
||
* 2. Redistributions in binary form must reproduce the above copyright
|
||
* notice, this list of conditions and the following disclaimer in
|
||
* the documentation and/or other materials provided with the
|
||
* distribution.
|
||
*
|
||
* 3. All advertising materials mentioning features or use of this
|
||
* software must display the following acknowledgment:
|
||
* "This product includes software developed by the OpenSSL Project
|
||
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
||
*
|
||
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
||
* endorse or promote products derived from this software without
|
||
* prior written permission. For written permission, please contact
|
||
* openssl-core@openssl.org.
|
||
*
|
||
* 5. Products derived from this software may not be called "OpenSSL"
|
||
* nor may "OpenSSL" appear in their names without prior written
|
||
* permission of the OpenSSL Project.
|
||
*
|
||
* 6. Redistributions of any form whatsoever must retain the following
|
||
* acknowledgment:
|
||
* "This product includes software developed by the OpenSSL Project
|
||
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
||
*
|
||
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
||
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
||
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
||
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
||
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
||
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
||
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
||
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
||
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
||
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
||
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
||
* ====================================================================
|
||
*
|
||
* This product includes cryptographic software written by Eric Young
|
||
* (eay@cryptsoft.com). This product includes software written by Tim
|
||
* Hudson (tjh@cryptsoft.com).
|
||
*
|
||
*/
|
||
/* ====================================================================
|
||
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
||
*
|
||
* Portions of the attached software ("Contribution") are developed by
|
||
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
||
*
|
||
* The Contribution is licensed pursuant to the OpenSSL open source
|
||
* license provided above.
|
||
*
|
||
* The elliptic curve binary polynomial software is originally written by
|
||
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
||
* Laboratories. */
|
||
|
||
#include <openssl/ec.h>
|
||
|
||
#include <assert.h>
|
||
#include <string.h>
|
||
|
||
#include <openssl/bn.h>
|
||
#include <openssl/err.h>
|
||
#include <openssl/mem.h>
|
||
#include <openssl/nid.h>
|
||
|
||
#include "internal.h"
|
||
#include "../../internal.h"
|
||
#include "../bn/internal.h"
|
||
#include "../delocate.h"
|
||
|
||
|
||
static void ec_point_free(EC_POINT *point, int free_group);
|
||
|
||
static const uint8_t kP224Params[6 * 28] = {
|
||
// p
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||
0x00, 0x00, 0x00, 0x01,
|
||
// a
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFE,
|
||
// b
|
||
0xB4, 0x05, 0x0A, 0x85, 0x0C, 0x04, 0xB3, 0xAB, 0xF5, 0x41, 0x32, 0x56,
|
||
0x50, 0x44, 0xB0, 0xB7, 0xD7, 0xBF, 0xD8, 0xBA, 0x27, 0x0B, 0x39, 0x43,
|
||
0x23, 0x55, 0xFF, 0xB4,
|
||
// x
|
||
0xB7, 0x0E, 0x0C, 0xBD, 0x6B, 0xB4, 0xBF, 0x7F, 0x32, 0x13, 0x90, 0xB9,
|
||
0x4A, 0x03, 0xC1, 0xD3, 0x56, 0xC2, 0x11, 0x22, 0x34, 0x32, 0x80, 0xD6,
|
||
0x11, 0x5C, 0x1D, 0x21,
|
||
// y
|
||
0xbd, 0x37, 0x63, 0x88, 0xb5, 0xf7, 0x23, 0xfb, 0x4c, 0x22, 0xdf, 0xe6,
|
||
0xcd, 0x43, 0x75, 0xa0, 0x5a, 0x07, 0x47, 0x64, 0x44, 0xd5, 0x81, 0x99,
|
||
0x85, 0x00, 0x7e, 0x34,
|
||
// order
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0x16, 0xA2, 0xE0, 0xB8, 0xF0, 0x3E, 0x13, 0xDD, 0x29, 0x45,
|
||
0x5C, 0x5C, 0x2A, 0x3D,
|
||
};
|
||
|
||
static const uint8_t kP256Params[6 * 32] = {
|
||
// p
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
|
||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
// a
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00,
|
||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC,
|
||
// b
|
||
0x5A, 0xC6, 0x35, 0xD8, 0xAA, 0x3A, 0x93, 0xE7, 0xB3, 0xEB, 0xBD, 0x55,
|
||
0x76, 0x98, 0x86, 0xBC, 0x65, 0x1D, 0x06, 0xB0, 0xCC, 0x53, 0xB0, 0xF6,
|
||
0x3B, 0xCE, 0x3C, 0x3E, 0x27, 0xD2, 0x60, 0x4B,
|
||
// x
|
||
0x6B, 0x17, 0xD1, 0xF2, 0xE1, 0x2C, 0x42, 0x47, 0xF8, 0xBC, 0xE6, 0xE5,
|
||
0x63, 0xA4, 0x40, 0xF2, 0x77, 0x03, 0x7D, 0x81, 0x2D, 0xEB, 0x33, 0xA0,
|
||
0xF4, 0xA1, 0x39, 0x45, 0xD8, 0x98, 0xC2, 0x96,
|
||
// y
|
||
0x4f, 0xe3, 0x42, 0xe2, 0xfe, 0x1a, 0x7f, 0x9b, 0x8e, 0xe7, 0xeb, 0x4a,
|
||
0x7c, 0x0f, 0x9e, 0x16, 0x2b, 0xce, 0x33, 0x57, 0x6b, 0x31, 0x5e, 0xce,
|
||
0xcb, 0xb6, 0x40, 0x68, 0x37, 0xbf, 0x51, 0xf5,
|
||
// order
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xBC, 0xE6, 0xFA, 0xAD, 0xA7, 0x17, 0x9E, 0x84,
|
||
0xF3, 0xB9, 0xCA, 0xC2, 0xFC, 0x63, 0x25, 0x51,
|
||
};
|
||
|
||
static const uint8_t kP384Params[6 * 48] = {
|
||
// p
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
// a
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0xFF, 0xFF, 0xFF, 0xFC,
|
||
// b
|
||
0xB3, 0x31, 0x2F, 0xA7, 0xE2, 0x3E, 0xE7, 0xE4, 0x98, 0x8E, 0x05, 0x6B,
|
||
0xE3, 0xF8, 0x2D, 0x19, 0x18, 0x1D, 0x9C, 0x6E, 0xFE, 0x81, 0x41, 0x12,
|
||
0x03, 0x14, 0x08, 0x8F, 0x50, 0x13, 0x87, 0x5A, 0xC6, 0x56, 0x39, 0x8D,
|
||
0x8A, 0x2E, 0xD1, 0x9D, 0x2A, 0x85, 0xC8, 0xED, 0xD3, 0xEC, 0x2A, 0xEF,
|
||
// x
|
||
0xAA, 0x87, 0xCA, 0x22, 0xBE, 0x8B, 0x05, 0x37, 0x8E, 0xB1, 0xC7, 0x1E,
|
||
0xF3, 0x20, 0xAD, 0x74, 0x6E, 0x1D, 0x3B, 0x62, 0x8B, 0xA7, 0x9B, 0x98,
|
||
0x59, 0xF7, 0x41, 0xE0, 0x82, 0x54, 0x2A, 0x38, 0x55, 0x02, 0xF2, 0x5D,
|
||
0xBF, 0x55, 0x29, 0x6C, 0x3A, 0x54, 0x5E, 0x38, 0x72, 0x76, 0x0A, 0xB7,
|
||
// y
|
||
0x36, 0x17, 0xde, 0x4a, 0x96, 0x26, 0x2c, 0x6f, 0x5d, 0x9e, 0x98, 0xbf,
|
||
0x92, 0x92, 0xdc, 0x29, 0xf8, 0xf4, 0x1d, 0xbd, 0x28, 0x9a, 0x14, 0x7c,
|
||
0xe9, 0xda, 0x31, 0x13, 0xb5, 0xf0, 0xb8, 0xc0, 0x0a, 0x60, 0xb1, 0xce,
|
||
0x1d, 0x7e, 0x81, 0x9d, 0x7a, 0x43, 0x1d, 0x7c, 0x90, 0xea, 0x0e, 0x5f,
|
||
// order
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xC7, 0x63, 0x4D, 0x81, 0xF4, 0x37, 0x2D, 0xDF, 0x58, 0x1A, 0x0D, 0xB2,
|
||
0x48, 0xB0, 0xA7, 0x7A, 0xEC, 0xEC, 0x19, 0x6A, 0xCC, 0xC5, 0x29, 0x73,
|
||
};
|
||
|
||
static const uint8_t kP521Params[6 * 66] = {
|
||
// p
|
||
0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
// a
|
||
0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFC,
|
||
// b
|
||
0x00, 0x51, 0x95, 0x3E, 0xB9, 0x61, 0x8E, 0x1C, 0x9A, 0x1F, 0x92, 0x9A,
|
||
0x21, 0xA0, 0xB6, 0x85, 0x40, 0xEE, 0xA2, 0xDA, 0x72, 0x5B, 0x99, 0xB3,
|
||
0x15, 0xF3, 0xB8, 0xB4, 0x89, 0x91, 0x8E, 0xF1, 0x09, 0xE1, 0x56, 0x19,
|
||
0x39, 0x51, 0xEC, 0x7E, 0x93, 0x7B, 0x16, 0x52, 0xC0, 0xBD, 0x3B, 0xB1,
|
||
0xBF, 0x07, 0x35, 0x73, 0xDF, 0x88, 0x3D, 0x2C, 0x34, 0xF1, 0xEF, 0x45,
|
||
0x1F, 0xD4, 0x6B, 0x50, 0x3F, 0x00,
|
||
// x
|
||
0x00, 0xC6, 0x85, 0x8E, 0x06, 0xB7, 0x04, 0x04, 0xE9, 0xCD, 0x9E, 0x3E,
|
||
0xCB, 0x66, 0x23, 0x95, 0xB4, 0x42, 0x9C, 0x64, 0x81, 0x39, 0x05, 0x3F,
|
||
0xB5, 0x21, 0xF8, 0x28, 0xAF, 0x60, 0x6B, 0x4D, 0x3D, 0xBA, 0xA1, 0x4B,
|
||
0x5E, 0x77, 0xEF, 0xE7, 0x59, 0x28, 0xFE, 0x1D, 0xC1, 0x27, 0xA2, 0xFF,
|
||
0xA8, 0xDE, 0x33, 0x48, 0xB3, 0xC1, 0x85, 0x6A, 0x42, 0x9B, 0xF9, 0x7E,
|
||
0x7E, 0x31, 0xC2, 0xE5, 0xBD, 0x66,
|
||
// y
|
||
0x01, 0x18, 0x39, 0x29, 0x6a, 0x78, 0x9a, 0x3b, 0xc0, 0x04, 0x5c, 0x8a,
|
||
0x5f, 0xb4, 0x2c, 0x7d, 0x1b, 0xd9, 0x98, 0xf5, 0x44, 0x49, 0x57, 0x9b,
|
||
0x44, 0x68, 0x17, 0xaf, 0xbd, 0x17, 0x27, 0x3e, 0x66, 0x2c, 0x97, 0xee,
|
||
0x72, 0x99, 0x5e, 0xf4, 0x26, 0x40, 0xc5, 0x50, 0xb9, 0x01, 0x3f, 0xad,
|
||
0x07, 0x61, 0x35, 0x3c, 0x70, 0x86, 0xa2, 0x72, 0xc2, 0x40, 0x88, 0xbe,
|
||
0x94, 0x76, 0x9f, 0xd1, 0x66, 0x50,
|
||
// order
|
||
0x01, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
|
||
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFA, 0x51, 0x86,
|
||
0x87, 0x83, 0xBF, 0x2F, 0x96, 0x6B, 0x7F, 0xCC, 0x01, 0x48, 0xF7, 0x09,
|
||
0xA5, 0xD0, 0x3B, 0xB5, 0xC9, 0xB8, 0x89, 0x9C, 0x47, 0xAE, 0xBB, 0x6F,
|
||
0xB7, 0x1E, 0x91, 0x38, 0x64, 0x09,
|
||
};
|
||
|
||
DEFINE_METHOD_FUNCTION(struct built_in_curves, OPENSSL_built_in_curves) {
|
||
// 1.3.132.0.35
|
||
static const uint8_t kOIDP521[] = {0x2b, 0x81, 0x04, 0x00, 0x23};
|
||
out->curves[0].nid = NID_secp521r1;
|
||
out->curves[0].oid = kOIDP521;
|
||
out->curves[0].oid_len = sizeof(kOIDP521);
|
||
out->curves[0].comment = "NIST P-521";
|
||
out->curves[0].param_len = 66;
|
||
out->curves[0].params = kP521Params;
|
||
out->curves[0].method = EC_GFp_mont_method();
|
||
|
||
// 1.3.132.0.34
|
||
static const uint8_t kOIDP384[] = {0x2b, 0x81, 0x04, 0x00, 0x22};
|
||
out->curves[1].nid = NID_secp384r1;
|
||
out->curves[1].oid = kOIDP384;
|
||
out->curves[1].oid_len = sizeof(kOIDP384);
|
||
out->curves[1].comment = "NIST P-384";
|
||
out->curves[1].param_len = 48;
|
||
out->curves[1].params = kP384Params;
|
||
out->curves[1].method = EC_GFp_mont_method();
|
||
|
||
// 1.2.840.10045.3.1.7
|
||
static const uint8_t kOIDP256[] = {0x2a, 0x86, 0x48, 0xce,
|
||
0x3d, 0x03, 0x01, 0x07};
|
||
out->curves[2].nid = NID_X9_62_prime256v1;
|
||
out->curves[2].oid = kOIDP256;
|
||
out->curves[2].oid_len = sizeof(kOIDP256);
|
||
out->curves[2].comment = "NIST P-256";
|
||
out->curves[2].param_len = 32;
|
||
out->curves[2].params = kP256Params;
|
||
out->curves[2].method =
|
||
#if !defined(OPENSSL_NO_ASM) && defined(OPENSSL_X86_64) && \
|
||
!defined(OPENSSL_SMALL)
|
||
EC_GFp_nistz256_method();
|
||
#else
|
||
EC_GFp_nistp256_method();
|
||
#endif
|
||
|
||
// 1.3.132.0.33
|
||
static const uint8_t kOIDP224[] = {0x2b, 0x81, 0x04, 0x00, 0x21};
|
||
out->curves[3].nid = NID_secp224r1;
|
||
out->curves[3].oid = kOIDP224;
|
||
out->curves[3].oid_len = sizeof(kOIDP224);
|
||
out->curves[3].comment = "NIST P-224";
|
||
out->curves[3].param_len = 28;
|
||
out->curves[3].params = kP224Params;
|
||
out->curves[3].method =
|
||
#if defined(BORINGSSL_HAS_UINT128) && !defined(OPENSSL_SMALL)
|
||
EC_GFp_nistp224_method();
|
||
#else
|
||
EC_GFp_mont_method();
|
||
#endif
|
||
}
|
||
|
||
EC_GROUP *ec_group_new(const EC_METHOD *meth) {
|
||
EC_GROUP *ret;
|
||
|
||
if (meth == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_SLOT_FULL);
|
||
return NULL;
|
||
}
|
||
|
||
if (meth->group_init == 0) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
||
return NULL;
|
||
}
|
||
|
||
ret = OPENSSL_malloc(sizeof(EC_GROUP));
|
||
if (ret == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
||
return NULL;
|
||
}
|
||
OPENSSL_memset(ret, 0, sizeof(EC_GROUP));
|
||
|
||
ret->references = 1;
|
||
ret->meth = meth;
|
||
BN_init(&ret->order);
|
||
|
||
if (!meth->group_init(ret)) {
|
||
OPENSSL_free(ret);
|
||
return NULL;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void ec_group_set0_generator(EC_GROUP *group, EC_POINT *generator) {
|
||
assert(group->generator == NULL);
|
||
assert(group == generator->group);
|
||
|
||
// Avoid a reference cycle. |group->generator| does not maintain an owning
|
||
// pointer to |group|.
|
||
group->generator = generator;
|
||
int is_zero = CRYPTO_refcount_dec_and_test_zero(&group->references);
|
||
|
||
assert(!is_zero);
|
||
(void)is_zero;
|
||
}
|
||
|
||
EC_GROUP *EC_GROUP_new_curve_GFp(const BIGNUM *p, const BIGNUM *a,
|
||
const BIGNUM *b, BN_CTX *ctx) {
|
||
if (BN_num_bytes(p) > EC_MAX_BYTES) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_FIELD);
|
||
return NULL;
|
||
}
|
||
|
||
EC_GROUP *ret = ec_group_new(EC_GFp_mont_method());
|
||
if (ret == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
if (ret->meth->group_set_curve == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
||
EC_GROUP_free(ret);
|
||
return NULL;
|
||
}
|
||
if (!ret->meth->group_set_curve(ret, p, a, b, ctx)) {
|
||
EC_GROUP_free(ret);
|
||
return NULL;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
int EC_GROUP_set_generator(EC_GROUP *group, const EC_POINT *generator,
|
||
const BIGNUM *order, const BIGNUM *cofactor) {
|
||
if (group->curve_name != NID_undef || group->generator != NULL ||
|
||
generator->group != group) {
|
||
// |EC_GROUP_set_generator| may only be used with |EC_GROUP|s returned by
|
||
// |EC_GROUP_new_curve_GFp| and may only used once on each group.
|
||
// |generator| must have been created from |EC_GROUP_new_curve_GFp|, not a
|
||
// copy, so that |generator->group->generator| is set correctly.
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
||
return 0;
|
||
}
|
||
|
||
if (BN_num_bytes(order) > EC_MAX_BYTES) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER);
|
||
return 0;
|
||
}
|
||
|
||
// Require a cofactor of one for custom curves, which implies prime order.
|
||
if (!BN_is_one(cofactor)) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_COFACTOR);
|
||
return 0;
|
||
}
|
||
|
||
// Require that p < 2×order. This simplifies some ECDSA operations.
|
||
//
|
||
// Note any curve which did not satisfy this must have been invalid or use a
|
||
// tiny prime (less than 17). See the proof in |field_element_to_scalar| in
|
||
// the ECDSA implementation.
|
||
int ret = 0;
|
||
EC_POINT *copy = NULL;
|
||
BIGNUM *tmp = BN_new();
|
||
if (tmp == NULL ||
|
||
!BN_lshift1(tmp, order)) {
|
||
goto err;
|
||
}
|
||
if (BN_cmp(tmp, &group->field) <= 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INVALID_GROUP_ORDER);
|
||
goto err;
|
||
}
|
||
|
||
copy = EC_POINT_new(group);
|
||
if (copy == NULL ||
|
||
!EC_POINT_copy(copy, generator) ||
|
||
!BN_copy(&group->order, order)) {
|
||
goto err;
|
||
}
|
||
// Store the order in minimal form, so it can be used with |BN_ULONG| arrays.
|
||
bn_set_minimal_width(&group->order);
|
||
|
||
BN_MONT_CTX_free(group->order_mont);
|
||
group->order_mont = BN_MONT_CTX_new_for_modulus(&group->order, NULL);
|
||
if (group->order_mont == NULL) {
|
||
goto err;
|
||
}
|
||
|
||
group->field_greater_than_order = BN_cmp(&group->field, &group->order) > 0;
|
||
if (group->field_greater_than_order) {
|
||
if (!BN_sub(tmp, &group->field, &group->order) ||
|
||
!bn_copy_words(group->field_minus_order.words, group->field.width,
|
||
tmp)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
ec_group_set0_generator(group, copy);
|
||
copy = NULL;
|
||
ret = 1;
|
||
|
||
err:
|
||
EC_POINT_free(copy);
|
||
BN_free(tmp);
|
||
return ret;
|
||
}
|
||
|
||
static EC_GROUP *ec_group_new_from_data(const struct built_in_curve *curve) {
|
||
EC_GROUP *group = NULL;
|
||
EC_POINT *P = NULL;
|
||
BIGNUM *p = NULL, *a = NULL, *b = NULL, *x = NULL, *y = NULL;
|
||
int ok = 0;
|
||
|
||
BN_CTX *ctx = BN_CTX_new();
|
||
if (ctx == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
||
goto err;
|
||
}
|
||
|
||
const unsigned param_len = curve->param_len;
|
||
const uint8_t *params = curve->params;
|
||
|
||
if (!(p = BN_bin2bn(params + 0 * param_len, param_len, NULL)) ||
|
||
!(a = BN_bin2bn(params + 1 * param_len, param_len, NULL)) ||
|
||
!(b = BN_bin2bn(params + 2 * param_len, param_len, NULL))) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
|
||
group = ec_group_new(curve->method);
|
||
if (group == NULL ||
|
||
!group->meth->group_set_curve(group, p, a, b, ctx)) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB);
|
||
goto err;
|
||
}
|
||
|
||
if ((P = EC_POINT_new(group)) == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB);
|
||
goto err;
|
||
}
|
||
|
||
if (!(x = BN_bin2bn(params + 3 * param_len, param_len, NULL)) ||
|
||
!(y = BN_bin2bn(params + 4 * param_len, param_len, NULL))) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
|
||
if (!EC_POINT_set_affine_coordinates_GFp(group, P, x, y, ctx)) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_EC_LIB);
|
||
goto err;
|
||
}
|
||
if (!BN_bin2bn(params + 5 * param_len, param_len, &group->order)) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
|
||
group->field_greater_than_order = BN_cmp(&group->field, &group->order) > 0;
|
||
if (group->field_greater_than_order) {
|
||
if (!BN_sub(p, &group->field, &group->order) ||
|
||
!bn_copy_words(group->field_minus_order.words, group->field.width, p)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
group->order_mont = BN_MONT_CTX_new_for_modulus(&group->order, ctx);
|
||
if (group->order_mont == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_BN_LIB);
|
||
goto err;
|
||
}
|
||
|
||
ec_group_set0_generator(group, P);
|
||
P = NULL;
|
||
ok = 1;
|
||
|
||
err:
|
||
if (!ok) {
|
||
EC_GROUP_free(group);
|
||
group = NULL;
|
||
}
|
||
EC_POINT_free(P);
|
||
BN_CTX_free(ctx);
|
||
BN_free(p);
|
||
BN_free(a);
|
||
BN_free(b);
|
||
BN_free(x);
|
||
BN_free(y);
|
||
return group;
|
||
}
|
||
|
||
// Built-in groups are allocated lazily and static once allocated.
|
||
// TODO(davidben): Make these actually static. https://crbug.com/boringssl/20.
|
||
struct built_in_groups_st {
|
||
EC_GROUP *groups[OPENSSL_NUM_BUILT_IN_CURVES];
|
||
};
|
||
DEFINE_BSS_GET(struct built_in_groups_st, built_in_groups)
|
||
DEFINE_STATIC_MUTEX(built_in_groups_lock)
|
||
|
||
EC_GROUP *EC_GROUP_new_by_curve_name(int nid) {
|
||
struct built_in_groups_st *groups = built_in_groups_bss_get();
|
||
EC_GROUP **group_ptr = NULL;
|
||
const struct built_in_curves *const curves = OPENSSL_built_in_curves();
|
||
const struct built_in_curve *curve = NULL;
|
||
for (size_t i = 0; i < OPENSSL_NUM_BUILT_IN_CURVES; i++) {
|
||
if (curves->curves[i].nid == nid) {
|
||
curve = &curves->curves[i];
|
||
group_ptr = &groups->groups[i];
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (curve == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_UNKNOWN_GROUP);
|
||
return NULL;
|
||
}
|
||
|
||
CRYPTO_STATIC_MUTEX_lock_read(built_in_groups_lock_bss_get());
|
||
EC_GROUP *ret = *group_ptr;
|
||
CRYPTO_STATIC_MUTEX_unlock_read(built_in_groups_lock_bss_get());
|
||
if (ret != NULL) {
|
||
return ret;
|
||
}
|
||
|
||
ret = ec_group_new_from_data(curve);
|
||
if (ret == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
EC_GROUP *to_free = NULL;
|
||
CRYPTO_STATIC_MUTEX_lock_write(built_in_groups_lock_bss_get());
|
||
if (*group_ptr == NULL) {
|
||
*group_ptr = ret;
|
||
// Filling in |ret->curve_name| makes |EC_GROUP_free| and |EC_GROUP_dup|
|
||
// into no-ops. At this point, |ret| is considered static.
|
||
ret->curve_name = nid;
|
||
} else {
|
||
to_free = ret;
|
||
ret = *group_ptr;
|
||
}
|
||
CRYPTO_STATIC_MUTEX_unlock_write(built_in_groups_lock_bss_get());
|
||
|
||
EC_GROUP_free(to_free);
|
||
return ret;
|
||
}
|
||
|
||
void EC_GROUP_free(EC_GROUP *group) {
|
||
if (group == NULL ||
|
||
// Built-in curves are static.
|
||
group->curve_name != NID_undef ||
|
||
!CRYPTO_refcount_dec_and_test_zero(&group->references)) {
|
||
return;
|
||
}
|
||
|
||
if (group->meth->group_finish != NULL) {
|
||
group->meth->group_finish(group);
|
||
}
|
||
|
||
ec_point_free(group->generator, 0 /* don't free group */);
|
||
BN_free(&group->order);
|
||
BN_MONT_CTX_free(group->order_mont);
|
||
|
||
OPENSSL_free(group);
|
||
}
|
||
|
||
EC_GROUP *EC_GROUP_dup(const EC_GROUP *a) {
|
||
if (a == NULL ||
|
||
// Built-in curves are static.
|
||
a->curve_name != NID_undef) {
|
||
return (EC_GROUP *)a;
|
||
}
|
||
|
||
// Groups are logically immutable (but for |EC_GROUP_set_generator| which must
|
||
// be called early on), so we simply take a reference.
|
||
EC_GROUP *group = (EC_GROUP *)a;
|
||
CRYPTO_refcount_inc(&group->references);
|
||
return group;
|
||
}
|
||
|
||
int EC_GROUP_cmp(const EC_GROUP *a, const EC_GROUP *b, BN_CTX *ignored) {
|
||
// Note this function returns 0 if equal and non-zero otherwise.
|
||
if (a == b) {
|
||
return 0;
|
||
}
|
||
if (a->curve_name != b->curve_name) {
|
||
return 1;
|
||
}
|
||
if (a->curve_name != NID_undef) {
|
||
// Built-in curves may be compared by curve name alone.
|
||
return 0;
|
||
}
|
||
|
||
// |a| and |b| are both custom curves. We compare the entire curve
|
||
// structure. If |a| or |b| is incomplete (due to legacy OpenSSL mistakes,
|
||
// custom curve construction is sadly done in two parts) but otherwise not the
|
||
// same object, we consider them always unequal.
|
||
return a->meth != b->meth ||
|
||
a->generator == NULL ||
|
||
b->generator == NULL ||
|
||
BN_cmp(&a->order, &b->order) != 0 ||
|
||
BN_cmp(&a->field, &b->field) != 0 ||
|
||
!ec_felem_equal(a, &a->a, &b->a) ||
|
||
!ec_felem_equal(a, &a->b, &b->b) ||
|
||
ec_GFp_simple_cmp(a, &a->generator->raw, &b->generator->raw) != 0;
|
||
}
|
||
|
||
const EC_POINT *EC_GROUP_get0_generator(const EC_GROUP *group) {
|
||
return group->generator;
|
||
}
|
||
|
||
const BIGNUM *EC_GROUP_get0_order(const EC_GROUP *group) {
|
||
assert(!BN_is_zero(&group->order));
|
||
return &group->order;
|
||
}
|
||
|
||
int EC_GROUP_get_order(const EC_GROUP *group, BIGNUM *order, BN_CTX *ctx) {
|
||
if (BN_copy(order, EC_GROUP_get0_order(group)) == NULL) {
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
int EC_GROUP_order_bits(const EC_GROUP *group) {
|
||
return BN_num_bits(&group->order);
|
||
}
|
||
|
||
int EC_GROUP_get_cofactor(const EC_GROUP *group, BIGNUM *cofactor,
|
||
BN_CTX *ctx) {
|
||
// All |EC_GROUP|s have cofactor 1.
|
||
return BN_set_word(cofactor, 1);
|
||
}
|
||
|
||
int EC_GROUP_get_curve_GFp(const EC_GROUP *group, BIGNUM *out_p, BIGNUM *out_a,
|
||
BIGNUM *out_b, BN_CTX *ctx) {
|
||
return ec_GFp_simple_group_get_curve(group, out_p, out_a, out_b);
|
||
}
|
||
|
||
int EC_GROUP_get_curve_name(const EC_GROUP *group) { return group->curve_name; }
|
||
|
||
unsigned EC_GROUP_get_degree(const EC_GROUP *group) {
|
||
return BN_num_bits(&group->field);
|
||
}
|
||
|
||
const char *EC_curve_nid2nist(int nid) {
|
||
switch (nid) {
|
||
case NID_secp224r1:
|
||
return "P-224";
|
||
case NID_X9_62_prime256v1:
|
||
return "P-256";
|
||
case NID_secp384r1:
|
||
return "P-384";
|
||
case NID_secp521r1:
|
||
return "P-521";
|
||
}
|
||
return NULL;
|
||
}
|
||
|
||
int EC_curve_nist2nid(const char *name) {
|
||
if (strcmp(name, "P-224") == 0) {
|
||
return NID_secp224r1;
|
||
}
|
||
if (strcmp(name, "P-256") == 0) {
|
||
return NID_X9_62_prime256v1;
|
||
}
|
||
if (strcmp(name, "P-384") == 0) {
|
||
return NID_secp384r1;
|
||
}
|
||
if (strcmp(name, "P-521") == 0) {
|
||
return NID_secp521r1;
|
||
}
|
||
return NID_undef;
|
||
}
|
||
|
||
EC_POINT *EC_POINT_new(const EC_GROUP *group) {
|
||
if (group == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
|
||
return NULL;
|
||
}
|
||
|
||
EC_POINT *ret = OPENSSL_malloc(sizeof *ret);
|
||
if (ret == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_MALLOC_FAILURE);
|
||
return NULL;
|
||
}
|
||
|
||
ret->group = EC_GROUP_dup(group);
|
||
ec_GFp_simple_point_init(&ret->raw);
|
||
return ret;
|
||
}
|
||
|
||
static void ec_point_free(EC_POINT *point, int free_group) {
|
||
if (!point) {
|
||
return;
|
||
}
|
||
if (free_group) {
|
||
EC_GROUP_free(point->group);
|
||
}
|
||
OPENSSL_free(point);
|
||
}
|
||
|
||
void EC_POINT_free(EC_POINT *point) {
|
||
ec_point_free(point, 1 /* free group */);
|
||
}
|
||
|
||
void EC_POINT_clear_free(EC_POINT *point) { EC_POINT_free(point); }
|
||
|
||
int EC_POINT_copy(EC_POINT *dest, const EC_POINT *src) {
|
||
if (EC_GROUP_cmp(dest->group, src->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
if (dest == src) {
|
||
return 1;
|
||
}
|
||
ec_GFp_simple_point_copy(&dest->raw, &src->raw);
|
||
return 1;
|
||
}
|
||
|
||
EC_POINT *EC_POINT_dup(const EC_POINT *a, const EC_GROUP *group) {
|
||
if (a == NULL) {
|
||
return NULL;
|
||
}
|
||
|
||
EC_POINT *ret = EC_POINT_new(group);
|
||
if (ret == NULL ||
|
||
!EC_POINT_copy(ret, a)) {
|
||
EC_POINT_free(ret);
|
||
return NULL;
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
int EC_POINT_set_to_infinity(const EC_GROUP *group, EC_POINT *point) {
|
||
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
ec_GFp_simple_point_set_to_infinity(group, &point->raw);
|
||
return 1;
|
||
}
|
||
|
||
int EC_POINT_is_at_infinity(const EC_GROUP *group, const EC_POINT *point) {
|
||
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
return ec_GFp_simple_is_at_infinity(group, &point->raw);
|
||
}
|
||
|
||
int EC_POINT_is_on_curve(const EC_GROUP *group, const EC_POINT *point,
|
||
BN_CTX *ctx) {
|
||
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
return ec_GFp_simple_is_on_curve(group, &point->raw);
|
||
}
|
||
|
||
int EC_POINT_cmp(const EC_GROUP *group, const EC_POINT *a, const EC_POINT *b,
|
||
BN_CTX *ctx) {
|
||
if (EC_GROUP_cmp(group, a->group, NULL) != 0 ||
|
||
EC_GROUP_cmp(group, b->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return -1;
|
||
}
|
||
return ec_GFp_simple_cmp(group, &a->raw, &b->raw);
|
||
}
|
||
|
||
int EC_POINT_get_affine_coordinates_GFp(const EC_GROUP *group,
|
||
const EC_POINT *point, BIGNUM *x,
|
||
BIGNUM *y, BN_CTX *ctx) {
|
||
if (group->meth->point_get_affine_coordinates == 0) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
||
return 0;
|
||
}
|
||
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
EC_FELEM x_felem, y_felem;
|
||
if (!group->meth->point_get_affine_coordinates(group, &point->raw,
|
||
x == NULL ? NULL : &x_felem,
|
||
y == NULL ? NULL : &y_felem) ||
|
||
(x != NULL && !bn_set_words(x, x_felem.words, group->field.width)) ||
|
||
(y != NULL && !bn_set_words(y, y_felem.words, group->field.width))) {
|
||
return 0;
|
||
}
|
||
return 1;
|
||
}
|
||
|
||
int EC_POINT_set_affine_coordinates_GFp(const EC_GROUP *group, EC_POINT *point,
|
||
const BIGNUM *x, const BIGNUM *y,
|
||
BN_CTX *ctx) {
|
||
if (EC_GROUP_cmp(group, point->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
if (!ec_GFp_simple_point_set_affine_coordinates(group, &point->raw, x, y)) {
|
||
return 0;
|
||
}
|
||
|
||
if (!EC_POINT_is_on_curve(group, point, ctx)) {
|
||
// In the event of an error, defend against the caller not checking the
|
||
// return value by setting a known safe value: the base point.
|
||
const EC_POINT *generator = EC_GROUP_get0_generator(group);
|
||
// The generator can be missing if the caller is in the process of
|
||
// constructing an arbitrary group. In this, we give up and hope they're
|
||
// checking the return value.
|
||
if (generator) {
|
||
ec_GFp_simple_point_copy(&point->raw, &generator->raw);
|
||
}
|
||
OPENSSL_PUT_ERROR(EC, EC_R_POINT_IS_NOT_ON_CURVE);
|
||
return 0;
|
||
}
|
||
|
||
return 1;
|
||
}
|
||
|
||
int EC_POINT_add(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
||
const EC_POINT *b, BN_CTX *ctx) {
|
||
if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
|
||
EC_GROUP_cmp(group, a->group, NULL) != 0 ||
|
||
EC_GROUP_cmp(group, b->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
group->meth->add(group, &r->raw, &a->raw, &b->raw);
|
||
return 1;
|
||
}
|
||
|
||
int EC_POINT_dbl(const EC_GROUP *group, EC_POINT *r, const EC_POINT *a,
|
||
BN_CTX *ctx) {
|
||
if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
|
||
EC_GROUP_cmp(group, a->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
group->meth->dbl(group, &r->raw, &a->raw);
|
||
return 1;
|
||
}
|
||
|
||
|
||
int EC_POINT_invert(const EC_GROUP *group, EC_POINT *a, BN_CTX *ctx) {
|
||
if (EC_GROUP_cmp(group, a->group, NULL) != 0) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
ec_GFp_simple_invert(group, &a->raw);
|
||
return 1;
|
||
}
|
||
|
||
static int arbitrary_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
|
||
const BIGNUM *in, BN_CTX *ctx) {
|
||
if (ec_bignum_to_scalar(group, out, in)) {
|
||
return 1;
|
||
}
|
||
|
||
ERR_clear_error();
|
||
|
||
// This is an unusual input, so we do not guarantee constant-time processing.
|
||
const BIGNUM *order = &group->order;
|
||
BN_CTX_start(ctx);
|
||
BIGNUM *tmp = BN_CTX_get(ctx);
|
||
int ok = tmp != NULL &&
|
||
BN_nnmod(tmp, in, order, ctx) &&
|
||
ec_bignum_to_scalar(group, out, tmp);
|
||
BN_CTX_end(ctx);
|
||
return ok;
|
||
}
|
||
|
||
int EC_POINT_mul(const EC_GROUP *group, EC_POINT *r, const BIGNUM *g_scalar,
|
||
const EC_POINT *p, const BIGNUM *p_scalar, BN_CTX *ctx) {
|
||
// Previously, this function set |r| to the point at infinity if there was
|
||
// nothing to multiply. But, nobody should be calling this function with
|
||
// nothing to multiply in the first place.
|
||
if ((g_scalar == NULL && p_scalar == NULL) ||
|
||
(p == NULL) != (p_scalar == NULL)) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
|
||
return 0;
|
||
}
|
||
|
||
if (EC_GROUP_cmp(group, r->group, NULL) != 0 ||
|
||
(p != NULL && EC_GROUP_cmp(group, p->group, NULL) != 0)) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_INCOMPATIBLE_OBJECTS);
|
||
return 0;
|
||
}
|
||
|
||
int ret = 0;
|
||
BN_CTX *new_ctx = NULL;
|
||
if (ctx == NULL) {
|
||
new_ctx = BN_CTX_new();
|
||
if (new_ctx == NULL) {
|
||
goto err;
|
||
}
|
||
ctx = new_ctx;
|
||
}
|
||
|
||
// If both |g_scalar| and |p_scalar| are non-NULL,
|
||
// |ec_point_mul_scalar_public| would share the doublings between the two
|
||
// products, which would be more efficient. However, we conservatively assume
|
||
// the caller needs a constant-time operation. (ECDSA verification does not
|
||
// use this function.)
|
||
//
|
||
// Previously, the low-level constant-time multiplication function aligned
|
||
// with this function's calling convention, but this was misleading. Curves
|
||
// which combined the two multiplications did not avoid the doubling case
|
||
// in the incomplete addition formula and were not constant-time.
|
||
|
||
if (g_scalar != NULL) {
|
||
EC_SCALAR scalar;
|
||
if (!arbitrary_bignum_to_scalar(group, &scalar, g_scalar, ctx) ||
|
||
!ec_point_mul_scalar_base(group, &r->raw, &scalar)) {
|
||
goto err;
|
||
}
|
||
}
|
||
|
||
if (p_scalar != NULL) {
|
||
EC_SCALAR scalar;
|
||
EC_RAW_POINT tmp;
|
||
if (!arbitrary_bignum_to_scalar(group, &scalar, p_scalar, ctx) ||
|
||
!ec_point_mul_scalar(group, &tmp, &p->raw, &scalar)) {
|
||
goto err;
|
||
}
|
||
if (g_scalar == NULL) {
|
||
OPENSSL_memcpy(&r->raw, &tmp, sizeof(EC_RAW_POINT));
|
||
} else {
|
||
group->meth->add(group, &r->raw, &r->raw, &tmp);
|
||
}
|
||
}
|
||
|
||
ret = 1;
|
||
|
||
err:
|
||
BN_CTX_free(new_ctx);
|
||
return ret;
|
||
}
|
||
|
||
int ec_point_mul_scalar_public(const EC_GROUP *group, EC_RAW_POINT *r,
|
||
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
|
||
const EC_SCALAR *p_scalar) {
|
||
if (g_scalar == NULL || p_scalar == NULL || p == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
|
||
return 0;
|
||
}
|
||
|
||
group->meth->mul_public(group, r, g_scalar, p, p_scalar);
|
||
return 1;
|
||
}
|
||
|
||
int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r,
|
||
const EC_RAW_POINT *p, const EC_SCALAR *scalar) {
|
||
if (p == NULL || scalar == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
|
||
return 0;
|
||
}
|
||
|
||
group->meth->mul(group, r, p, scalar);
|
||
return 1;
|
||
}
|
||
|
||
int ec_point_mul_scalar_base(const EC_GROUP *group, EC_RAW_POINT *r,
|
||
const EC_SCALAR *scalar) {
|
||
if (scalar == NULL) {
|
||
OPENSSL_PUT_ERROR(EC, ERR_R_PASSED_NULL_PARAMETER);
|
||
return 0;
|
||
}
|
||
|
||
group->meth->mul_base(group, r, scalar);
|
||
return 1;
|
||
}
|
||
|
||
int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
|
||
const EC_SCALAR *r) {
|
||
return group->meth->cmp_x_coordinate(group, p, r);
|
||
}
|
||
|
||
int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out,
|
||
const EC_RAW_POINT *p) {
|
||
EC_FELEM x;
|
||
// For simplicity, in case of width mismatches between |group->field| and
|
||
// |group->order|, zero any untouched words in |x|.
|
||
OPENSSL_memset(&x, 0, sizeof(x));
|
||
if (!group->meth->point_get_affine_coordinates(group, p, &x, NULL)) {
|
||
return 0;
|
||
}
|
||
|
||
// We must have p < 2×order, assuming p is not tiny (p >= 17). Thus rather we
|
||
// can reduce by performing at most one subtraction.
|
||
//
|
||
// Proof: We only work with prime order curves, so the number of points on
|
||
// the curve is the order. Thus Hasse's theorem gives:
|
||
//
|
||
// |order - (p + 1)| <= 2×sqrt(p)
|
||
// p + 1 - order <= 2×sqrt(p)
|
||
// p + 1 - 2×sqrt(p) <= order
|
||
// p + 1 - 2×(p/4) < order (p/4 > sqrt(p) for p >= 17)
|
||
// p/2 < p/2 + 1 < order
|
||
// p < 2×order
|
||
//
|
||
// Additionally, one can manually check this property for built-in curves. It
|
||
// is enforced for legacy custom curves in |EC_GROUP_set_generator|.
|
||
|
||
// The above does not guarantee |group->field| is not one word larger than
|
||
// |group->order|, so read one extra carry word.
|
||
BN_ULONG carry =
|
||
group->order.width < EC_MAX_WORDS ? x.words[group->order.width] : 0;
|
||
bn_reduce_once(out->words, x.words, carry, group->order.d,
|
||
group->order.width);
|
||
return 1;
|
||
}
|
||
|
||
int ec_point_get_affine_coordinate_bytes(const EC_GROUP *group, uint8_t *out_x,
|
||
uint8_t *out_y, size_t *out_len,
|
||
size_t max_out,
|
||
const EC_RAW_POINT *p) {
|
||
size_t len = BN_num_bytes(&group->field);
|
||
assert(len <= EC_MAX_BYTES);
|
||
if (max_out < len) {
|
||
OPENSSL_PUT_ERROR(EC, EC_R_BUFFER_TOO_SMALL);
|
||
return 0;
|
||
}
|
||
|
||
EC_FELEM x, y;
|
||
if (!group->meth->point_get_affine_coordinates(
|
||
group, p, out_x == NULL ? NULL : &x, out_y == NULL ? NULL : &y)) {
|
||
return 0;
|
||
}
|
||
|
||
if (out_x != NULL) {
|
||
for (size_t i = 0; i < len; i++) {
|
||
out_x[i] = x.bytes[len - i - 1];
|
||
}
|
||
}
|
||
if (out_y != NULL) {
|
||
for (size_t i = 0; i < len; i++) {
|
||
out_y[i] = y.bytes[len - i - 1];
|
||
}
|
||
}
|
||
*out_len = len;
|
||
return 1;
|
||
}
|
||
|
||
void EC_GROUP_set_asn1_flag(EC_GROUP *group, int flag) {}
|
||
|
||
const EC_METHOD *EC_GROUP_method_of(const EC_GROUP *group) {
|
||
// This function exists purely to give callers a way to call
|
||
// |EC_METHOD_get_field_type|. cryptography.io crashes if |EC_GROUP_method_of|
|
||
// returns NULL, so return some other garbage pointer.
|
||
return (const EC_METHOD *)0x12340000;
|
||
}
|
||
|
||
int EC_METHOD_get_field_type(const EC_METHOD *meth) {
|
||
return NID_X9_62_prime_field;
|
||
}
|
||
|
||
void EC_GROUP_set_point_conversion_form(EC_GROUP *group,
|
||
point_conversion_form_t form) {
|
||
if (form != POINT_CONVERSION_UNCOMPRESSED) {
|
||
abort();
|
||
}
|
||
}
|
||
|
||
size_t EC_get_builtin_curves(EC_builtin_curve *out_curves,
|
||
size_t max_num_curves) {
|
||
const struct built_in_curves *const curves = OPENSSL_built_in_curves();
|
||
|
||
for (size_t i = 0; i < max_num_curves && i < OPENSSL_NUM_BUILT_IN_CURVES;
|
||
i++) {
|
||
out_curves[i].comment = curves->curves[i].comment;
|
||
out_curves[i].nid = curves->curves[i].nid;
|
||
}
|
||
|
||
return OPENSSL_NUM_BUILT_IN_CURVES;
|
||
}
|