mirror of
https://github.com/DrKLO/Telegram.git
synced 2024-12-31 16:40:45 +01:00
1777 lines
54 KiB
C
1777 lines
54 KiB
C
/*
|
|
* jcdctmgr.c
|
|
*
|
|
* This file was part of the Independent JPEG Group's software:
|
|
* Copyright (C) 1994-1996, Thomas G. Lane.
|
|
* libjpeg-turbo Modifications:
|
|
* Copyright (C) 1999-2006, MIYASAKA Masaru.
|
|
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
|
* Copyright (C) 2011, 2014-2015 D. R. Commander
|
|
* mozjpeg Modifications:
|
|
* Copyright (C) 2014, Mozilla Corporation.
|
|
* For conditions of distribution and use, see the accompanying README file.
|
|
*
|
|
* This file contains the forward-DCT management logic.
|
|
* This code selects a particular DCT implementation to be used,
|
|
* and it performs related housekeeping chores including coefficient
|
|
* quantization.
|
|
*/
|
|
|
|
#define JPEG_INTERNALS
|
|
#include "jinclude.h"
|
|
#include "jpeglib.h"
|
|
#include "jdct.h" /* Private declarations for DCT subsystem */
|
|
#include "jsimddct.h"
|
|
#include "jchuff.h"
|
|
#include <assert.h>
|
|
#include <math.h>
|
|
|
|
|
|
/* Private subobject for this module */
|
|
|
|
typedef void (*forward_DCT_method_ptr) (DCTELEM *data);
|
|
typedef void (*float_DCT_method_ptr) (FAST_FLOAT *data);
|
|
|
|
typedef void (*preprocess_method_ptr)(DCTELEM*, const JQUANT_TBL*);
|
|
typedef void (*float_preprocess_method_ptr)(FAST_FLOAT*, const JQUANT_TBL*);
|
|
|
|
typedef void (*convsamp_method_ptr) (JSAMPARRAY sample_data,
|
|
JDIMENSION start_col,
|
|
DCTELEM *workspace);
|
|
typedef void (*float_convsamp_method_ptr) (JSAMPARRAY sample_data,
|
|
JDIMENSION start_col,
|
|
FAST_FLOAT *workspace);
|
|
|
|
typedef void (*quantize_method_ptr) (JCOEFPTR coef_block, DCTELEM *divisors,
|
|
DCTELEM *workspace);
|
|
typedef void (*float_quantize_method_ptr) (JCOEFPTR coef_block,
|
|
FAST_FLOAT *divisors,
|
|
FAST_FLOAT *workspace);
|
|
|
|
METHODDEF(void) quantize (JCOEFPTR, DCTELEM *, DCTELEM *);
|
|
|
|
typedef struct {
|
|
struct jpeg_forward_dct pub; /* public fields */
|
|
|
|
/* Pointer to the DCT routine actually in use */
|
|
forward_DCT_method_ptr dct;
|
|
convsamp_method_ptr convsamp;
|
|
preprocess_method_ptr preprocess;
|
|
quantize_method_ptr quantize;
|
|
|
|
/* The actual post-DCT divisors --- not identical to the quant table
|
|
* entries, because of scaling (especially for an unnormalized DCT).
|
|
* Each table is given in normal array order.
|
|
*/
|
|
DCTELEM *divisors[NUM_QUANT_TBLS];
|
|
|
|
/* work area for FDCT subroutine */
|
|
DCTELEM *workspace;
|
|
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
/* Same as above for the floating-point case. */
|
|
float_DCT_method_ptr float_dct;
|
|
float_convsamp_method_ptr float_convsamp;
|
|
float_preprocess_method_ptr float_preprocess;
|
|
float_quantize_method_ptr float_quantize;
|
|
FAST_FLOAT *float_divisors[NUM_QUANT_TBLS];
|
|
FAST_FLOAT *float_workspace;
|
|
#endif
|
|
} my_fdct_controller;
|
|
|
|
typedef my_fdct_controller *my_fdct_ptr;
|
|
|
|
|
|
#if BITS_IN_JSAMPLE == 8
|
|
|
|
/*
|
|
* Find the highest bit in an integer through binary search.
|
|
*/
|
|
|
|
LOCAL(int)
|
|
flss (UINT16 val)
|
|
{
|
|
int bit;
|
|
|
|
bit = 16;
|
|
|
|
if (!val)
|
|
return 0;
|
|
|
|
if (!(val & 0xff00)) {
|
|
bit -= 8;
|
|
val <<= 8;
|
|
}
|
|
if (!(val & 0xf000)) {
|
|
bit -= 4;
|
|
val <<= 4;
|
|
}
|
|
if (!(val & 0xc000)) {
|
|
bit -= 2;
|
|
val <<= 2;
|
|
}
|
|
if (!(val & 0x8000)) {
|
|
bit -= 1;
|
|
val <<= 1;
|
|
}
|
|
|
|
return bit;
|
|
}
|
|
|
|
|
|
/*
|
|
* Compute values to do a division using reciprocal.
|
|
*
|
|
* This implementation is based on an algorithm described in
|
|
* "How to optimize for the Pentium family of microprocessors"
|
|
* (http://www.agner.org/assem/).
|
|
* More information about the basic algorithm can be found in
|
|
* the paper "Integer Division Using Reciprocals" by Robert Alverson.
|
|
*
|
|
* The basic idea is to replace x/d by x * d^-1. In order to store
|
|
* d^-1 with enough precision we shift it left a few places. It turns
|
|
* out that this algoright gives just enough precision, and also fits
|
|
* into DCTELEM:
|
|
*
|
|
* b = (the number of significant bits in divisor) - 1
|
|
* r = (word size) + b
|
|
* f = 2^r / divisor
|
|
*
|
|
* f will not be an integer for most cases, so we need to compensate
|
|
* for the rounding error introduced:
|
|
*
|
|
* no fractional part:
|
|
*
|
|
* result = input >> r
|
|
*
|
|
* fractional part of f < 0.5:
|
|
*
|
|
* round f down to nearest integer
|
|
* result = ((input + 1) * f) >> r
|
|
*
|
|
* fractional part of f > 0.5:
|
|
*
|
|
* round f up to nearest integer
|
|
* result = (input * f) >> r
|
|
*
|
|
* This is the original algorithm that gives truncated results. But we
|
|
* want properly rounded results, so we replace "input" with
|
|
* "input + divisor/2".
|
|
*
|
|
* In order to allow SIMD implementations we also tweak the values to
|
|
* allow the same calculation to be made at all times:
|
|
*
|
|
* dctbl[0] = f rounded to nearest integer
|
|
* dctbl[1] = divisor / 2 (+ 1 if fractional part of f < 0.5)
|
|
* dctbl[2] = 1 << ((word size) * 2 - r)
|
|
* dctbl[3] = r - (word size)
|
|
*
|
|
* dctbl[2] is for stupid instruction sets where the shift operation
|
|
* isn't member wise (e.g. MMX).
|
|
*
|
|
* The reason dctbl[2] and dctbl[3] reduce the shift with (word size)
|
|
* is that most SIMD implementations have a "multiply and store top
|
|
* half" operation.
|
|
*
|
|
* Lastly, we store each of the values in their own table instead
|
|
* of in a consecutive manner, yet again in order to allow SIMD
|
|
* routines.
|
|
*/
|
|
|
|
LOCAL(int)
|
|
compute_reciprocal (UINT16 divisor, DCTELEM *dtbl)
|
|
{
|
|
UDCTELEM2 fq, fr;
|
|
UDCTELEM c;
|
|
int b, r;
|
|
|
|
if (divisor == 1) {
|
|
/* divisor == 1 means unquantized, so these reciprocal/correction/shift
|
|
* values will cause the C quantization algorithm to act like the
|
|
* identity function. Since only the C quantization algorithm is used in
|
|
* these cases, the scale value is irrelevant.
|
|
*/
|
|
dtbl[DCTSIZE2 * 0] = (DCTELEM) 1; /* reciprocal */
|
|
dtbl[DCTSIZE2 * 1] = (DCTELEM) 0; /* correction */
|
|
dtbl[DCTSIZE2 * 2] = (DCTELEM) 1; /* scale */
|
|
dtbl[DCTSIZE2 * 3] = -(DCTELEM) (sizeof(DCTELEM) * 8); /* shift */
|
|
return 0;
|
|
}
|
|
|
|
b = flss(divisor) - 1;
|
|
r = sizeof(DCTELEM) * 8 + b;
|
|
|
|
fq = ((UDCTELEM2)1 << r) / divisor;
|
|
fr = ((UDCTELEM2)1 << r) % divisor;
|
|
|
|
c = divisor / 2; /* for rounding */
|
|
|
|
if (fr == 0) { /* divisor is power of two */
|
|
/* fq will be one bit too large to fit in DCTELEM, so adjust */
|
|
fq >>= 1;
|
|
r--;
|
|
} else if (fr <= (divisor / 2U)) { /* fractional part is < 0.5 */
|
|
c++;
|
|
} else { /* fractional part is > 0.5 */
|
|
fq++;
|
|
}
|
|
|
|
dtbl[DCTSIZE2 * 0] = (DCTELEM) fq; /* reciprocal */
|
|
dtbl[DCTSIZE2 * 1] = (DCTELEM) c; /* correction + roundfactor */
|
|
#ifdef WITH_SIMD
|
|
dtbl[DCTSIZE2 * 2] = (DCTELEM) (1 << (sizeof(DCTELEM)*8*2 - r)); /* scale */
|
|
#else
|
|
dtbl[DCTSIZE2 * 2] = 1;
|
|
#endif
|
|
dtbl[DCTSIZE2 * 3] = (DCTELEM) r - sizeof(DCTELEM)*8; /* shift */
|
|
|
|
if (r <= 16) return 0;
|
|
else return 1;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
/*
|
|
* Initialize for a processing pass.
|
|
* Verify that all referenced Q-tables are present, and set up
|
|
* the divisor table for each one.
|
|
* In the current implementation, DCT of all components is done during
|
|
* the first pass, even if only some components will be output in the
|
|
* first scan. Hence all components should be examined here.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_pass_fdctmgr (j_compress_ptr cinfo)
|
|
{
|
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
|
int ci, qtblno, i;
|
|
jpeg_component_info *compptr;
|
|
JQUANT_TBL *qtbl;
|
|
DCTELEM *dtbl;
|
|
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
qtblno = compptr->quant_tbl_no;
|
|
/* Make sure specified quantization table is present */
|
|
if (qtblno < 0 || qtblno >= NUM_QUANT_TBLS ||
|
|
cinfo->quant_tbl_ptrs[qtblno] == NULL)
|
|
ERREXIT1(cinfo, JERR_NO_QUANT_TABLE, qtblno);
|
|
qtbl = cinfo->quant_tbl_ptrs[qtblno];
|
|
/* Compute divisors for this quant table */
|
|
/* We may do this more than once for same table, but it's not a big deal */
|
|
switch (cinfo->dct_method) {
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
case JDCT_ISLOW:
|
|
/* For LL&M IDCT method, divisors are equal to raw quantization
|
|
* coefficients multiplied by 8 (to counteract scaling).
|
|
*/
|
|
if (fdct->divisors[qtblno] == NULL) {
|
|
fdct->divisors[qtblno] = (DCTELEM *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
(DCTSIZE2 * 4) * sizeof(DCTELEM));
|
|
}
|
|
dtbl = fdct->divisors[qtblno];
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
#if BITS_IN_JSAMPLE == 8
|
|
if (!compute_reciprocal(qtbl->quantval[i] << 3, &dtbl[i]) &&
|
|
fdct->quantize == jsimd_quantize)
|
|
fdct->quantize = quantize;
|
|
#else
|
|
dtbl[i] = ((DCTELEM) qtbl->quantval[i]) << 3;
|
|
#endif
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef DCT_IFAST_SUPPORTED
|
|
case JDCT_IFAST:
|
|
{
|
|
/* For AA&N IDCT method, divisors are equal to quantization
|
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
* scalefactor[0] = 1
|
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
* We apply a further scale factor of 8.
|
|
*/
|
|
#define CONST_BITS 14
|
|
static const INT16 aanscales[DCTSIZE2] = {
|
|
/* precomputed values scaled up by 14 bits */
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
};
|
|
SHIFT_TEMPS
|
|
|
|
if (fdct->divisors[qtblno] == NULL) {
|
|
fdct->divisors[qtblno] = (DCTELEM *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
(DCTSIZE2 * 4) * sizeof(DCTELEM));
|
|
}
|
|
dtbl = fdct->divisors[qtblno];
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
#if BITS_IN_JSAMPLE == 8
|
|
if (!compute_reciprocal(
|
|
DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i],
|
|
(JLONG) aanscales[i]),
|
|
CONST_BITS-3), &dtbl[i]) &&
|
|
fdct->quantize == jsimd_quantize)
|
|
fdct->quantize = quantize;
|
|
#else
|
|
dtbl[i] = (DCTELEM)
|
|
DESCALE(MULTIPLY16V16((JLONG) qtbl->quantval[i],
|
|
(JLONG) aanscales[i]),
|
|
CONST_BITS-3);
|
|
#endif
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
case JDCT_FLOAT:
|
|
{
|
|
/* For float AA&N IDCT method, divisors are equal to quantization
|
|
* coefficients scaled by scalefactor[row]*scalefactor[col], where
|
|
* scalefactor[0] = 1
|
|
* scalefactor[k] = cos(k*PI/16) * sqrt(2) for k=1..7
|
|
* We apply a further scale factor of 8.
|
|
* What's actually stored is 1/divisor so that the inner loop can
|
|
* use a multiplication rather than a division.
|
|
*/
|
|
FAST_FLOAT *fdtbl;
|
|
int row, col;
|
|
static const double aanscalefactor[DCTSIZE] = {
|
|
1.0, 1.387039845, 1.306562965, 1.175875602,
|
|
1.0, 0.785694958, 0.541196100, 0.275899379
|
|
};
|
|
|
|
if (fdct->float_divisors[qtblno] == NULL) {
|
|
fdct->float_divisors[qtblno] = (FAST_FLOAT *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
DCTSIZE2 * sizeof(FAST_FLOAT));
|
|
}
|
|
fdtbl = fdct->float_divisors[qtblno];
|
|
i = 0;
|
|
for (row = 0; row < DCTSIZE; row++) {
|
|
for (col = 0; col < DCTSIZE; col++) {
|
|
fdtbl[i] = (FAST_FLOAT)
|
|
(1.0 / (((double) qtbl->quantval[i] *
|
|
aanscalefactor[row] * aanscalefactor[col] * 8.0)));
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
#endif
|
|
default:
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
METHODDEF(float)
|
|
catmull_rom(const DCTELEM value1, const DCTELEM value2, const DCTELEM value3, const DCTELEM value4, const float t, int size)
|
|
{
|
|
const int tan1 = (value3 - value1) * size;
|
|
const int tan2 = (value4 - value2) * size;
|
|
|
|
const float t2 = t * t;
|
|
const float t3 = t2 * t;
|
|
|
|
const float f1 = 2.f * t3 - 3.f * t2 + 1.f;
|
|
const float f2 = -2.f * t3 + 3.f * t2;
|
|
const float f3 = t3 - 2.f * t2 + t;
|
|
const float f4 = t3 - t2;
|
|
|
|
return value2 * f1 + tan1 * f3 +
|
|
value3 * f2 + tan2 * f4;
|
|
}
|
|
|
|
/** Prevents visible ringing artifacts near hard edges on white backgrounds.
|
|
|
|
1. JPEG can encode samples with higher values than it's possible to display (higher than 255 in RGB),
|
|
and the decoder will always clamp values to 0-255. To encode 255 you can use any value >= 255,
|
|
and distortions of the out-of-range values won't be visible as long as they decode to anything >= 255.
|
|
|
|
2. From DCT perspective pixels in a block are a waveform. Hard edges form square waves (bad).
|
|
Edges with white are similar to waveform clipping, and anti-clipping algorithms can turn square waves
|
|
into softer ones that compress better.
|
|
|
|
*/
|
|
METHODDEF(void)
|
|
preprocess_deringing(DCTELEM *data, const JQUANT_TBL *quantization_table)
|
|
{
|
|
const DCTELEM maxsample = 255 - CENTERJSAMPLE;
|
|
const int size = DCTSIZE * DCTSIZE;
|
|
|
|
/* Decoders don't handle overflow of DC very well, so calculate
|
|
maximum overflow that is safe to do without increasing DC out of range */
|
|
int sum = 0;
|
|
int maxsample_count = 0;
|
|
int i;
|
|
DCTELEM maxovershoot;
|
|
int n;
|
|
|
|
for(i=0; i < size; i++) {
|
|
sum += data[i];
|
|
if (data[i] >= maxsample) {
|
|
maxsample_count++;
|
|
}
|
|
}
|
|
|
|
/* If nothing reaches max value there's nothing to overshoot
|
|
and if the block is completely flat, it's already the best case. */
|
|
if (!maxsample_count || maxsample_count == size) {
|
|
return;
|
|
}
|
|
|
|
/* Too much overshoot is not good: increased amplitude will cost bits, and the cost is proportional to quantization (here using DC quant as a rough guide). */
|
|
maxovershoot = maxsample + MIN(MIN(31, 2*quantization_table->quantval[0]), (maxsample * size - sum) / maxsample_count);
|
|
|
|
n = 0;
|
|
do {
|
|
int start, end, length;
|
|
DCTELEM f1, f2, l1, l2, fslope, lslope;
|
|
float step, position;
|
|
|
|
/* Pixels are traversed in zig-zag order to process them as a line */
|
|
if (data[jpeg_natural_order[n]] < maxsample) {
|
|
n++;
|
|
continue;
|
|
}
|
|
|
|
/* Find a run of maxsample pixels. Start is the first pixel inside the range, end the first pixel outside. */
|
|
start = n;
|
|
while(++n < size && data[jpeg_natural_order[n]] >= maxsample) {}
|
|
end = n;
|
|
|
|
/* the run will be replaced with a catmull-rom interpolation of values from the edges */
|
|
|
|
/* Find suitable upward slope from pixels around edges of the run.
|
|
Just feeding nearby pixels as catmull rom points isn't good enough,
|
|
as slope with one sample before the edge may have been flattened by clipping,
|
|
and slope of two samples before the edge could be downward. */
|
|
f1 = data[jpeg_natural_order[start >= 1 ? start-1 : 0]];
|
|
f2 = data[jpeg_natural_order[start >= 2 ? start-2 : 0]];
|
|
|
|
l1 = data[jpeg_natural_order[end < size-1 ? end : size-1]];
|
|
l2 = data[jpeg_natural_order[end < size-2 ? end+1 : size-1]];
|
|
|
|
fslope = MAX(f1-f2, maxsample-f1);
|
|
lslope = MAX(l1-l2, maxsample-l1);
|
|
|
|
/* if slope at the start/end is unknown, just make the curve symmetric */
|
|
if (start == 0) {
|
|
fslope = lslope;
|
|
}
|
|
if (end == size) {
|
|
lslope = fslope;
|
|
}
|
|
|
|
/* The curve fits better if first and last pixel is omitted */
|
|
length = end - start;
|
|
step = 1.f/(float)(length + 1);
|
|
position = step;
|
|
|
|
for(i = start; i < end; i++, position += step) {
|
|
DCTELEM tmp = ceilf(catmull_rom(maxsample - fslope, maxsample, maxsample, maxsample - lslope, position, length));
|
|
data[jpeg_natural_order[i]] = MIN(tmp, maxovershoot);
|
|
}
|
|
n++;
|
|
}
|
|
while(n < size);
|
|
}
|
|
|
|
/*
|
|
Float version of preprocess_deringing()
|
|
*/
|
|
METHODDEF(void)
|
|
float_preprocess_deringing(FAST_FLOAT *data, const JQUANT_TBL *quantization_table)
|
|
{
|
|
const FAST_FLOAT maxsample = 255 - CENTERJSAMPLE;
|
|
const int size = DCTSIZE * DCTSIZE;
|
|
|
|
FAST_FLOAT sum = 0;
|
|
int maxsample_count = 0;
|
|
int i;
|
|
int n;
|
|
FAST_FLOAT maxovershoot;
|
|
|
|
for(i=0; i < size; i++) {
|
|
sum += data[i];
|
|
if (data[i] >= maxsample) {
|
|
maxsample_count++;
|
|
}
|
|
}
|
|
|
|
if (!maxsample_count || maxsample_count == size) {
|
|
return;
|
|
}
|
|
|
|
maxovershoot = maxsample + MIN(MIN(31, 2*quantization_table->quantval[0]), (maxsample * size - sum) / maxsample_count);
|
|
|
|
n = 0;
|
|
do {
|
|
int start, end, length;
|
|
FAST_FLOAT f1, f2, l1, l2, fslope, lslope;
|
|
float step, position;
|
|
|
|
if (data[jpeg_natural_order[n]] < maxsample) {
|
|
n++;
|
|
continue;
|
|
}
|
|
|
|
start = n;
|
|
while(++n < size && data[jpeg_natural_order[n]] >= maxsample) {}
|
|
end = n;
|
|
|
|
f1 = data[jpeg_natural_order[start >= 1 ? start-1 : 0]];
|
|
f2 = data[jpeg_natural_order[start >= 2 ? start-2 : 0]];
|
|
|
|
l1 = data[jpeg_natural_order[end < size-1 ? end : size-1]];
|
|
l2 = data[jpeg_natural_order[end < size-2 ? end+1 : size-1]];
|
|
|
|
fslope = MAX(f1-f2, maxsample-f1);
|
|
lslope = MAX(l1-l2, maxsample-l1);
|
|
|
|
if (start == 0) {
|
|
fslope = lslope;
|
|
}
|
|
if (end == size) {
|
|
lslope = fslope;
|
|
}
|
|
|
|
length = end - start;
|
|
step = 1.f/(float)(length + 1);
|
|
position = step;
|
|
|
|
for(i = start; i < end; i++, position += step) {
|
|
FAST_FLOAT tmp = catmull_rom(maxsample - fslope, maxsample, maxsample, maxsample - lslope, position, length);
|
|
data[jpeg_natural_order[i]] = MIN(tmp, maxovershoot);
|
|
}
|
|
n++;
|
|
}
|
|
while(n < size);
|
|
}
|
|
|
|
/*
|
|
* Load data into workspace, applying unsigned->signed conversion.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
convsamp (JSAMPARRAY sample_data, JDIMENSION start_col, DCTELEM *workspace)
|
|
{
|
|
register DCTELEM *workspaceptr;
|
|
register JSAMPROW elemptr;
|
|
register int elemr;
|
|
|
|
workspaceptr = workspace;
|
|
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
|
elemptr = sample_data[elemr] + start_col;
|
|
|
|
#if DCTSIZE == 8 /* unroll the inner loop */
|
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
#else
|
|
{
|
|
register int elemc;
|
|
for (elemc = DCTSIZE; elemc > 0; elemc--)
|
|
*workspaceptr++ = GETJSAMPLE(*elemptr++) - CENTERJSAMPLE;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Quantize/descale the coefficients, and store into coef_blocks[].
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
quantize (JCOEFPTR coef_block, DCTELEM *divisors, DCTELEM *workspace)
|
|
{
|
|
int i;
|
|
DCTELEM temp;
|
|
JCOEFPTR output_ptr = coef_block;
|
|
|
|
#if BITS_IN_JSAMPLE == 8
|
|
|
|
UDCTELEM recip, corr;
|
|
int shift;
|
|
UDCTELEM2 product;
|
|
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
temp = workspace[i];
|
|
recip = divisors[i + DCTSIZE2 * 0];
|
|
corr = divisors[i + DCTSIZE2 * 1];
|
|
shift = divisors[i + DCTSIZE2 * 3];
|
|
|
|
if (temp < 0) {
|
|
temp = -temp;
|
|
product = (UDCTELEM2)(temp + corr) * recip;
|
|
product >>= shift + sizeof(DCTELEM)*8;
|
|
temp = (DCTELEM)product;
|
|
temp = -temp;
|
|
} else {
|
|
product = (UDCTELEM2)(temp + corr) * recip;
|
|
product >>= shift + sizeof(DCTELEM)*8;
|
|
temp = (DCTELEM)product;
|
|
}
|
|
output_ptr[i] = (JCOEF) temp;
|
|
}
|
|
|
|
#else
|
|
|
|
register DCTELEM qval;
|
|
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
qval = divisors[i];
|
|
temp = workspace[i];
|
|
/* Divide the coefficient value by qval, ensuring proper rounding.
|
|
* Since C does not specify the direction of rounding for negative
|
|
* quotients, we have to force the dividend positive for portability.
|
|
*
|
|
* In most files, at least half of the output values will be zero
|
|
* (at default quantization settings, more like three-quarters...)
|
|
* so we should ensure that this case is fast. On many machines,
|
|
* a comparison is enough cheaper than a divide to make a special test
|
|
* a win. Since both inputs will be nonnegative, we need only test
|
|
* for a < b to discover whether a/b is 0.
|
|
* If your machine's division is fast enough, define FAST_DIVIDE.
|
|
*/
|
|
#ifdef FAST_DIVIDE
|
|
#define DIVIDE_BY(a,b) a /= b
|
|
#else
|
|
#define DIVIDE_BY(a,b) if (a >= b) a /= b; else a = 0
|
|
#endif
|
|
if (temp < 0) {
|
|
temp = -temp;
|
|
temp += qval>>1; /* for rounding */
|
|
DIVIDE_BY(temp, qval);
|
|
temp = -temp;
|
|
} else {
|
|
temp += qval>>1; /* for rounding */
|
|
DIVIDE_BY(temp, qval);
|
|
}
|
|
output_ptr[i] = (JCOEF) temp;
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
/*
|
|
* Perform forward DCT on one or more blocks of a component.
|
|
*
|
|
* The input samples are taken from the sample_data[] array starting at
|
|
* position start_row/start_col, and moving to the right for any additional
|
|
* blocks. The quantized coefficients are returned in coef_blocks[].
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
forward_DCT (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
|
JDIMENSION start_row, JDIMENSION start_col,
|
|
JDIMENSION num_blocks, JBLOCKROW dst)
|
|
/* This version is used for integer DCT implementations. */
|
|
{
|
|
/* This routine is heavily used, so it's worth coding it tightly. */
|
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
|
DCTELEM *divisors = fdct->divisors[compptr->quant_tbl_no];
|
|
JQUANT_TBL *qtbl = cinfo->quant_tbl_ptrs[compptr->quant_tbl_no];
|
|
DCTELEM *workspace;
|
|
JDIMENSION bi;
|
|
|
|
/* Make sure the compiler doesn't look up these every pass */
|
|
forward_DCT_method_ptr do_dct = fdct->dct;
|
|
convsamp_method_ptr do_convsamp = fdct->convsamp;
|
|
preprocess_method_ptr do_preprocess = fdct->preprocess;
|
|
quantize_method_ptr do_quantize = fdct->quantize;
|
|
workspace = fdct->workspace;
|
|
|
|
sample_data += start_row; /* fold in the vertical offset once */
|
|
|
|
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
|
/* Load data into workspace, applying unsigned->signed conversion */
|
|
(*do_convsamp) (sample_data, start_col, workspace);
|
|
|
|
if (do_preprocess) {
|
|
(*do_preprocess) (workspace, qtbl);
|
|
}
|
|
|
|
/* Perform the DCT */
|
|
(*do_dct) (workspace);
|
|
|
|
/* Save unquantized transform coefficients for later trellis quantization */
|
|
if (dst) {
|
|
int i;
|
|
if (cinfo->dct_method == JDCT_IFAST) {
|
|
static const INT16 aanscales[DCTSIZE2] = {
|
|
/* precomputed values scaled up by 14 bits */
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
22725, 31521, 29692, 26722, 22725, 17855, 12299, 6270,
|
|
21407, 29692, 27969, 25172, 21407, 16819, 11585, 5906,
|
|
19266, 26722, 25172, 22654, 19266, 15137, 10426, 5315,
|
|
16384, 22725, 21407, 19266, 16384, 12873, 8867, 4520,
|
|
12873, 17855, 16819, 15137, 12873, 10114, 6967, 3552,
|
|
8867, 12299, 11585, 10426, 8867, 6967, 4799, 2446,
|
|
4520, 6270, 5906, 5315, 4520, 3552, 2446, 1247
|
|
};
|
|
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
int x = workspace[i];
|
|
int s = aanscales[i];
|
|
x = (x >= 0) ? (x * 32768 + s) / (2*s) : (x * 32768 - s) / (2*s);
|
|
dst[bi][i] = x;
|
|
}
|
|
|
|
} else {
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
dst[bi][i] = workspace[i];
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
|
(*do_quantize) (coef_blocks[bi], divisors, workspace);
|
|
|
|
if (do_preprocess) {
|
|
int i;
|
|
int maxval = (1 << MAX_COEF_BITS) - 1;
|
|
for (i = 0; i < 64; i++) {
|
|
if (coef_blocks[bi][i] < -maxval)
|
|
coef_blocks[bi][i] = -maxval;
|
|
if (coef_blocks[bi][i] > maxval)
|
|
coef_blocks[bi][i] = maxval;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
|
|
METHODDEF(void)
|
|
convsamp_float(JSAMPARRAY sample_data, JDIMENSION start_col,
|
|
FAST_FLOAT *workspace)
|
|
{
|
|
register FAST_FLOAT *workspaceptr;
|
|
register JSAMPROW elemptr;
|
|
register int elemr;
|
|
|
|
workspaceptr = workspace;
|
|
for (elemr = 0; elemr < DCTSIZE; elemr++) {
|
|
elemptr = sample_data[elemr] + start_col;
|
|
#if DCTSIZE == 8 /* unroll the inner loop */
|
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
*workspaceptr++ = (FAST_FLOAT)(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
#else
|
|
{
|
|
register int elemc;
|
|
for (elemc = DCTSIZE; elemc > 0; elemc--)
|
|
*workspaceptr++ = (FAST_FLOAT)
|
|
(GETJSAMPLE(*elemptr++) - CENTERJSAMPLE);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
|
|
METHODDEF(void)
|
|
quantize_float(JCOEFPTR coef_block, FAST_FLOAT *divisors,
|
|
FAST_FLOAT *workspace)
|
|
{
|
|
register FAST_FLOAT temp;
|
|
register int i;
|
|
register JCOEFPTR output_ptr = coef_block;
|
|
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
/* Apply the quantization and scaling factor */
|
|
temp = workspace[i] * divisors[i];
|
|
|
|
/* Round to nearest integer.
|
|
* Since C does not specify the direction of rounding for negative
|
|
* quotients, we have to force the dividend positive for portability.
|
|
* The maximum coefficient size is +-16K (for 12-bit data), so this
|
|
* code should work for either 16-bit or 32-bit ints.
|
|
*/
|
|
output_ptr[i] = (JCOEF) ((int) (temp + (FAST_FLOAT) 16384.5) - 16384);
|
|
}
|
|
}
|
|
|
|
|
|
METHODDEF(void)
|
|
forward_DCT_float (j_compress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY sample_data, JBLOCKROW coef_blocks,
|
|
JDIMENSION start_row, JDIMENSION start_col,
|
|
JDIMENSION num_blocks, JBLOCKROW dst)
|
|
/* This version is used for floating-point DCT implementations. */
|
|
{
|
|
/* This routine is heavily used, so it's worth coding it tightly. */
|
|
my_fdct_ptr fdct = (my_fdct_ptr) cinfo->fdct;
|
|
FAST_FLOAT *divisors = fdct->float_divisors[compptr->quant_tbl_no];
|
|
JQUANT_TBL *qtbl = cinfo->quant_tbl_ptrs[compptr->quant_tbl_no];
|
|
FAST_FLOAT *workspace;
|
|
JDIMENSION bi;
|
|
float v;
|
|
int x;
|
|
|
|
|
|
/* Make sure the compiler doesn't look up these every pass */
|
|
float_DCT_method_ptr do_dct = fdct->float_dct;
|
|
float_convsamp_method_ptr do_convsamp = fdct->float_convsamp;
|
|
float_preprocess_method_ptr do_preprocess = fdct->float_preprocess;
|
|
float_quantize_method_ptr do_quantize = fdct->float_quantize;
|
|
workspace = fdct->float_workspace;
|
|
|
|
sample_data += start_row; /* fold in the vertical offset once */
|
|
|
|
for (bi = 0; bi < num_blocks; bi++, start_col += DCTSIZE) {
|
|
/* Load data into workspace, applying unsigned->signed conversion */
|
|
(*do_convsamp) (sample_data, start_col, workspace);
|
|
|
|
if (do_preprocess) {
|
|
(*do_preprocess) (workspace, qtbl);
|
|
}
|
|
|
|
/* Perform the DCT */
|
|
(*do_dct) (workspace);
|
|
|
|
/* Save unquantized transform coefficients for later trellis quantization */
|
|
/* Currently save as integer values. Could save float values but would require */
|
|
/* modifications to memory allocation and trellis quantization */
|
|
|
|
if (dst) {
|
|
int i;
|
|
static const double aanscalefactor[DCTSIZE] = {
|
|
1.0, 1.387039845, 1.306562965, 1.175875602,
|
|
1.0, 0.785694958, 0.541196100, 0.275899379
|
|
};
|
|
|
|
for (i = 0; i < DCTSIZE2; i++) {
|
|
v = workspace[i];
|
|
v /= aanscalefactor[i%8];
|
|
v /= aanscalefactor[i/8];
|
|
x = (v >= 0.0) ? (int)(v + 0.5) : (int)(v - 0.5);
|
|
dst[bi][i] = x;
|
|
}
|
|
}
|
|
|
|
/* Quantize/descale the coefficients, and store into coef_blocks[] */
|
|
(*do_quantize) (coef_blocks[bi], divisors, workspace);
|
|
|
|
if (do_preprocess) {
|
|
int i;
|
|
int maxval = (1 << MAX_COEF_BITS) - 1;
|
|
for (i = 0; i < 64; i++) {
|
|
if (coef_blocks[bi][i] < -maxval)
|
|
coef_blocks[bi][i] = -maxval;
|
|
if (coef_blocks[bi][i] > maxval)
|
|
coef_blocks[bi][i] = maxval;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* DCT_FLOAT_SUPPORTED */
|
|
|
|
#include "jpeg_nbits_table.h"
|
|
|
|
static const float jpeg_lambda_weights_flat[64] = {
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f,
|
|
1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 1.0f
|
|
};
|
|
|
|
static const float jpeg_lambda_weights_csf_luma[64] = {
|
|
3.35630f, 3.59892f, 3.20921f, 2.28102f, 1.42378f, 0.88079f, 0.58190f, 0.43454f,
|
|
3.59893f, 3.21284f, 2.71282f, 1.98092f, 1.30506f, 0.83852f, 0.56346f, 0.42146f,
|
|
3.20921f, 2.71282f, 2.12574f, 1.48616f, 0.99660f, 0.66132f, 0.45610f, 0.34609f,
|
|
2.28102f, 1.98092f, 1.48616f, 0.97492f, 0.64622f, 0.43812f, 0.31074f, 0.24072f,
|
|
1.42378f, 1.30506f, 0.99660f, 0.64623f, 0.42051f, 0.28446f, 0.20380f, 0.15975f,
|
|
0.88079f, 0.83852f, 0.66132f, 0.43812f, 0.28446f, 0.19092f, 0.13635f, 0.10701f,
|
|
0.58190f, 0.56346f, 0.45610f, 0.31074f, 0.20380f, 0.13635f, 0.09674f, 0.07558f,
|
|
0.43454f, 0.42146f, 0.34609f, 0.24072f, 0.15975f, 0.10701f, 0.07558f, 0.05875f,
|
|
};
|
|
|
|
#define DC_TRELLIS_MAX_CANDIDATES 9
|
|
|
|
LOCAL(int) get_num_dc_trellis_candidates(int dc_quantval) {
|
|
/* Higher qualities can tolerate higher DC distortion */
|
|
return MIN(DC_TRELLIS_MAX_CANDIDATES, (2 + 60 / dc_quantval)|1);
|
|
}
|
|
|
|
GLOBAL(void)
|
|
quantize_trellis(j_compress_ptr cinfo, c_derived_tbl *dctbl, c_derived_tbl *actbl, JBLOCKROW coef_blocks, JBLOCKROW src, JDIMENSION num_blocks,
|
|
JQUANT_TBL * qtbl, double *norm_src, double *norm_coef, JCOEF *last_dc_val,
|
|
JBLOCKROW coef_blocks_above, JBLOCKROW src_above)
|
|
{
|
|
int i, j, k, l;
|
|
float accumulated_zero_dist[DCTSIZE2];
|
|
float accumulated_cost[DCTSIZE2];
|
|
int run_start[DCTSIZE2];
|
|
int bi;
|
|
float best_cost;
|
|
int last_coeff_idx; /* position of last nonzero coefficient */
|
|
float norm = 0.0;
|
|
float lambda_base;
|
|
float lambda;
|
|
float lambda_dc;
|
|
const float *lambda_tbl = (cinfo->master->use_lambda_weight_tbl) ?
|
|
jpeg_lambda_weights_csf_luma :
|
|
jpeg_lambda_weights_flat;
|
|
int Ss, Se;
|
|
float *accumulated_zero_block_cost = NULL;
|
|
float *accumulated_block_cost = NULL;
|
|
int *block_run_start = NULL;
|
|
int *requires_eob = NULL;
|
|
int has_eob;
|
|
float cost_all_zeros;
|
|
float best_cost_skip;
|
|
float cost;
|
|
int zero_run;
|
|
int run_bits;
|
|
int rate;
|
|
float *accumulated_dc_cost[DC_TRELLIS_MAX_CANDIDATES];
|
|
int *dc_cost_backtrack[DC_TRELLIS_MAX_CANDIDATES];
|
|
JCOEF *dc_candidate[DC_TRELLIS_MAX_CANDIDATES];
|
|
int mode = 1;
|
|
float lambda_table[DCTSIZE2];
|
|
const int dc_trellis_candidates = get_num_dc_trellis_candidates(qtbl->quantval[0]);
|
|
|
|
Ss = cinfo->Ss;
|
|
Se = cinfo->Se;
|
|
if (Ss == 0)
|
|
Ss = 1;
|
|
if (Se < Ss)
|
|
return;
|
|
if (cinfo->master->trellis_eob_opt) {
|
|
accumulated_zero_block_cost = (float *)malloc((num_blocks + 1) * sizeof(float));
|
|
accumulated_block_cost = (float *)malloc((num_blocks + 1) * sizeof(float));
|
|
block_run_start = (int *)malloc(num_blocks * sizeof(int));
|
|
requires_eob = (int *)malloc((num_blocks + 1) * sizeof(int));
|
|
if (!accumulated_zero_block_cost ||
|
|
!accumulated_block_cost ||
|
|
!block_run_start ||
|
|
!requires_eob) {
|
|
ERREXIT(cinfo, JERR_OUT_OF_MEMORY);
|
|
}
|
|
|
|
accumulated_zero_block_cost[0] = 0;
|
|
accumulated_block_cost[0] = 0;
|
|
requires_eob[0] = 0;
|
|
}
|
|
|
|
if (cinfo->master->trellis_quant_dc) {
|
|
for (i = 0; i < dc_trellis_candidates; i++) {
|
|
accumulated_dc_cost[i] = (float *)malloc(num_blocks * sizeof(float));
|
|
dc_cost_backtrack[i] = (int *)malloc(num_blocks * sizeof(int));
|
|
dc_candidate[i] = (JCOEF *)malloc(num_blocks * sizeof(JCOEF));
|
|
if (!accumulated_dc_cost[i] ||
|
|
!dc_cost_backtrack[i] ||
|
|
!dc_candidate[i]) {
|
|
ERREXIT(cinfo, JERR_OUT_OF_MEMORY);
|
|
}
|
|
}
|
|
}
|
|
|
|
norm = 0.0;
|
|
for (i = 1; i < DCTSIZE2; i++) {
|
|
norm += qtbl->quantval[i] * qtbl->quantval[i];
|
|
}
|
|
norm /= 63.0;
|
|
|
|
if (mode == 1) {
|
|
lambda_base = 1.0;
|
|
lambda_tbl = lambda_table;
|
|
for (i = 0; i < DCTSIZE2; i++)
|
|
lambda_table[i] = 1.0 / (qtbl->quantval[i] * qtbl->quantval[i]);
|
|
} else
|
|
lambda_base = 1.0 / norm;
|
|
|
|
for (bi = 0; bi < num_blocks; bi++) {
|
|
|
|
norm = 0.0;
|
|
for (i = 1; i < DCTSIZE2; i++) {
|
|
norm += src[bi][i] * src[bi][i];
|
|
}
|
|
norm /= 63.0;
|
|
|
|
if (cinfo->master->lambda_log_scale2 > 0.0)
|
|
lambda = pow(2.0, cinfo->master->lambda_log_scale1) * lambda_base /
|
|
(pow(2.0, cinfo->master->lambda_log_scale2) + norm);
|
|
else
|
|
lambda = pow(2.0, cinfo->master->lambda_log_scale1 - 12.0) * lambda_base;
|
|
|
|
lambda_dc = lambda * lambda_tbl[0];
|
|
|
|
accumulated_zero_dist[Ss-1] = 0.0;
|
|
accumulated_cost[Ss-1] = 0.0;
|
|
|
|
/* Do DC coefficient */
|
|
if (cinfo->master->trellis_quant_dc) {
|
|
int sign = src[bi][0] >> 31;
|
|
int x = abs(src[bi][0]);
|
|
int q = 8 * qtbl->quantval[0];
|
|
int qval;
|
|
float dc_candidate_dist;
|
|
|
|
qval = (x + q/2) / q; /* quantized value (round nearest) */
|
|
for (k = 0; k < dc_trellis_candidates; k++) {
|
|
int delta;
|
|
int dc_delta;
|
|
int bits;
|
|
|
|
dc_candidate[k][bi] = qval - dc_trellis_candidates/2 + k;
|
|
if (dc_candidate[k][bi] >= (1<<MAX_COEF_BITS))
|
|
dc_candidate[k][bi] = (1<<MAX_COEF_BITS)-1;
|
|
if (dc_candidate[k][bi] <= -(1<<MAX_COEF_BITS))
|
|
dc_candidate[k][bi] = -(1<<MAX_COEF_BITS)+1;
|
|
|
|
delta = dc_candidate[k][bi] * q - x;
|
|
dc_candidate_dist = delta * delta * lambda_dc;
|
|
dc_candidate[k][bi] *= 1 + 2*sign;
|
|
|
|
/* Take into account DC differences */
|
|
if (coef_blocks_above && src_above && cinfo->master->trellis_delta_dc_weight > 0.0) {
|
|
int dc_above_orig;
|
|
int dc_above_recon;
|
|
int dc_orig;
|
|
int dc_recon;
|
|
float vertical_dist;
|
|
|
|
dc_above_orig = src_above[bi][0];
|
|
dc_above_recon = coef_blocks_above[bi][0] * q;
|
|
dc_orig = src[bi][0];
|
|
dc_recon = dc_candidate[k][bi] * q;
|
|
/* delta is difference of vertical gradients */
|
|
delta = (dc_above_orig - dc_orig) - (dc_above_recon - dc_recon);
|
|
vertical_dist = delta * delta * lambda_dc;
|
|
dc_candidate_dist += cinfo->master->trellis_delta_dc_weight * (vertical_dist - dc_candidate_dist);
|
|
}
|
|
|
|
if (bi == 0) {
|
|
dc_delta = dc_candidate[k][bi] - *last_dc_val;
|
|
|
|
/* Derive number of suffix bits */
|
|
bits = 0;
|
|
dc_delta = abs(dc_delta);
|
|
while (dc_delta) {
|
|
dc_delta >>= 1;
|
|
bits++;
|
|
}
|
|
cost = bits + dctbl->ehufsi[bits] + dc_candidate_dist;
|
|
accumulated_dc_cost[k][0] = cost;
|
|
dc_cost_backtrack[k][0] = -1;
|
|
} else {
|
|
for (l = 0; l < dc_trellis_candidates; l++) {
|
|
dc_delta = dc_candidate[k][bi] - dc_candidate[l][bi-1];
|
|
|
|
/* Derive number of suffix bits */
|
|
bits = 0;
|
|
dc_delta = abs(dc_delta);
|
|
while (dc_delta) {
|
|
dc_delta >>= 1;
|
|
bits++;
|
|
}
|
|
cost = bits + dctbl->ehufsi[bits] + dc_candidate_dist + accumulated_dc_cost[l][bi-1];
|
|
if (l == 0 || cost < accumulated_dc_cost[k][bi]) {
|
|
accumulated_dc_cost[k][bi] = cost;
|
|
dc_cost_backtrack[k][bi] = l;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do AC coefficients */
|
|
for (i = Ss; i <= Se; i++) {
|
|
int z = jpeg_natural_order[i];
|
|
|
|
int sign = src[bi][z] >> 31;
|
|
int x = abs(src[bi][z]);
|
|
int q = 8 * qtbl->quantval[z];
|
|
int candidate[16];
|
|
int candidate_bits[16];
|
|
float candidate_dist[16];
|
|
int num_candidates;
|
|
int qval;
|
|
|
|
accumulated_zero_dist[i] = x * x * lambda * lambda_tbl[z] + accumulated_zero_dist[i-1];
|
|
|
|
qval = (x + q/2) / q; /* quantized value (round nearest) */
|
|
|
|
if (qval == 0) {
|
|
coef_blocks[bi][z] = 0;
|
|
accumulated_cost[i] = 1e38; /* Shouldn't be needed */
|
|
continue;
|
|
}
|
|
|
|
if (qval >= (1<<MAX_COEF_BITS))
|
|
qval = (1<<MAX_COEF_BITS)-1;
|
|
|
|
num_candidates = jpeg_nbits_table[qval];
|
|
for (k = 0; k < num_candidates; k++) {
|
|
int delta;
|
|
candidate[k] = (k < num_candidates - 1) ? (2 << k) - 1 : qval;
|
|
delta = candidate[k] * q - x;
|
|
candidate_bits[k] = k+1;
|
|
candidate_dist[k] = delta * delta * lambda * lambda_tbl[z];
|
|
}
|
|
|
|
accumulated_cost[i] = 1e38;
|
|
|
|
for (j = Ss-1; j < i; j++) {
|
|
int zz = jpeg_natural_order[j];
|
|
if (j != Ss-1 && coef_blocks[bi][zz] == 0)
|
|
continue;
|
|
|
|
zero_run = i - 1 - j;
|
|
if ((zero_run >> 4) && actbl->ehufsi[0xf0] == 0)
|
|
continue;
|
|
|
|
run_bits = (zero_run >> 4) * actbl->ehufsi[0xf0];
|
|
zero_run &= 15;
|
|
|
|
for (k = 0; k < num_candidates; k++) {
|
|
int coef_bits = actbl->ehufsi[16 * zero_run + candidate_bits[k]];
|
|
if (coef_bits == 0)
|
|
continue;
|
|
|
|
rate = coef_bits + candidate_bits[k] + run_bits;
|
|
cost = rate + candidate_dist[k];
|
|
cost += accumulated_zero_dist[i-1] - accumulated_zero_dist[j] + accumulated_cost[j];
|
|
|
|
if (cost < accumulated_cost[i]) {
|
|
coef_blocks[bi][z] = (candidate[k] ^ sign) - sign;
|
|
accumulated_cost[i] = cost;
|
|
run_start[i] = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
last_coeff_idx = Ss-1;
|
|
best_cost = accumulated_zero_dist[Se] + actbl->ehufsi[0];
|
|
cost_all_zeros = accumulated_zero_dist[Se];
|
|
best_cost_skip = cost_all_zeros;
|
|
|
|
for (i = Ss; i <= Se; i++) {
|
|
int z = jpeg_natural_order[i];
|
|
if (coef_blocks[bi][z] != 0) {
|
|
float cost = accumulated_cost[i] + accumulated_zero_dist[Se] - accumulated_zero_dist[i];
|
|
float cost_wo_eob = cost;
|
|
|
|
if (i < Se)
|
|
cost += actbl->ehufsi[0];
|
|
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
last_coeff_idx = i;
|
|
best_cost_skip = cost_wo_eob;
|
|
}
|
|
}
|
|
}
|
|
|
|
has_eob = (last_coeff_idx < Se) + (last_coeff_idx == Ss-1);
|
|
|
|
/* Zero out coefficients that are part of runs */
|
|
i = Se;
|
|
while (i >= Ss)
|
|
{
|
|
while (i > last_coeff_idx) {
|
|
int z = jpeg_natural_order[i];
|
|
coef_blocks[bi][z] = 0;
|
|
i--;
|
|
}
|
|
last_coeff_idx = run_start[i];
|
|
i--;
|
|
}
|
|
|
|
if (cinfo->master->trellis_eob_opt) {
|
|
accumulated_zero_block_cost[bi+1] = accumulated_zero_block_cost[bi];
|
|
accumulated_zero_block_cost[bi+1] += cost_all_zeros;
|
|
requires_eob[bi+1] = has_eob;
|
|
|
|
best_cost = 1e38;
|
|
|
|
if (has_eob != 2) {
|
|
for (i = 0; i <= bi; i++) {
|
|
int zero_block_run;
|
|
int nbits;
|
|
float cost;
|
|
|
|
if (requires_eob[i] == 2)
|
|
continue;
|
|
|
|
cost = best_cost_skip; /* cost of coding a nonzero block */
|
|
cost += accumulated_zero_block_cost[bi];
|
|
cost -= accumulated_zero_block_cost[i];
|
|
cost += accumulated_block_cost[i];
|
|
zero_block_run = bi - i + requires_eob[i];
|
|
nbits = jpeg_nbits_table[zero_block_run];
|
|
cost += actbl->ehufsi[16*nbits] + nbits;
|
|
|
|
if (cost < best_cost) {
|
|
block_run_start[bi] = i;
|
|
best_cost = cost;
|
|
accumulated_block_cost[bi+1] = cost;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cinfo->master->trellis_eob_opt) {
|
|
int last_block = num_blocks;
|
|
best_cost = 1e38;
|
|
|
|
for (i = 0; i <= num_blocks; i++) {
|
|
int zero_block_run;
|
|
int nbits;
|
|
float cost = 0.0;
|
|
|
|
if (requires_eob[i] == 2)
|
|
continue;
|
|
|
|
cost += accumulated_zero_block_cost[num_blocks];
|
|
cost -= accumulated_zero_block_cost[i];
|
|
zero_block_run = num_blocks - i + requires_eob[i];
|
|
nbits = jpeg_nbits_table[zero_block_run];
|
|
cost += actbl->ehufsi[16*nbits] + nbits;
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
last_block = i;
|
|
}
|
|
}
|
|
last_block--;
|
|
bi = num_blocks - 1;
|
|
while (bi >= 0) {
|
|
while (bi > last_block) {
|
|
for (j = Ss; j <= Se; j++) {
|
|
int z = jpeg_natural_order[j];
|
|
coef_blocks[bi][z] = 0;
|
|
}
|
|
bi--;
|
|
}
|
|
last_block = block_run_start[bi]-1;
|
|
bi--;
|
|
}
|
|
free(accumulated_zero_block_cost);
|
|
free(accumulated_block_cost);
|
|
free(block_run_start);
|
|
free(requires_eob);
|
|
}
|
|
|
|
if (cinfo->master->trellis_q_opt) {
|
|
for (bi = 0; bi < num_blocks; bi++) {
|
|
for (i = 1; i < DCTSIZE2; i++) {
|
|
norm_src[i] += src[bi][i] * coef_blocks[bi][i];
|
|
norm_coef[i] += 8 * coef_blocks[bi][i] * coef_blocks[bi][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cinfo->master->trellis_quant_dc) {
|
|
j = 0;
|
|
for (i = 1; i < dc_trellis_candidates; i++) {
|
|
if (accumulated_dc_cost[i][num_blocks-1] < accumulated_dc_cost[j][num_blocks-1])
|
|
j = i;
|
|
}
|
|
for (bi = num_blocks-1; bi >= 0; bi--) {
|
|
coef_blocks[bi][0] = dc_candidate[j][bi];
|
|
j = dc_cost_backtrack[j][bi];
|
|
}
|
|
|
|
/* Save DC predictor */
|
|
*last_dc_val = coef_blocks[num_blocks-1][0];
|
|
|
|
for (i = 0; i < dc_trellis_candidates; i++) {
|
|
free(accumulated_dc_cost[i]);
|
|
free(dc_cost_backtrack[i]);
|
|
free(dc_candidate[i]);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
#ifdef C_ARITH_CODING_SUPPORTED
|
|
GLOBAL(void)
|
|
quantize_trellis_arith(j_compress_ptr cinfo, arith_rates *r, JBLOCKROW coef_blocks, JBLOCKROW src, JDIMENSION num_blocks,
|
|
JQUANT_TBL * qtbl, double *norm_src, double *norm_coef, JCOEF *last_dc_val,
|
|
JBLOCKROW coef_blocks_above, JBLOCKROW src_above)
|
|
{
|
|
int i, j, k, l;
|
|
float accumulated_zero_dist[DCTSIZE2];
|
|
float accumulated_cost[DCTSIZE2];
|
|
int run_start[DCTSIZE2];
|
|
int bi;
|
|
float best_cost;
|
|
int last_coeff_idx; /* position of last nonzero coefficient */
|
|
float norm = 0.0;
|
|
float lambda_base;
|
|
float lambda;
|
|
float lambda_dc;
|
|
const float *lambda_tbl = (cinfo->master->use_lambda_weight_tbl) ?
|
|
jpeg_lambda_weights_csf_luma :
|
|
jpeg_lambda_weights_flat;
|
|
int Ss, Se;
|
|
float cost;
|
|
float run_bits;
|
|
int rate;
|
|
float *accumulated_dc_cost[DC_TRELLIS_MAX_CANDIDATES];
|
|
int *dc_cost_backtrack[DC_TRELLIS_MAX_CANDIDATES];
|
|
JCOEF *dc_candidate[DC_TRELLIS_MAX_CANDIDATES];
|
|
int *dc_context[DC_TRELLIS_MAX_CANDIDATES];
|
|
|
|
int mode = 1;
|
|
float lambda_table[DCTSIZE2];
|
|
const int dc_trellis_candidates = get_num_dc_trellis_candidates(qtbl->quantval[0]);
|
|
|
|
Ss = cinfo->Ss;
|
|
Se = cinfo->Se;
|
|
if (Ss == 0)
|
|
Ss = 1;
|
|
if (Se < Ss)
|
|
return;
|
|
|
|
if (cinfo->master->trellis_quant_dc) {
|
|
for (i = 0; i < dc_trellis_candidates; i++) {
|
|
accumulated_dc_cost[i] = (float *)malloc(num_blocks * sizeof(float));
|
|
dc_cost_backtrack[i] = (int *)malloc(num_blocks * sizeof(int));
|
|
dc_candidate[i] = (JCOEF *)malloc(num_blocks * sizeof(JCOEF));
|
|
dc_context[i] = (int *)malloc(num_blocks * sizeof(int));
|
|
if (!accumulated_dc_cost[i] ||
|
|
!dc_cost_backtrack[i] ||
|
|
!dc_candidate[i] ||
|
|
!dc_context[i]) {
|
|
ERREXIT(cinfo, JERR_OUT_OF_MEMORY);
|
|
}
|
|
}
|
|
}
|
|
|
|
norm = 0.0;
|
|
for (i = 1; i < DCTSIZE2; i++) {
|
|
norm += qtbl->quantval[i] * qtbl->quantval[i];
|
|
}
|
|
norm /= 63.0;
|
|
|
|
if (mode == 1) {
|
|
lambda_base = 1.0;
|
|
lambda_tbl = lambda_table;
|
|
for (i = 0; i < DCTSIZE2; i++)
|
|
lambda_table[i] = 1.0 / (qtbl->quantval[i] * qtbl->quantval[i]);
|
|
} else
|
|
lambda_base = 1.0 / norm;
|
|
|
|
for (bi = 0; bi < num_blocks; bi++) {
|
|
|
|
norm = 0.0;
|
|
for (i = 1; i < DCTSIZE2; i++) {
|
|
norm += src[bi][i] * src[bi][i];
|
|
}
|
|
norm /= 63.0;
|
|
|
|
if (cinfo->master->lambda_log_scale2 > 0.0)
|
|
lambda = pow(2.0, cinfo->master->lambda_log_scale1) * lambda_base /
|
|
(pow(2.0, cinfo->master->lambda_log_scale2) + norm);
|
|
else
|
|
lambda = pow(2.0, cinfo->master->lambda_log_scale1 - 12.0) * lambda_base;
|
|
|
|
lambda_dc = lambda * lambda_tbl[0];
|
|
|
|
accumulated_zero_dist[Ss-1] = 0.0;
|
|
accumulated_cost[Ss-1] = 0.0;
|
|
|
|
/* Do DC coefficient */
|
|
if (cinfo->master->trellis_quant_dc) {
|
|
int sign = src[bi][0] >> 31;
|
|
int x = abs(src[bi][0]);
|
|
int q = 8 * qtbl->quantval[0];
|
|
int qval;
|
|
float dc_candidate_dist;
|
|
|
|
qval = (x + q/2) / q; /* quantized value (round nearest) */
|
|
|
|
/* loop over candidates in current block */
|
|
for (k = 0; k < dc_trellis_candidates; k++) {
|
|
int delta;
|
|
int dc_delta;
|
|
float bits;
|
|
int m;
|
|
int v2;
|
|
|
|
dc_candidate[k][bi] = qval - dc_trellis_candidates/2 + k;
|
|
delta = dc_candidate[k][bi] * q - x;
|
|
dc_candidate_dist = delta * delta * lambda_dc;
|
|
dc_candidate[k][bi] *= 1 + 2*sign;
|
|
|
|
/* Take into account DC differences */
|
|
if (coef_blocks_above && src_above && cinfo->master->trellis_delta_dc_weight > 0.0) {
|
|
int dc_above_orig;
|
|
int dc_above_recon;
|
|
int dc_orig;
|
|
int dc_recon;
|
|
float vertical_dist;
|
|
|
|
dc_above_orig = src_above[bi][0];
|
|
dc_above_recon = coef_blocks_above[bi][0] * q;
|
|
dc_orig = src[bi][0];
|
|
dc_recon = dc_candidate[k][bi] * q;
|
|
/* delta is difference of vertical gradients */
|
|
delta = (dc_above_orig - dc_orig) - (dc_above_recon - dc_recon);
|
|
vertical_dist = delta * delta * lambda_dc;
|
|
dc_candidate_dist += cinfo->master->trellis_delta_dc_weight * (vertical_dist - dc_candidate_dist);
|
|
}
|
|
|
|
/* loop of candidates from previous block */
|
|
for (l = 0; l < (bi == 0 ? 1 : dc_trellis_candidates); l++) {
|
|
int dc_pred = (bi == 0 ? *last_dc_val : dc_candidate[l][bi-1]);
|
|
int updated_dc_context = 0;
|
|
int st = (bi == 0) ? 0 : dc_context[l][bi-1];
|
|
dc_delta = dc_candidate[k][bi] - dc_pred;
|
|
|
|
bits = r->rate_dc[st][dc_delta != 0];
|
|
|
|
if (dc_delta != 0) {
|
|
bits += r->rate_dc[st+1][dc_delta < 0];
|
|
st += 2 + (dc_delta < 0);
|
|
updated_dc_context = (dc_delta < 0) ? 8 : 4;
|
|
|
|
dc_delta = abs(dc_delta);
|
|
|
|
m = 0;
|
|
if (dc_delta -= 1) {
|
|
bits += r->rate_dc[st][1];
|
|
st = 20;
|
|
m = 1;
|
|
v2 = dc_delta;
|
|
while (v2 >>= 1) {
|
|
bits += r->rate_dc[st][1];
|
|
m <<= 1;
|
|
st++;
|
|
}
|
|
}
|
|
bits += r->rate_dc[st][0];
|
|
|
|
if (m < (int) ((1L << r->arith_dc_L) >> 1))
|
|
updated_dc_context = 0; /* zero diff category */
|
|
else if (m > (int) ((1L << r->arith_dc_U) >> 1))
|
|
updated_dc_context += 8; /* large diff category */
|
|
|
|
st += 14;
|
|
while (m >>= 1)
|
|
bits += r->rate_dc[st][(m & dc_delta) ? 1 : 0];
|
|
}
|
|
|
|
cost = bits + dc_candidate_dist;
|
|
if (bi != 0)
|
|
cost += accumulated_dc_cost[l][bi-1];
|
|
|
|
if (l == 0 || cost < accumulated_dc_cost[k][bi]) {
|
|
accumulated_dc_cost[k][bi] = cost;
|
|
dc_cost_backtrack[k][bi] = (bi == 0 ? -1 : l);
|
|
dc_context[k][bi] = updated_dc_context;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Do AC coefficients */
|
|
for (i = Ss; i <= Se; i++) {
|
|
int z = jpeg_natural_order[i];
|
|
|
|
int sign = src[bi][z] >> 31;
|
|
int x = abs(src[bi][z]);
|
|
int q = 8 * qtbl->quantval[z];
|
|
int candidate[16];
|
|
float candidate_dist[16];
|
|
int num_candidates;
|
|
int qval;
|
|
int delta;
|
|
|
|
accumulated_zero_dist[i] = x * x * lambda * lambda_tbl[z] + accumulated_zero_dist[i-1];
|
|
|
|
qval = (x + q/2) / q; /* quantized value (round nearest) */
|
|
|
|
if (qval == 0) {
|
|
coef_blocks[bi][z] = 0;
|
|
accumulated_cost[i] = 1e38; /* Shouldn't be needed */
|
|
continue;
|
|
}
|
|
|
|
k = 0;
|
|
candidate[k] = qval;
|
|
delta = candidate[k] * q - x;
|
|
candidate_dist[k] = delta * delta * lambda * lambda_tbl[z];
|
|
k++;
|
|
if (qval > 1) {
|
|
candidate[k] = qval - 1;
|
|
delta = candidate[k] * q - x;
|
|
candidate_dist[k] = delta * delta * lambda * lambda_tbl[z];
|
|
k++;
|
|
}
|
|
num_candidates = k;
|
|
|
|
accumulated_cost[i] = 1e38;
|
|
|
|
for (j = Ss-1; j < i; j++) {
|
|
int zz = jpeg_natural_order[j];
|
|
if (j != Ss-1 && coef_blocks[bi][zz] == 0)
|
|
continue;
|
|
|
|
run_bits = r->rate_ac[3*j][0]; /* EOB */
|
|
for (k = j+1; k < i; k++)
|
|
run_bits += r->rate_ac[3*(k-1)+1][0];
|
|
run_bits += r->rate_ac[3*(i-1)+1][1];
|
|
|
|
for (k = 0; k < num_candidates; k++) {
|
|
float coef_bits = 1.0; /* sign bit */
|
|
int v = candidate[k];
|
|
int v2;
|
|
int m;
|
|
int st;
|
|
|
|
st = 3*(i-1)+2;
|
|
m = 0;
|
|
if (v -= 1) {
|
|
coef_bits += r->rate_ac[st][1];
|
|
m = 1;
|
|
v2 = v;
|
|
if (v2 >>= 1) {
|
|
coef_bits += r->rate_ac[st][1];
|
|
m <<= 1;
|
|
st = (i <= r->arith_ac_K) ? 189 : 217;
|
|
while (v2 >>= 1) {
|
|
coef_bits += r->rate_ac[st][1];
|
|
m <<= 1;
|
|
st++;
|
|
}
|
|
}
|
|
}
|
|
coef_bits += r->rate_ac[st][0];
|
|
st += 14;
|
|
while (m >>= 1)
|
|
coef_bits += r->rate_ac[st][(m & v) ? 1 : 0];
|
|
|
|
rate = coef_bits + run_bits;
|
|
cost = rate + candidate_dist[k];
|
|
cost += accumulated_zero_dist[i-1] - accumulated_zero_dist[j] + accumulated_cost[j];
|
|
|
|
if (cost < accumulated_cost[i]) {
|
|
coef_blocks[bi][z] = (candidate[k] ^ sign) - sign;
|
|
accumulated_cost[i] = cost;
|
|
run_start[i] = j;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
last_coeff_idx = Ss-1;
|
|
best_cost = accumulated_zero_dist[Se] + r->rate_ac[0][1];
|
|
|
|
for (i = Ss; i <= Se; i++) {
|
|
int z = jpeg_natural_order[i];
|
|
if (coef_blocks[bi][z] != 0) {
|
|
float cost = accumulated_cost[i] + accumulated_zero_dist[Se] - accumulated_zero_dist[i];
|
|
|
|
if (i < Se)
|
|
cost += r->rate_ac[3*(i-1)][1];
|
|
|
|
if (cost < best_cost) {
|
|
best_cost = cost;
|
|
last_coeff_idx = i;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Zero out coefficients that are part of runs */
|
|
i = Se;
|
|
while (i >= Ss)
|
|
{
|
|
while (i > last_coeff_idx) {
|
|
int z = jpeg_natural_order[i];
|
|
coef_blocks[bi][z] = 0;
|
|
i--;
|
|
}
|
|
last_coeff_idx = run_start[i];
|
|
i--;
|
|
}
|
|
|
|
}
|
|
|
|
if (cinfo->master->trellis_q_opt) {
|
|
for (bi = 0; bi < num_blocks; bi++) {
|
|
for (i = 1; i < DCTSIZE2; i++) {
|
|
norm_src[i] += src[bi][i] * coef_blocks[bi][i];
|
|
norm_coef[i] += 8 * coef_blocks[bi][i] * coef_blocks[bi][i];
|
|
}
|
|
}
|
|
}
|
|
|
|
if (cinfo->master->trellis_quant_dc) {
|
|
j = 0;
|
|
for (i = 1; i < dc_trellis_candidates; i++) {
|
|
if (accumulated_dc_cost[i][num_blocks-1] < accumulated_dc_cost[j][num_blocks-1])
|
|
j = i;
|
|
}
|
|
for (bi = num_blocks-1; bi >= 0; bi--) {
|
|
coef_blocks[bi][0] = dc_candidate[j][bi];
|
|
j = dc_cost_backtrack[j][bi];
|
|
}
|
|
|
|
/* Save DC predictor */
|
|
*last_dc_val = coef_blocks[num_blocks-1][0];
|
|
|
|
for (i = 0; i < dc_trellis_candidates; i++) {
|
|
free(accumulated_dc_cost[i]);
|
|
free(dc_cost_backtrack[i]);
|
|
free(dc_candidate[i]);
|
|
free(dc_context[i]);
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Initialize FDCT manager.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jinit_forward_dct (j_compress_ptr cinfo)
|
|
{
|
|
my_fdct_ptr fdct;
|
|
int i;
|
|
|
|
fdct = (my_fdct_ptr)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
sizeof(my_fdct_controller));
|
|
cinfo->fdct = (struct jpeg_forward_dct *) fdct;
|
|
fdct->pub.start_pass = start_pass_fdctmgr;
|
|
|
|
/* First determine the DCT... */
|
|
switch (cinfo->dct_method) {
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
case JDCT_ISLOW:
|
|
fdct->pub.forward_DCT = forward_DCT;
|
|
if (jsimd_can_fdct_islow())
|
|
fdct->dct = jsimd_fdct_islow;
|
|
else
|
|
fdct->dct = jpeg_fdct_islow;
|
|
break;
|
|
#endif
|
|
#ifdef DCT_IFAST_SUPPORTED
|
|
case JDCT_IFAST:
|
|
fdct->pub.forward_DCT = forward_DCT;
|
|
if (jsimd_can_fdct_ifast())
|
|
fdct->dct = jsimd_fdct_ifast;
|
|
else
|
|
fdct->dct = jpeg_fdct_ifast;
|
|
break;
|
|
#endif
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
case JDCT_FLOAT:
|
|
fdct->pub.forward_DCT = forward_DCT_float;
|
|
if (jsimd_can_fdct_float())
|
|
fdct->float_dct = jsimd_fdct_float;
|
|
else
|
|
fdct->float_dct = jpeg_fdct_float;
|
|
break;
|
|
#endif
|
|
default:
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
break;
|
|
}
|
|
|
|
/* ...then the supporting stages. */
|
|
switch (cinfo->dct_method) {
|
|
#ifdef DCT_ISLOW_SUPPORTED
|
|
case JDCT_ISLOW:
|
|
#endif
|
|
#ifdef DCT_IFAST_SUPPORTED
|
|
case JDCT_IFAST:
|
|
#endif
|
|
#if defined(DCT_ISLOW_SUPPORTED) || defined(DCT_IFAST_SUPPORTED)
|
|
if (jsimd_can_convsamp())
|
|
fdct->convsamp = jsimd_convsamp;
|
|
else
|
|
fdct->convsamp = convsamp;
|
|
|
|
if (cinfo->master->overshoot_deringing) {
|
|
fdct->preprocess = preprocess_deringing;
|
|
} else {
|
|
fdct->preprocess = NULL;
|
|
}
|
|
|
|
if (jsimd_can_quantize())
|
|
fdct->quantize = jsimd_quantize;
|
|
else
|
|
fdct->quantize = quantize;
|
|
break;
|
|
#endif
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
case JDCT_FLOAT:
|
|
if (jsimd_can_convsamp_float())
|
|
fdct->float_convsamp = jsimd_convsamp_float;
|
|
else
|
|
fdct->float_convsamp = convsamp_float;
|
|
|
|
if (cinfo->master->overshoot_deringing) {
|
|
fdct->float_preprocess = float_preprocess_deringing;
|
|
} else {
|
|
fdct->float_preprocess = NULL;
|
|
}
|
|
|
|
if (jsimd_can_quantize_float())
|
|
fdct->float_quantize = jsimd_quantize_float;
|
|
else
|
|
fdct->float_quantize = quantize_float;
|
|
break;
|
|
#endif
|
|
default:
|
|
ERREXIT(cinfo, JERR_NOT_COMPILED);
|
|
break;
|
|
}
|
|
|
|
/* Allocate workspace memory */
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
if (cinfo->dct_method == JDCT_FLOAT)
|
|
fdct->float_workspace = (FAST_FLOAT *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
sizeof(FAST_FLOAT) * DCTSIZE2);
|
|
else
|
|
#endif
|
|
fdct->workspace = (DCTELEM *)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr) cinfo, JPOOL_IMAGE,
|
|
sizeof(DCTELEM) * DCTSIZE2);
|
|
|
|
/* Mark divisor tables unallocated */
|
|
for (i = 0; i < NUM_QUANT_TBLS; i++) {
|
|
fdct->divisors[i] = NULL;
|
|
#ifdef DCT_FLOAT_SUPPORTED
|
|
fdct->float_divisors[i] = NULL;
|
|
#endif
|
|
}
|
|
}
|