mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-10 12:02:33 +01:00
227 lines
8.3 KiB
C
227 lines
8.3 KiB
C
/* Originally written by Bodo Moeller for the OpenSSL project.
|
|
* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the OpenSSL open source
|
|
* license provided above.
|
|
*
|
|
* The elliptic curve binary polynomial software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems
|
|
* Laboratories. */
|
|
|
|
#include <openssl/ec.h>
|
|
|
|
#include <assert.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#include "internal.h"
|
|
#include "../bn/internal.h"
|
|
#include "../../internal.h"
|
|
|
|
|
|
// This file implements the wNAF-based interleaving multi-exponentiation method
|
|
// at:
|
|
// http://link.springer.com/chapter/10.1007%2F3-540-45537-X_13
|
|
// http://www.bmoeller.de/pdf/TI-01-08.multiexp.pdf
|
|
|
|
void ec_compute_wNAF(const EC_GROUP *group, int8_t *out,
|
|
const EC_SCALAR *scalar, size_t bits, int w) {
|
|
// 'int8_t' can represent integers with absolute values less than 2^7.
|
|
assert(0 < w && w <= 7);
|
|
assert(bits != 0);
|
|
int bit = 1 << w; // 2^w, at most 128
|
|
int next_bit = bit << 1; // 2^(w+1), at most 256
|
|
int mask = next_bit - 1; // at most 255
|
|
|
|
int window_val = scalar->words[0] & mask;
|
|
for (size_t j = 0; j < bits + 1; j++) {
|
|
assert(0 <= window_val && window_val <= next_bit);
|
|
int digit = 0;
|
|
if (window_val & 1) {
|
|
assert(0 < window_val && window_val < next_bit);
|
|
if (window_val & bit) {
|
|
digit = window_val - next_bit;
|
|
// We know -next_bit < digit < 0 and window_val - digit = next_bit.
|
|
|
|
// modified wNAF
|
|
if (j + w + 1 >= bits) {
|
|
// special case for generating modified wNAFs:
|
|
// no new bits will be added into window_val,
|
|
// so using a positive digit here will decrease
|
|
// the total length of the representation
|
|
|
|
digit = window_val & (mask >> 1);
|
|
// We know 0 < digit < bit and window_val - digit = bit.
|
|
}
|
|
} else {
|
|
digit = window_val;
|
|
// We know 0 < digit < bit and window_val - digit = 0.
|
|
}
|
|
|
|
window_val -= digit;
|
|
|
|
// Now window_val is 0 or 2^(w+1) in standard wNAF generation.
|
|
// For modified window NAFs, it may also be 2^w.
|
|
//
|
|
// See the comments above for the derivation of each of these bounds.
|
|
assert(window_val == 0 || window_val == next_bit || window_val == bit);
|
|
assert(-bit < digit && digit < bit);
|
|
|
|
// window_val was odd, so digit is also odd.
|
|
assert(digit & 1);
|
|
}
|
|
|
|
out[j] = digit;
|
|
|
|
// Incorporate the next bit. Previously, |window_val| <= |next_bit|, so if
|
|
// we shift and add at most one copy of |bit|, this will continue to hold
|
|
// afterwards.
|
|
window_val >>= 1;
|
|
window_val +=
|
|
bit * bn_is_bit_set_words(scalar->words, group->order.width, j + w + 1);
|
|
assert(window_val <= next_bit);
|
|
}
|
|
|
|
// bits + 1 entries should be sufficient to consume all bits.
|
|
assert(window_val == 0);
|
|
}
|
|
|
|
// compute_precomp sets |out[i]| to (2*i+1)*p, for i from 0 to |len|.
|
|
static void compute_precomp(const EC_GROUP *group, EC_RAW_POINT *out,
|
|
const EC_RAW_POINT *p, size_t len) {
|
|
ec_GFp_simple_point_copy(&out[0], p);
|
|
EC_RAW_POINT two_p;
|
|
ec_GFp_mont_dbl(group, &two_p, p);
|
|
for (size_t i = 1; i < len; i++) {
|
|
ec_GFp_mont_add(group, &out[i], &out[i - 1], &two_p);
|
|
}
|
|
}
|
|
|
|
static void lookup_precomp(const EC_GROUP *group, EC_RAW_POINT *out,
|
|
const EC_RAW_POINT *precomp, int digit) {
|
|
if (digit < 0) {
|
|
digit = -digit;
|
|
ec_GFp_simple_point_copy(out, &precomp[digit >> 1]);
|
|
ec_GFp_simple_invert(group, out);
|
|
} else {
|
|
ec_GFp_simple_point_copy(out, &precomp[digit >> 1]);
|
|
}
|
|
}
|
|
|
|
// EC_WNAF_WINDOW_BITS is the window size to use for |ec_GFp_mont_mul_public|.
|
|
#define EC_WNAF_WINDOW_BITS 4
|
|
|
|
// EC_WNAF_TABLE_SIZE is the table size to use for |ec_GFp_mont_mul_public|.
|
|
#define EC_WNAF_TABLE_SIZE (1 << (EC_WNAF_WINDOW_BITS - 1))
|
|
|
|
void ec_GFp_mont_mul_public(const EC_GROUP *group, EC_RAW_POINT *r,
|
|
const EC_SCALAR *g_scalar, const EC_RAW_POINT *p,
|
|
const EC_SCALAR *p_scalar) {
|
|
size_t bits = BN_num_bits(&group->order);
|
|
size_t wNAF_len = bits + 1;
|
|
|
|
int8_t g_wNAF[EC_MAX_BYTES * 8 + 1];
|
|
EC_RAW_POINT g_precomp[EC_WNAF_TABLE_SIZE];
|
|
assert(wNAF_len <= OPENSSL_ARRAY_SIZE(g_wNAF));
|
|
const EC_RAW_POINT *g = &group->generator->raw;
|
|
ec_compute_wNAF(group, g_wNAF, g_scalar, bits, EC_WNAF_WINDOW_BITS);
|
|
compute_precomp(group, g_precomp, g, EC_WNAF_TABLE_SIZE);
|
|
|
|
int8_t p_wNAF[EC_MAX_BYTES * 8 + 1];
|
|
EC_RAW_POINT p_precomp[EC_WNAF_TABLE_SIZE];
|
|
assert(wNAF_len <= OPENSSL_ARRAY_SIZE(p_wNAF));
|
|
ec_compute_wNAF(group, p_wNAF, p_scalar, bits, EC_WNAF_WINDOW_BITS);
|
|
compute_precomp(group, p_precomp, p, EC_WNAF_TABLE_SIZE);
|
|
|
|
EC_RAW_POINT tmp;
|
|
int r_is_at_infinity = 1;
|
|
for (size_t k = wNAF_len - 1; k < wNAF_len; k--) {
|
|
if (!r_is_at_infinity) {
|
|
ec_GFp_mont_dbl(group, r, r);
|
|
}
|
|
|
|
if (g_wNAF[k] != 0) {
|
|
lookup_precomp(group, &tmp, g_precomp, g_wNAF[k]);
|
|
if (r_is_at_infinity) {
|
|
ec_GFp_simple_point_copy(r, &tmp);
|
|
r_is_at_infinity = 0;
|
|
} else {
|
|
ec_GFp_mont_add(group, r, r, &tmp);
|
|
}
|
|
}
|
|
|
|
if (p_wNAF[k] != 0) {
|
|
lookup_precomp(group, &tmp, p_precomp, p_wNAF[k]);
|
|
if (r_is_at_infinity) {
|
|
ec_GFp_simple_point_copy(r, &tmp);
|
|
r_is_at_infinity = 0;
|
|
} else {
|
|
ec_GFp_mont_add(group, r, r, &tmp);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (r_is_at_infinity) {
|
|
ec_GFp_simple_point_set_to_infinity(group, r);
|
|
}
|
|
}
|