mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-10 12:02:33 +01:00
503 lines
22 KiB
C
503 lines
22 KiB
C
/* Originally written by Bodo Moeller for the OpenSSL project.
|
|
* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the OpenSSL open source
|
|
* license provided above.
|
|
*
|
|
* The elliptic curve binary polynomial software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
|
* Laboratories. */
|
|
|
|
#ifndef OPENSSL_HEADER_EC_INTERNAL_H
|
|
#define OPENSSL_HEADER_EC_INTERNAL_H
|
|
|
|
#include <openssl/base.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/ex_data.h>
|
|
#include <openssl/thread.h>
|
|
#include <openssl/type_check.h>
|
|
|
|
#include "../bn/internal.h"
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
|
|
// Cap the size of all field elements and scalars, including custom curves, to
|
|
// 66 bytes, large enough to fit secp521r1 and brainpoolP512r1, which appear to
|
|
// be the largest fields anyone plausibly uses.
|
|
#define EC_MAX_BYTES 66
|
|
#define EC_MAX_WORDS ((EC_MAX_BYTES + BN_BYTES - 1) / BN_BYTES)
|
|
|
|
OPENSSL_STATIC_ASSERT(EC_MAX_WORDS <= BN_SMALL_MAX_WORDS,
|
|
"bn_*_small functions not usable");
|
|
|
|
// An EC_SCALAR is an integer fully reduced modulo the order. Only the first
|
|
// |order->width| words are used. An |EC_SCALAR| is specific to an |EC_GROUP|
|
|
// and must not be mixed between groups.
|
|
typedef union {
|
|
// bytes is the representation of the scalar in little-endian order.
|
|
uint8_t bytes[EC_MAX_BYTES];
|
|
BN_ULONG words[EC_MAX_WORDS];
|
|
} EC_SCALAR;
|
|
|
|
// An EC_FELEM represents a field element. Only the first |field->width| words
|
|
// are used. An |EC_FELEM| is specific to an |EC_GROUP| and must not be mixed
|
|
// between groups. Additionally, the representation (whether or not elements are
|
|
// represented in Montgomery-form) may vary between |EC_METHOD|s.
|
|
typedef union {
|
|
// bytes is the representation of the field element in little-endian order.
|
|
uint8_t bytes[EC_MAX_BYTES];
|
|
BN_ULONG words[EC_MAX_WORDS];
|
|
} EC_FELEM;
|
|
|
|
// An EC_RAW_POINT represents an elliptic curve point. Unlike |EC_POINT|, it is
|
|
// a plain struct which can be stack-allocated and needs no cleanup. It is
|
|
// specific to an |EC_GROUP| and must not be mixed between groups.
|
|
typedef struct {
|
|
EC_FELEM X, Y, Z;
|
|
// X, Y, and Z are Jacobian projective coordinates. They represent
|
|
// (X/Z^2, Y/Z^3) if Z != 0 and the point at infinity otherwise.
|
|
} EC_RAW_POINT;
|
|
|
|
struct ec_method_st {
|
|
int (*group_init)(EC_GROUP *);
|
|
void (*group_finish)(EC_GROUP *);
|
|
int (*group_set_curve)(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
|
|
// point_get_affine_coordinates sets |*x| and |*y| to the affine coordinates
|
|
// of |p|. Either |x| or |y| may be NULL to omit it. It returns one on success
|
|
// and zero if |p| is the point at infinity.
|
|
//
|
|
// Note: unlike |EC_FELEM|s used as intermediate values internal to the
|
|
// |EC_METHOD|, |*x| and |*y| are not encoded in Montgomery form.
|
|
int (*point_get_affine_coordinates)(const EC_GROUP *, const EC_RAW_POINT *p,
|
|
EC_FELEM *x, EC_FELEM *y);
|
|
|
|
// add sets |r| to |a| + |b|.
|
|
void (*add)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a,
|
|
const EC_RAW_POINT *b);
|
|
// dbl sets |r| to |a| + |a|.
|
|
void (*dbl)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *a);
|
|
|
|
// mul sets |r| to |scalar|*|p|.
|
|
void (*mul)(const EC_GROUP *group, EC_RAW_POINT *r, const EC_RAW_POINT *p,
|
|
const EC_SCALAR *scalar);
|
|
// mul_base sets |r| to |scalar|*generator.
|
|
void (*mul_base)(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_SCALAR *scalar);
|
|
// mul_public sets |r| to |g_scalar|*generator + |p_scalar|*|p|. It assumes
|
|
// that the inputs are public so there is no concern about leaking their
|
|
// values through timing.
|
|
void (*mul_public)(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
|
|
const EC_SCALAR *p_scalar);
|
|
|
|
// felem_mul and felem_sqr implement multiplication and squaring,
|
|
// respectively, so that the generic |EC_POINT_add| and |EC_POINT_dbl|
|
|
// implementations can work both with |EC_GFp_mont_method| and the tuned
|
|
// operations.
|
|
//
|
|
// TODO(davidben): This constrains |EC_FELEM|'s internal representation, adds
|
|
// many indirect calls in the middle of the generic code, and a bunch of
|
|
// conversions. If p224-64.c were easily convertable to Montgomery form, we
|
|
// could say |EC_FELEM| is always in Montgomery form. If we routed the rest of
|
|
// simple.c to |EC_METHOD|, we could give |EC_POINT| an |EC_METHOD|-specific
|
|
// representation and say |EC_FELEM| is purely a |EC_GFp_mont_method| type.
|
|
void (*felem_mul)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
|
|
const EC_FELEM *b);
|
|
void (*felem_sqr)(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a);
|
|
|
|
int (*bignum_to_felem)(const EC_GROUP *group, EC_FELEM *out,
|
|
const BIGNUM *in);
|
|
int (*felem_to_bignum)(const EC_GROUP *group, BIGNUM *out,
|
|
const EC_FELEM *in);
|
|
|
|
// scalar_inv_montgomery sets |out| to |in|^-1, where both input and output
|
|
// are in Montgomery form.
|
|
void (*scalar_inv_montgomery)(const EC_GROUP *group, EC_SCALAR *out,
|
|
const EC_SCALAR *in);
|
|
|
|
// scalar_inv_montgomery_vartime performs the same computation as
|
|
// |scalar_inv_montgomery|. It further assumes that the inputs are public so
|
|
// there is no concern about leaking their values through timing.
|
|
int (*scalar_inv_montgomery_vartime)(const EC_GROUP *group, EC_SCALAR *out,
|
|
const EC_SCALAR *in);
|
|
|
|
// cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group
|
|
// order, with |r|. It returns one if the values match and zero if |p| is the
|
|
// point at infinity of the values do not match.
|
|
int (*cmp_x_coordinate)(const EC_GROUP *group, const EC_RAW_POINT *p,
|
|
const EC_SCALAR *r);
|
|
} /* EC_METHOD */;
|
|
|
|
const EC_METHOD *EC_GFp_mont_method(void);
|
|
|
|
struct ec_group_st {
|
|
const EC_METHOD *meth;
|
|
|
|
// Unlike all other |EC_POINT|s, |generator| does not own |generator->group|
|
|
// to avoid a reference cycle.
|
|
EC_POINT *generator;
|
|
BIGNUM order;
|
|
|
|
int curve_name; // optional NID for named curve
|
|
|
|
BN_MONT_CTX *order_mont; // data for ECDSA inverse
|
|
|
|
// The following members are handled by the method functions,
|
|
// even if they appear generic
|
|
|
|
BIGNUM field; // For curves over GF(p), this is the modulus.
|
|
|
|
EC_FELEM a, b; // Curve coefficients.
|
|
|
|
// a_is_minus3 is one if |a| is -3 mod |field| and zero otherwise. Point
|
|
// arithmetic is optimized for -3.
|
|
int a_is_minus3;
|
|
|
|
// field_greater_than_order is one if |field| is greate than |order| and zero
|
|
// otherwise.
|
|
int field_greater_than_order;
|
|
|
|
// field_minus_order, if |field_greater_than_order| is true, is |field| minus
|
|
// |order| represented as an |EC_FELEM|. Otherwise, it is zero.
|
|
//
|
|
// Note: unlike |EC_FELEM|s used as intermediate values internal to the
|
|
// |EC_METHOD|, this value is not encoded in Montgomery form.
|
|
EC_FELEM field_minus_order;
|
|
|
|
CRYPTO_refcount_t references;
|
|
|
|
BN_MONT_CTX *mont; // Montgomery structure.
|
|
|
|
EC_FELEM one; // The value one.
|
|
} /* EC_GROUP */;
|
|
|
|
struct ec_point_st {
|
|
// group is an owning reference to |group|, unless this is
|
|
// |group->generator|.
|
|
EC_GROUP *group;
|
|
// raw is the group-specific point data. Functions that take |EC_POINT|
|
|
// typically check consistency with |EC_GROUP| while functions that take
|
|
// |EC_RAW_POINT| do not. Thus accesses to this field should be externally
|
|
// checked for consistency.
|
|
EC_RAW_POINT raw;
|
|
} /* EC_POINT */;
|
|
|
|
EC_GROUP *ec_group_new(const EC_METHOD *meth);
|
|
|
|
// ec_bignum_to_felem converts |in| to an |EC_FELEM|. It returns one on success
|
|
// and zero if |in| is out of range.
|
|
int ec_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out, const BIGNUM *in);
|
|
|
|
// ec_felem_to_bignum converts |in| to a |BIGNUM|. It returns one on success and
|
|
// zero on allocation failure.
|
|
int ec_felem_to_bignum(const EC_GROUP *group, BIGNUM *out, const EC_FELEM *in);
|
|
|
|
// ec_felem_neg sets |out| to -|a|.
|
|
void ec_felem_neg(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a);
|
|
|
|
// ec_felem_add sets |out| to |a| + |b|.
|
|
void ec_felem_add(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a,
|
|
const EC_FELEM *b);
|
|
|
|
// ec_felem_add sets |out| to |a| - |b|.
|
|
void ec_felem_sub(const EC_GROUP *group, EC_FELEM *out, const EC_FELEM *a,
|
|
const EC_FELEM *b);
|
|
|
|
// ec_felem_non_zero_mask returns all ones if |a| is non-zero and all zeros
|
|
// otherwise.
|
|
BN_ULONG ec_felem_non_zero_mask(const EC_GROUP *group, const EC_FELEM *a);
|
|
|
|
// ec_felem_select, in constant time, sets |out| to |a| if |mask| is all ones
|
|
// and |b| if |mask| is all zeros.
|
|
void ec_felem_select(const EC_GROUP *group, EC_FELEM *out, BN_ULONG mask,
|
|
const EC_FELEM *a, const EC_FELEM *b);
|
|
|
|
// ec_felem_equal returns one if |a| and |b| are equal and zero otherwise. It
|
|
// treats |a| and |b| as public and does *not* run in constant time.
|
|
int ec_felem_equal(const EC_GROUP *group, const EC_FELEM *a, const EC_FELEM *b);
|
|
|
|
// ec_bignum_to_scalar converts |in| to an |EC_SCALAR| and writes it to
|
|
// |*out|. It returns one on success and zero if |in| is out of range.
|
|
OPENSSL_EXPORT int ec_bignum_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
|
|
const BIGNUM *in);
|
|
|
|
// ec_random_nonzero_scalar sets |out| to a uniformly selected random value from
|
|
// 1 to |group->order| - 1. It returns one on success and zero on error.
|
|
int ec_random_nonzero_scalar(const EC_GROUP *group, EC_SCALAR *out,
|
|
const uint8_t additional_data[32]);
|
|
|
|
// ec_scalar_equal_vartime returns one if |a| and |b| are equal and zero
|
|
// otherwise. Both values are treated as public.
|
|
int ec_scalar_equal_vartime(const EC_GROUP *group, const EC_SCALAR *a,
|
|
const EC_SCALAR *b);
|
|
|
|
// ec_scalar_is_zero returns one if |a| is zero and zero otherwise.
|
|
int ec_scalar_is_zero(const EC_GROUP *group, const EC_SCALAR *a);
|
|
|
|
// ec_scalar_add sets |r| to |a| + |b|.
|
|
void ec_scalar_add(const EC_GROUP *group, EC_SCALAR *r, const EC_SCALAR *a,
|
|
const EC_SCALAR *b);
|
|
|
|
// ec_scalar_to_montgomery sets |r| to |a| in Montgomery form.
|
|
void ec_scalar_to_montgomery(const EC_GROUP *group, EC_SCALAR *r,
|
|
const EC_SCALAR *a);
|
|
|
|
// ec_scalar_to_montgomery sets |r| to |a| converted from Montgomery form.
|
|
void ec_scalar_from_montgomery(const EC_GROUP *group, EC_SCALAR *r,
|
|
const EC_SCALAR *a);
|
|
|
|
// ec_scalar_mul_montgomery sets |r| to |a| * |b| where inputs and outputs are
|
|
// in Montgomery form.
|
|
void ec_scalar_mul_montgomery(const EC_GROUP *group, EC_SCALAR *r,
|
|
const EC_SCALAR *a, const EC_SCALAR *b);
|
|
|
|
// ec_scalar_mul_montgomery sets |r| to |a|^-1 where inputs and outputs are in
|
|
// Montgomery form.
|
|
void ec_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r,
|
|
const EC_SCALAR *a);
|
|
|
|
// ec_scalar_inv_montgomery_vartime performs the same actions as
|
|
// |ec_scalar_inv_montgomery|, but in variable time.
|
|
int ec_scalar_inv_montgomery_vartime(const EC_GROUP *group, EC_SCALAR *r,
|
|
const EC_SCALAR *a);
|
|
|
|
// ec_point_mul_scalar sets |r| to |p| * |scalar|. Both inputs are considered
|
|
// secret.
|
|
int ec_point_mul_scalar(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_RAW_POINT *p, const EC_SCALAR *scalar);
|
|
|
|
// ec_point_mul_scalar_base sets |r| to generator * |scalar|. |scalar| is
|
|
// treated as secret.
|
|
int ec_point_mul_scalar_base(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_SCALAR *scalar);
|
|
|
|
// ec_point_mul_scalar_public performs the same computation as
|
|
// ec_point_mul_scalar. It further assumes that the inputs are public so
|
|
// there is no concern about leaking their values through timing.
|
|
OPENSSL_EXPORT int ec_point_mul_scalar_public(const EC_GROUP *group,
|
|
EC_RAW_POINT *r,
|
|
const EC_SCALAR *g_scalar,
|
|
const EC_RAW_POINT *p,
|
|
const EC_SCALAR *p_scalar);
|
|
|
|
// ec_cmp_x_coordinate compares the x (affine) coordinate of |p|, mod the group
|
|
// order, with |r|. It returns one if the values match and zero if |p| is the
|
|
// point at infinity of the values do not match.
|
|
int ec_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
|
|
const EC_SCALAR *r);
|
|
|
|
// ec_get_x_coordinate_as_scalar sets |*out| to |p|'s x-coordinate, modulo
|
|
// |group->order|. It returns one on success and zero if |p| is the point at
|
|
// infinity.
|
|
int ec_get_x_coordinate_as_scalar(const EC_GROUP *group, EC_SCALAR *out,
|
|
const EC_RAW_POINT *p);
|
|
|
|
// ec_point_get_affine_coordinate_bytes writes |p|'s affine coordinates to
|
|
// |out_x| and |out_y|, each of which must have at must |max_out| bytes. It sets
|
|
// |*out_len| to the number of bytes written in each buffer. Coordinates are
|
|
// written big-endian and zero-padded to the size of the field.
|
|
//
|
|
// Either of |out_x| or |out_y| may be NULL to omit that coordinate. This
|
|
// function returns one on success and zero on failure.
|
|
int ec_point_get_affine_coordinate_bytes(const EC_GROUP *group, uint8_t *out_x,
|
|
uint8_t *out_y, size_t *out_len,
|
|
size_t max_out, const EC_RAW_POINT *p);
|
|
|
|
// ec_field_element_to_scalar reduces |r| modulo |group->order|. |r| must
|
|
// previously have been reduced modulo |group->field|.
|
|
int ec_field_element_to_scalar(const EC_GROUP *group, BIGNUM *r);
|
|
|
|
void ec_GFp_mont_mul(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_RAW_POINT *p, const EC_SCALAR *scalar);
|
|
void ec_GFp_mont_mul_base(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_SCALAR *scalar);
|
|
|
|
// ec_compute_wNAF writes the modified width-(w+1) Non-Adjacent Form (wNAF) of
|
|
// |scalar| to |out|. |out| must have room for |bits| + 1 elements, each of
|
|
// which will be either zero or odd with an absolute value less than 2^w
|
|
// satisfying
|
|
// scalar = \sum_j out[j]*2^j
|
|
// where at most one of any w+1 consecutive digits is non-zero
|
|
// with the exception that the most significant digit may be only
|
|
// w-1 zeros away from that next non-zero digit.
|
|
void ec_compute_wNAF(const EC_GROUP *group, int8_t *out,
|
|
const EC_SCALAR *scalar, size_t bits, int w);
|
|
|
|
void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
|
|
const EC_SCALAR *p_scalar);
|
|
|
|
// method functions in simple.c
|
|
int ec_GFp_simple_group_init(EC_GROUP *);
|
|
void ec_GFp_simple_group_finish(EC_GROUP *);
|
|
int ec_GFp_simple_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
int ec_GFp_simple_group_get_curve(const EC_GROUP *, BIGNUM *p, BIGNUM *a,
|
|
BIGNUM *b);
|
|
void ec_GFp_simple_point_init(EC_RAW_POINT *);
|
|
void ec_GFp_simple_point_copy(EC_RAW_POINT *, const EC_RAW_POINT *);
|
|
void ec_GFp_simple_point_set_to_infinity(const EC_GROUP *, EC_RAW_POINT *);
|
|
int ec_GFp_simple_point_set_affine_coordinates(const EC_GROUP *, EC_RAW_POINT *,
|
|
const BIGNUM *x,
|
|
const BIGNUM *y);
|
|
void ec_GFp_mont_add(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a,
|
|
const EC_RAW_POINT *b);
|
|
void ec_GFp_mont_dbl(const EC_GROUP *, EC_RAW_POINT *r, const EC_RAW_POINT *a);
|
|
void ec_GFp_simple_invert(const EC_GROUP *, EC_RAW_POINT *);
|
|
int ec_GFp_simple_is_at_infinity(const EC_GROUP *, const EC_RAW_POINT *);
|
|
int ec_GFp_simple_is_on_curve(const EC_GROUP *, const EC_RAW_POINT *);
|
|
int ec_GFp_simple_cmp(const EC_GROUP *, const EC_RAW_POINT *a,
|
|
const EC_RAW_POINT *b);
|
|
void ec_simple_scalar_inv_montgomery(const EC_GROUP *group, EC_SCALAR *r,
|
|
const EC_SCALAR *a);
|
|
|
|
int ec_GFp_simple_mont_inv_mod_ord_vartime(const EC_GROUP *group, EC_SCALAR *r,
|
|
const EC_SCALAR *a);
|
|
|
|
int ec_GFp_simple_cmp_x_coordinate(const EC_GROUP *group, const EC_RAW_POINT *p,
|
|
const EC_SCALAR *r);
|
|
|
|
// method functions in montgomery.c
|
|
int ec_GFp_mont_group_init(EC_GROUP *);
|
|
int ec_GFp_mont_group_set_curve(EC_GROUP *, const BIGNUM *p, const BIGNUM *a,
|
|
const BIGNUM *b, BN_CTX *);
|
|
void ec_GFp_mont_group_finish(EC_GROUP *);
|
|
void ec_GFp_mont_felem_mul(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a,
|
|
const EC_FELEM *b);
|
|
void ec_GFp_mont_felem_sqr(const EC_GROUP *, EC_FELEM *r, const EC_FELEM *a);
|
|
|
|
int ec_GFp_mont_bignum_to_felem(const EC_GROUP *group, EC_FELEM *out,
|
|
const BIGNUM *in);
|
|
int ec_GFp_mont_felem_to_bignum(const EC_GROUP *group, BIGNUM *out,
|
|
const EC_FELEM *in);
|
|
|
|
void ec_GFp_nistp_recode_scalar_bits(uint8_t *sign, uint8_t *digit, uint8_t in);
|
|
|
|
const EC_METHOD *EC_GFp_nistp224_method(void);
|
|
const EC_METHOD *EC_GFp_nistp256_method(void);
|
|
|
|
// EC_GFp_nistz256_method is a GFp method using montgomery multiplication, with
|
|
// x86-64 optimized P256. See http://eprint.iacr.org/2013/816.
|
|
const EC_METHOD *EC_GFp_nistz256_method(void);
|
|
|
|
// An EC_WRAPPED_SCALAR is an |EC_SCALAR| with a parallel |BIGNUM|
|
|
// representation. It exists to support the |EC_KEY_get0_private_key| API.
|
|
typedef struct {
|
|
BIGNUM bignum;
|
|
EC_SCALAR scalar;
|
|
} EC_WRAPPED_SCALAR;
|
|
|
|
struct ec_key_st {
|
|
EC_GROUP *group;
|
|
|
|
EC_POINT *pub_key;
|
|
EC_WRAPPED_SCALAR *priv_key;
|
|
|
|
// fixed_k may contain a specific value of 'k', to be used in ECDSA signing.
|
|
// This is only for the FIPS power-on tests.
|
|
BIGNUM *fixed_k;
|
|
|
|
unsigned int enc_flag;
|
|
point_conversion_form_t conv_form;
|
|
|
|
CRYPTO_refcount_t references;
|
|
|
|
ECDSA_METHOD *ecdsa_meth;
|
|
|
|
CRYPTO_EX_DATA ex_data;
|
|
} /* EC_KEY */;
|
|
|
|
struct built_in_curve {
|
|
int nid;
|
|
const uint8_t *oid;
|
|
uint8_t oid_len;
|
|
// comment is a human-readable string describing the curve.
|
|
const char *comment;
|
|
// param_len is the number of bytes needed to store a field element.
|
|
uint8_t param_len;
|
|
// params points to an array of 6*|param_len| bytes which hold the field
|
|
// elements of the following (in big-endian order): prime, a, b, generator x,
|
|
// generator y, order.
|
|
const uint8_t *params;
|
|
const EC_METHOD *method;
|
|
};
|
|
|
|
#define OPENSSL_NUM_BUILT_IN_CURVES 4
|
|
|
|
struct built_in_curves {
|
|
struct built_in_curve curves[OPENSSL_NUM_BUILT_IN_CURVES];
|
|
};
|
|
|
|
// OPENSSL_built_in_curves returns a pointer to static information about
|
|
// standard curves. The array is terminated with an entry where |nid| is
|
|
// |NID_undef|.
|
|
const struct built_in_curves *OPENSSL_built_in_curves(void);
|
|
|
|
#if defined(__cplusplus)
|
|
} // extern C
|
|
#endif
|
|
|
|
#endif // OPENSSL_HEADER_EC_INTERNAL_H
|