Telegram-Android/TMessagesProj/jni/boringssl/crypto/pkcs8/pkcs8_x509.c
2019-12-31 16:08:08 +03:00

1305 lines
41 KiB
C

/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
* project 1999.
*/
/* ====================================================================
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/pkcs8.h>
#include <limits.h>
#include <openssl/asn1t.h>
#include <openssl/asn1.h>
#include <openssl/bio.h>
#include <openssl/buf.h>
#include <openssl/bytestring.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/digest.h>
#include <openssl/hmac.h>
#include <openssl/mem.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include "internal.h"
#include "../bytestring/internal.h"
#include "../internal.h"
int pkcs12_iterations_acceptable(uint64_t iterations) {
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
static const uint64_t kIterationsLimit = 2048;
#else
// Windows imposes a limit of 600K. Mozilla say: “so them increasing
// maximum to something like 100M or 1G (to have few decades of breathing
// room) would be very welcome”[1]. So here we set the limit to 100M.
//
// [1] https://bugzilla.mozilla.org/show_bug.cgi?id=1436873#c14
static const uint64_t kIterationsLimit = 100 * 1000000;
#endif
return 0 < iterations && iterations <= kIterationsLimit;
}
// Minor tweak to operation: zero private key data
static int pkey_cb(int operation, ASN1_VALUE **pval, const ASN1_ITEM *it,
void *exarg) {
// Since the structure must still be valid use ASN1_OP_FREE_PRE
if (operation == ASN1_OP_FREE_PRE) {
PKCS8_PRIV_KEY_INFO *key = (PKCS8_PRIV_KEY_INFO *)*pval;
if (key->pkey && key->pkey->type == V_ASN1_OCTET_STRING &&
key->pkey->value.octet_string) {
OPENSSL_cleanse(key->pkey->value.octet_string->data,
key->pkey->value.octet_string->length);
}
}
return 1;
}
ASN1_SEQUENCE_cb(PKCS8_PRIV_KEY_INFO, pkey_cb) = {
ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, version, ASN1_INTEGER),
ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkeyalg, X509_ALGOR),
ASN1_SIMPLE(PKCS8_PRIV_KEY_INFO, pkey, ASN1_ANY),
ASN1_IMP_SET_OF_OPT(PKCS8_PRIV_KEY_INFO, attributes, X509_ATTRIBUTE, 0)
} ASN1_SEQUENCE_END_cb(PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO)
IMPLEMENT_ASN1_FUNCTIONS(PKCS8_PRIV_KEY_INFO)
EVP_PKEY *EVP_PKCS82PKEY(PKCS8_PRIV_KEY_INFO *p8) {
uint8_t *der = NULL;
int der_len = i2d_PKCS8_PRIV_KEY_INFO(p8, &der);
if (der_len < 0) {
return NULL;
}
CBS cbs;
CBS_init(&cbs, der, (size_t)der_len);
EVP_PKEY *ret = EVP_parse_private_key(&cbs);
if (ret == NULL || CBS_len(&cbs) != 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
EVP_PKEY_free(ret);
OPENSSL_free(der);
return NULL;
}
OPENSSL_free(der);
return ret;
}
PKCS8_PRIV_KEY_INFO *EVP_PKEY2PKCS8(EVP_PKEY *pkey) {
CBB cbb;
uint8_t *der = NULL;
size_t der_len;
if (!CBB_init(&cbb, 0) ||
!EVP_marshal_private_key(&cbb, pkey) ||
!CBB_finish(&cbb, &der, &der_len) ||
der_len > LONG_MAX) {
CBB_cleanup(&cbb);
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ENCODE_ERROR);
goto err;
}
const uint8_t *p = der;
PKCS8_PRIV_KEY_INFO *p8 = d2i_PKCS8_PRIV_KEY_INFO(NULL, &p, (long)der_len);
if (p8 == NULL || p != der + der_len) {
PKCS8_PRIV_KEY_INFO_free(p8);
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
goto err;
}
OPENSSL_free(der);
return p8;
err:
OPENSSL_free(der);
return NULL;
}
PKCS8_PRIV_KEY_INFO *PKCS8_decrypt(X509_SIG *pkcs8, const char *pass,
int pass_len_in) {
size_t pass_len;
if (pass_len_in == -1 && pass != NULL) {
pass_len = strlen(pass);
} else {
pass_len = (size_t)pass_len_in;
}
PKCS8_PRIV_KEY_INFO *ret = NULL;
EVP_PKEY *pkey = NULL;
uint8_t *in = NULL;
// Convert the legacy ASN.1 object to a byte string.
int in_len = i2d_X509_SIG(pkcs8, &in);
if (in_len < 0) {
goto err;
}
CBS cbs;
CBS_init(&cbs, in, in_len);
pkey = PKCS8_parse_encrypted_private_key(&cbs, pass, pass_len);
if (pkey == NULL || CBS_len(&cbs) != 0) {
goto err;
}
ret = EVP_PKEY2PKCS8(pkey);
err:
OPENSSL_free(in);
EVP_PKEY_free(pkey);
return ret;
}
X509_SIG *PKCS8_encrypt(int pbe_nid, const EVP_CIPHER *cipher, const char *pass,
int pass_len_in, const uint8_t *salt, size_t salt_len,
int iterations, PKCS8_PRIV_KEY_INFO *p8inf) {
size_t pass_len;
if (pass_len_in == -1 && pass != NULL) {
pass_len = strlen(pass);
} else {
pass_len = (size_t)pass_len_in;
}
// Parse out the private key.
EVP_PKEY *pkey = EVP_PKCS82PKEY(p8inf);
if (pkey == NULL) {
return NULL;
}
X509_SIG *ret = NULL;
uint8_t *der = NULL;
size_t der_len;
CBB cbb;
if (!CBB_init(&cbb, 128) ||
!PKCS8_marshal_encrypted_private_key(&cbb, pbe_nid, cipher, pass,
pass_len, salt, salt_len, iterations,
pkey) ||
!CBB_finish(&cbb, &der, &der_len)) {
CBB_cleanup(&cbb);
goto err;
}
// Convert back to legacy ASN.1 objects.
const uint8_t *ptr = der;
ret = d2i_X509_SIG(NULL, &ptr, der_len);
if (ret == NULL || ptr != der + der_len) {
OPENSSL_PUT_ERROR(PKCS8, ERR_R_INTERNAL_ERROR);
X509_SIG_free(ret);
ret = NULL;
}
err:
OPENSSL_free(der);
EVP_PKEY_free(pkey);
return ret;
}
struct pkcs12_context {
EVP_PKEY **out_key;
STACK_OF(X509) *out_certs;
const char *password;
size_t password_len;
};
// PKCS12_handle_sequence parses a BER-encoded SEQUENCE of elements in a PKCS#12
// structure.
static int PKCS12_handle_sequence(
CBS *sequence, struct pkcs12_context *ctx,
int (*handle_element)(CBS *cbs, struct pkcs12_context *ctx)) {
uint8_t *storage = NULL;
CBS in;
int ret = 0;
// Although a BER->DER conversion is done at the beginning of |PKCS12_parse|,
// the ASN.1 data gets wrapped in OCTETSTRINGs and/or encrypted and the
// conversion cannot see through those wrappings. So each time we step
// through one we need to convert to DER again.
if (!CBS_asn1_ber_to_der(sequence, &in, &storage)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
return 0;
}
CBS child;
if (!CBS_get_asn1(&in, &child, CBS_ASN1_SEQUENCE) ||
CBS_len(&in) != 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
while (CBS_len(&child) > 0) {
CBS element;
if (!CBS_get_asn1(&child, &element, CBS_ASN1_SEQUENCE)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
if (!handle_element(&element, ctx)) {
goto err;
}
}
ret = 1;
err:
OPENSSL_free(storage);
return ret;
}
// 1.2.840.113549.1.12.10.1.1
static const uint8_t kKeyBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
0x01, 0x0c, 0x0a, 0x01, 0x01};
// 1.2.840.113549.1.12.10.1.2
static const uint8_t kPKCS8ShroudedKeyBag[] = {
0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x0c, 0x0a, 0x01, 0x02};
// 1.2.840.113549.1.12.10.1.3
static const uint8_t kCertBag[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d,
0x01, 0x0c, 0x0a, 0x01, 0x03};
// 1.2.840.113549.1.9.20
static const uint8_t kFriendlyName[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x09, 0x14};
// 1.2.840.113549.1.9.21
static const uint8_t kLocalKeyID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x09, 0x15};
// 1.2.840.113549.1.9.22.1
static const uint8_t kX509Certificate[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x09, 0x16, 0x01};
// parse_bag_attributes parses the bagAttributes field of a SafeBag structure.
// It sets |*out_friendly_name| to a newly-allocated copy of the friendly name,
// encoded as a UTF-8 string, or NULL if there is none. It returns one on
// success and zero on error.
static int parse_bag_attributes(CBS *attrs, uint8_t **out_friendly_name,
size_t *out_friendly_name_len) {
*out_friendly_name = NULL;
*out_friendly_name_len = 0;
// See https://tools.ietf.org/html/rfc7292#section-4.2.
while (CBS_len(attrs) != 0) {
CBS attr, oid, values;
if (!CBS_get_asn1(attrs, &attr, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(&attr, &values, CBS_ASN1_SET) ||
CBS_len(&attr) != 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
if (CBS_mem_equal(&oid, kFriendlyName, sizeof(kFriendlyName))) {
// See https://tools.ietf.org/html/rfc2985, section 5.5.1.
CBS value;
if (*out_friendly_name != NULL ||
!CBS_get_asn1(&values, &value, CBS_ASN1_BMPSTRING) ||
CBS_len(&values) != 0 ||
CBS_len(&value) == 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
// Convert the friendly name to UTF-8.
CBB cbb;
if (!CBB_init(&cbb, CBS_len(&value))) {
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
goto err;
}
while (CBS_len(&value) != 0) {
uint32_t c;
if (!cbs_get_ucs2_be(&value, &c) ||
!cbb_add_utf8(&cbb, c)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
CBB_cleanup(&cbb);
goto err;
}
}
if (!CBB_finish(&cbb, out_friendly_name, out_friendly_name_len)) {
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
CBB_cleanup(&cbb);
goto err;
}
}
}
return 1;
err:
OPENSSL_free(*out_friendly_name);
*out_friendly_name = NULL;
*out_friendly_name_len = 0;
return 0;
}
// PKCS12_handle_safe_bag parses a single SafeBag element in a PKCS#12
// structure.
static int PKCS12_handle_safe_bag(CBS *safe_bag, struct pkcs12_context *ctx) {
CBS bag_id, wrapped_value, bag_attrs;
if (!CBS_get_asn1(safe_bag, &bag_id, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(safe_bag, &wrapped_value,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
return 0;
}
if (CBS_len(safe_bag) == 0) {
CBS_init(&bag_attrs, NULL, 0);
} else if (!CBS_get_asn1(safe_bag, &bag_attrs, CBS_ASN1_SET) ||
CBS_len(safe_bag) != 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
return 0;
}
const int is_key_bag = CBS_mem_equal(&bag_id, kKeyBag, sizeof(kKeyBag));
const int is_shrouded_key_bag = CBS_mem_equal(&bag_id, kPKCS8ShroudedKeyBag,
sizeof(kPKCS8ShroudedKeyBag));
if (is_key_bag || is_shrouded_key_bag) {
// See RFC 7292, section 4.2.1 and 4.2.2.
if (*ctx->out_key) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MULTIPLE_PRIVATE_KEYS_IN_PKCS12);
return 0;
}
EVP_PKEY *pkey =
is_key_bag ? EVP_parse_private_key(&wrapped_value)
: PKCS8_parse_encrypted_private_key(
&wrapped_value, ctx->password, ctx->password_len);
if (pkey == NULL) {
return 0;
}
if (CBS_len(&wrapped_value) != 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
EVP_PKEY_free(pkey);
return 0;
}
*ctx->out_key = pkey;
return 1;
}
if (CBS_mem_equal(&bag_id, kCertBag, sizeof(kCertBag))) {
// See RFC 7292, section 4.2.3.
CBS cert_bag, cert_type, wrapped_cert, cert;
if (!CBS_get_asn1(&wrapped_value, &cert_bag, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(&cert_bag, &wrapped_cert,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
!CBS_get_asn1(&wrapped_cert, &cert, CBS_ASN1_OCTETSTRING)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
return 0;
}
// Skip unknown certificate types.
if (!CBS_mem_equal(&cert_type, kX509Certificate,
sizeof(kX509Certificate))) {
return 1;
}
if (CBS_len(&cert) > LONG_MAX) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
return 0;
}
const uint8_t *inp = CBS_data(&cert);
X509 *x509 = d2i_X509(NULL, &inp, (long)CBS_len(&cert));
if (!x509) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
return 0;
}
if (inp != CBS_data(&cert) + CBS_len(&cert)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
X509_free(x509);
return 0;
}
uint8_t *friendly_name;
size_t friendly_name_len;
if (!parse_bag_attributes(&bag_attrs, &friendly_name, &friendly_name_len)) {
X509_free(x509);
return 0;
}
int ok = friendly_name_len == 0 ||
X509_alias_set1(x509, friendly_name, friendly_name_len);
OPENSSL_free(friendly_name);
if (!ok ||
0 == sk_X509_push(ctx->out_certs, x509)) {
X509_free(x509);
return 0;
}
return 1;
}
// Unknown element type - ignore it.
return 1;
}
// 1.2.840.113549.1.7.1
static const uint8_t kPKCS7Data[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x07, 0x01};
// 1.2.840.113549.1.7.6
static const uint8_t kPKCS7EncryptedData[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x07, 0x06};
// PKCS12_handle_content_info parses a single PKCS#7 ContentInfo element in a
// PKCS#12 structure.
static int PKCS12_handle_content_info(CBS *content_info,
struct pkcs12_context *ctx) {
CBS content_type, wrapped_contents, contents;
int ret = 0;
uint8_t *storage = NULL;
if (!CBS_get_asn1(content_info, &content_type, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(content_info, &wrapped_contents,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
CBS_len(content_info) != 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
if (CBS_mem_equal(&content_type, kPKCS7EncryptedData,
sizeof(kPKCS7EncryptedData))) {
// See https://tools.ietf.org/html/rfc2315#section-13.
//
// PKCS#7 encrypted data inside a PKCS#12 structure is generally an
// encrypted certificate bag and it's generally encrypted with 40-bit
// RC2-CBC.
CBS version_bytes, eci, contents_type, ai, encrypted_contents;
uint8_t *out;
size_t out_len;
if (!CBS_get_asn1(&wrapped_contents, &contents, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&contents, &version_bytes, CBS_ASN1_INTEGER) ||
// EncryptedContentInfo, see
// https://tools.ietf.org/html/rfc2315#section-10.1
!CBS_get_asn1(&contents, &eci, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1(&eci, &contents_type, CBS_ASN1_OBJECT) ||
// AlgorithmIdentifier, see
// https://tools.ietf.org/html/rfc5280#section-4.1.1.2
!CBS_get_asn1(&eci, &ai, CBS_ASN1_SEQUENCE) ||
!CBS_get_asn1_implicit_string(
&eci, &encrypted_contents, &storage,
CBS_ASN1_CONTEXT_SPECIFIC | 0, CBS_ASN1_OCTETSTRING)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
if (!CBS_mem_equal(&contents_type, kPKCS7Data, sizeof(kPKCS7Data))) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
if (!pkcs8_pbe_decrypt(&out, &out_len, &ai, ctx->password,
ctx->password_len, CBS_data(&encrypted_contents),
CBS_len(&encrypted_contents))) {
goto err;
}
CBS safe_contents;
CBS_init(&safe_contents, out, out_len);
ret = PKCS12_handle_sequence(&safe_contents, ctx, PKCS12_handle_safe_bag);
OPENSSL_free(out);
} else if (CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
CBS octet_string_contents;
if (!CBS_get_asn1(&wrapped_contents, &octet_string_contents,
CBS_ASN1_OCTETSTRING)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
ret = PKCS12_handle_sequence(&octet_string_contents, ctx,
PKCS12_handle_safe_bag);
} else {
// Unknown element type - ignore it.
ret = 1;
}
err:
OPENSSL_free(storage);
return ret;
}
static int pkcs12_check_mac(int *out_mac_ok, const char *password,
size_t password_len, const CBS *salt,
unsigned iterations, const EVP_MD *md,
const CBS *authsafes, const CBS *expected_mac) {
int ret = 0;
uint8_t hmac_key[EVP_MAX_MD_SIZE];
if (!pkcs12_key_gen(password, password_len, CBS_data(salt), CBS_len(salt),
PKCS12_MAC_ID, iterations, EVP_MD_size(md), hmac_key,
md)) {
goto err;
}
uint8_t hmac[EVP_MAX_MD_SIZE];
unsigned hmac_len;
if (NULL == HMAC(md, hmac_key, EVP_MD_size(md), CBS_data(authsafes),
CBS_len(authsafes), hmac, &hmac_len)) {
goto err;
}
*out_mac_ok = CBS_mem_equal(expected_mac, hmac, hmac_len);
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
*out_mac_ok = 1;
#endif
ret = 1;
err:
OPENSSL_cleanse(hmac_key, sizeof(hmac_key));
return ret;
}
int PKCS12_get_key_and_certs(EVP_PKEY **out_key, STACK_OF(X509) *out_certs,
CBS *ber_in, const char *password) {
uint8_t *storage = NULL;
CBS in, pfx, mac_data, authsafe, content_type, wrapped_authsafes, authsafes;
uint64_t version;
int ret = 0;
struct pkcs12_context ctx;
const size_t original_out_certs_len = sk_X509_num(out_certs);
// The input may be in BER format.
if (!CBS_asn1_ber_to_der(ber_in, &in, &storage)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
return 0;
}
*out_key = NULL;
OPENSSL_memset(&ctx, 0, sizeof(ctx));
// See ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-12/pkcs-12v1.pdf, section
// four.
if (!CBS_get_asn1(&in, &pfx, CBS_ASN1_SEQUENCE) ||
CBS_len(&in) != 0 ||
!CBS_get_asn1_uint64(&pfx, &version)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
if (version < 3) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_VERSION);
goto err;
}
if (!CBS_get_asn1(&pfx, &authsafe, CBS_ASN1_SEQUENCE)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
if (CBS_len(&pfx) == 0) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_MISSING_MAC);
goto err;
}
if (!CBS_get_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
// authsafe is a PKCS#7 ContentInfo. See
// https://tools.ietf.org/html/rfc2315#section-7.
if (!CBS_get_asn1(&authsafe, &content_type, CBS_ASN1_OBJECT) ||
!CBS_get_asn1(&authsafe, &wrapped_authsafes,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
// The content type can either be data or signedData. The latter indicates
// that it's signed by a public key, which isn't supported.
if (!CBS_mem_equal(&content_type, kPKCS7Data, sizeof(kPKCS7Data))) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_PKCS12_PUBLIC_KEY_INTEGRITY_NOT_SUPPORTED);
goto err;
}
if (!CBS_get_asn1(&wrapped_authsafes, &authsafes, CBS_ASN1_OCTETSTRING)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
ctx.out_key = out_key;
ctx.out_certs = out_certs;
ctx.password = password;
ctx.password_len = password != NULL ? strlen(password) : 0;
// Verify the MAC.
{
CBS mac, salt, expected_mac;
if (!CBS_get_asn1(&mac_data, &mac, CBS_ASN1_SEQUENCE)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
const EVP_MD *md = EVP_parse_digest_algorithm(&mac);
if (md == NULL) {
goto err;
}
if (!CBS_get_asn1(&mac, &expected_mac, CBS_ASN1_OCTETSTRING) ||
!CBS_get_asn1(&mac_data, &salt, CBS_ASN1_OCTETSTRING)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
// The iteration count is optional and the default is one.
uint64_t iterations = 1;
if (CBS_len(&mac_data) > 0) {
if (!CBS_get_asn1_uint64(&mac_data, &iterations) ||
!pkcs12_iterations_acceptable(iterations)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_PKCS12_DATA);
goto err;
}
}
int mac_ok;
if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
iterations, md, &authsafes, &expected_mac)) {
goto err;
}
if (!mac_ok && ctx.password_len == 0) {
// PKCS#12 encodes passwords as NUL-terminated UCS-2, so the empty
// password is encoded as {0, 0}. Some implementations use the empty byte
// array for "no password". OpenSSL considers a non-NULL password as {0,
// 0} and a NULL password as {}. It then, in high-level PKCS#12 parsing
// code, tries both options. We match this behavior.
ctx.password = ctx.password != NULL ? NULL : "";
if (!pkcs12_check_mac(&mac_ok, ctx.password, ctx.password_len, &salt,
iterations, md, &authsafes, &expected_mac)) {
goto err;
}
}
if (!mac_ok) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INCORRECT_PASSWORD);
goto err;
}
}
// authsafes contains a series of PKCS#7 ContentInfos.
if (!PKCS12_handle_sequence(&authsafes, &ctx, PKCS12_handle_content_info)) {
goto err;
}
ret = 1;
err:
OPENSSL_free(storage);
if (!ret) {
EVP_PKEY_free(*out_key);
*out_key = NULL;
while (sk_X509_num(out_certs) > original_out_certs_len) {
X509 *x509 = sk_X509_pop(out_certs);
X509_free(x509);
}
}
return ret;
}
void PKCS12_PBE_add(void) {}
struct pkcs12_st {
uint8_t *ber_bytes;
size_t ber_len;
};
PKCS12 *d2i_PKCS12(PKCS12 **out_p12, const uint8_t **ber_bytes,
size_t ber_len) {
PKCS12 *p12;
p12 = OPENSSL_malloc(sizeof(PKCS12));
if (!p12) {
return NULL;
}
p12->ber_bytes = OPENSSL_malloc(ber_len);
if (!p12->ber_bytes) {
OPENSSL_free(p12);
return NULL;
}
OPENSSL_memcpy(p12->ber_bytes, *ber_bytes, ber_len);
p12->ber_len = ber_len;
*ber_bytes += ber_len;
if (out_p12) {
PKCS12_free(*out_p12);
*out_p12 = p12;
}
return p12;
}
PKCS12* d2i_PKCS12_bio(BIO *bio, PKCS12 **out_p12) {
size_t used = 0;
BUF_MEM *buf;
const uint8_t *dummy;
static const size_t kMaxSize = 256 * 1024;
PKCS12 *ret = NULL;
buf = BUF_MEM_new();
if (buf == NULL) {
return NULL;
}
if (BUF_MEM_grow(buf, 8192) == 0) {
goto out;
}
for (;;) {
int n = BIO_read(bio, &buf->data[used], buf->length - used);
if (n < 0) {
if (used == 0) {
goto out;
}
// Workaround a bug in node.js. It uses a memory BIO for this in the wrong
// mode.
n = 0;
}
if (n == 0) {
break;
}
used += n;
if (used < buf->length) {
continue;
}
if (buf->length > kMaxSize ||
BUF_MEM_grow(buf, buf->length * 2) == 0) {
goto out;
}
}
dummy = (uint8_t*) buf->data;
ret = d2i_PKCS12(out_p12, &dummy, used);
out:
BUF_MEM_free(buf);
return ret;
}
PKCS12* d2i_PKCS12_fp(FILE *fp, PKCS12 **out_p12) {
BIO *bio;
PKCS12 *ret;
bio = BIO_new_fp(fp, 0 /* don't take ownership */);
if (!bio) {
return NULL;
}
ret = d2i_PKCS12_bio(bio, out_p12);
BIO_free(bio);
return ret;
}
int i2d_PKCS12(const PKCS12 *p12, uint8_t **out) {
if (p12->ber_len > INT_MAX) {
OPENSSL_PUT_ERROR(PKCS8, ERR_R_OVERFLOW);
return -1;
}
if (out == NULL) {
return (int)p12->ber_len;
}
if (*out == NULL) {
*out = OPENSSL_malloc(p12->ber_len);
if (*out == NULL) {
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
return -1;
}
OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len);
} else {
OPENSSL_memcpy(*out, p12->ber_bytes, p12->ber_len);
*out += p12->ber_len;
}
return (int)p12->ber_len;
}
int i2d_PKCS12_bio(BIO *bio, const PKCS12 *p12) {
return BIO_write_all(bio, p12->ber_bytes, p12->ber_len);
}
int i2d_PKCS12_fp(FILE *fp, const PKCS12 *p12) {
BIO *bio = BIO_new_fp(fp, 0 /* don't take ownership */);
if (bio == NULL) {
return 0;
}
int ret = i2d_PKCS12_bio(bio, p12);
BIO_free(bio);
return ret;
}
int PKCS12_parse(const PKCS12 *p12, const char *password, EVP_PKEY **out_pkey,
X509 **out_cert, STACK_OF(X509) **out_ca_certs) {
CBS ber_bytes;
STACK_OF(X509) *ca_certs = NULL;
char ca_certs_alloced = 0;
if (out_ca_certs != NULL && *out_ca_certs != NULL) {
ca_certs = *out_ca_certs;
}
if (!ca_certs) {
ca_certs = sk_X509_new_null();
if (ca_certs == NULL) {
OPENSSL_PUT_ERROR(PKCS8, ERR_R_MALLOC_FAILURE);
return 0;
}
ca_certs_alloced = 1;
}
CBS_init(&ber_bytes, p12->ber_bytes, p12->ber_len);
if (!PKCS12_get_key_and_certs(out_pkey, ca_certs, &ber_bytes, password)) {
if (ca_certs_alloced) {
sk_X509_free(ca_certs);
}
return 0;
}
// OpenSSL selects the last certificate which matches the private key as
// |out_cert|.
//
// TODO(davidben): OpenSSL additionally reverses the order of the
// certificates, which was likely originally a bug, but may be a feature by
// now. See https://crbug.com/boringssl/250 and
// https://github.com/openssl/openssl/issues/6698.
*out_cert = NULL;
size_t num_certs = sk_X509_num(ca_certs);
if (*out_pkey != NULL && num_certs > 0) {
for (size_t i = num_certs - 1; i < num_certs; i--) {
X509 *cert = sk_X509_value(ca_certs, i);
if (X509_check_private_key(cert, *out_pkey)) {
*out_cert = cert;
sk_X509_delete(ca_certs, i);
break;
}
ERR_clear_error();
}
}
if (out_ca_certs) {
*out_ca_certs = ca_certs;
} else {
sk_X509_pop_free(ca_certs, X509_free);
}
return 1;
}
int PKCS12_verify_mac(const PKCS12 *p12, const char *password,
int password_len) {
if (password == NULL) {
if (password_len != 0) {
return 0;
}
} else if (password_len != -1 &&
(password[password_len] != 0 ||
OPENSSL_memchr(password, 0, password_len) != NULL)) {
return 0;
}
EVP_PKEY *pkey = NULL;
X509 *cert = NULL;
if (!PKCS12_parse(p12, password, &pkey, &cert, NULL)) {
ERR_clear_error();
return 0;
}
EVP_PKEY_free(pkey);
X509_free(cert);
return 1;
}
// add_bag_attributes adds the bagAttributes field of a SafeBag structure,
// containing the specified friendlyName and localKeyId attributes.
static int add_bag_attributes(CBB *bag, const char *name, const uint8_t *key_id,
size_t key_id_len) {
if (name == NULL && key_id_len == 0) {
return 1; // Omit the OPTIONAL SET.
}
// See https://tools.ietf.org/html/rfc7292#section-4.2.
CBB attrs, attr, oid, values, value;
if (!CBB_add_asn1(bag, &attrs, CBS_ASN1_SET)) {
return 0;
}
if (name != NULL) {
// See https://tools.ietf.org/html/rfc2985, section 5.5.1.
if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, kFriendlyName, sizeof(kFriendlyName)) ||
!CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
!CBB_add_asn1(&values, &value, CBS_ASN1_BMPSTRING)) {
return 0;
}
// Convert the friendly name to a BMPString.
CBS name_cbs;
CBS_init(&name_cbs, (const uint8_t *)name, strlen(name));
while (CBS_len(&name_cbs) != 0) {
uint32_t c;
if (!cbs_get_utf8(&name_cbs, &c) ||
!cbb_add_ucs2_be(&value, c)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_INVALID_CHARACTERS);
return 0;
}
}
}
if (key_id_len != 0) {
// See https://tools.ietf.org/html/rfc2985, section 5.5.2.
if (!CBB_add_asn1(&attrs, &attr, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&attr, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, kLocalKeyID, sizeof(kLocalKeyID)) ||
!CBB_add_asn1(&attr, &values, CBS_ASN1_SET) ||
!CBB_add_asn1(&values, &value, CBS_ASN1_OCTETSTRING) ||
!CBB_add_bytes(&value, key_id, key_id_len)) {
return 0;
}
}
return CBB_flush_asn1_set_of(&attrs) &&
CBB_flush(bag);
}
static int add_cert_bag(CBB *cbb, X509 *cert, const char *name,
const uint8_t *key_id, size_t key_id_len) {
CBB bag, bag_oid, bag_contents, cert_bag, cert_type, wrapped_cert, cert_value;
if (// See https://tools.ietf.org/html/rfc7292#section-4.2.
!CBB_add_asn1(cbb, &bag, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&bag_oid, kCertBag, sizeof(kCertBag)) ||
!CBB_add_asn1(&bag, &bag_contents,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
// See https://tools.ietf.org/html/rfc7292#section-4.2.3.
!CBB_add_asn1(&bag_contents, &cert_bag, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&cert_bag, &cert_type, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&cert_type, kX509Certificate, sizeof(kX509Certificate)) ||
!CBB_add_asn1(&cert_bag, &wrapped_cert,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
!CBB_add_asn1(&wrapped_cert, &cert_value, CBS_ASN1_OCTETSTRING)) {
return 0;
}
uint8_t *buf;
int len = i2d_X509(cert, NULL);
if (len < 0 ||
!CBB_add_space(&cert_value, &buf, (size_t)len) ||
i2d_X509(cert, &buf) < 0 ||
!add_bag_attributes(&bag, name, key_id, key_id_len) ||
!CBB_flush(cbb)) {
return 0;
}
return 1;
}
static int make_cert_safe_contents(uint8_t **out_data, size_t *out_len,
X509 *cert, const STACK_OF(X509) *chain,
const char *name, const uint8_t *key_id,
size_t key_id_len) {
int ret = 0;
CBB cbb, safe_contents;
if (!CBB_init(&cbb, 0) ||
!CBB_add_asn1(&cbb, &safe_contents, CBS_ASN1_SEQUENCE) ||
(cert != NULL &&
!add_cert_bag(&safe_contents, cert, name, key_id, key_id_len))) {
goto err;
}
for (size_t i = 0; i < sk_X509_num(chain); i++) {
// Only the leaf certificate gets attributes.
if (!add_cert_bag(&safe_contents, sk_X509_value(chain, i), NULL, NULL, 0)) {
goto err;
}
}
ret = CBB_finish(&cbb, out_data, out_len);
err:
CBB_cleanup(&cbb);
return ret;
}
static int add_encrypted_data(CBB *out, int pbe_nid, const char *password,
size_t password_len, unsigned iterations,
const uint8_t *in, size_t in_len) {
uint8_t salt[PKCS5_SALT_LEN];
if (!RAND_bytes(salt, sizeof(salt))) {
return 0;
}
int ret = 0;
EVP_CIPHER_CTX ctx;
EVP_CIPHER_CTX_init(&ctx);
CBB content_info, type, wrapper, encrypted_data, encrypted_content_info,
inner_type, encrypted_content;
if (// Add the ContentInfo wrapping.
!CBB_add_asn1(out, &content_info, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&content_info, &type, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&type, kPKCS7EncryptedData, sizeof(kPKCS7EncryptedData)) ||
!CBB_add_asn1(&content_info, &wrapper,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
// See https://tools.ietf.org/html/rfc2315#section-13.
!CBB_add_asn1(&wrapper, &encrypted_data, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1_uint64(&encrypted_data, 0 /* version */) ||
// See https://tools.ietf.org/html/rfc2315#section-10.1.
!CBB_add_asn1(&encrypted_data, &encrypted_content_info,
CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&encrypted_content_info, &inner_type, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&inner_type, kPKCS7Data, sizeof(kPKCS7Data)) ||
// Set up encryption and fill in contentEncryptionAlgorithm.
!pkcs12_pbe_encrypt_init(&encrypted_content_info, &ctx, pbe_nid,
iterations, password, password_len, salt,
sizeof(salt)) ||
// Note this tag is primitive. It is an implicitly-tagged OCTET_STRING, so
// it inherits the inner tag's constructed bit.
!CBB_add_asn1(&encrypted_content_info, &encrypted_content,
CBS_ASN1_CONTEXT_SPECIFIC | 0)) {
goto err;
}
size_t max_out = in_len + EVP_CIPHER_CTX_block_size(&ctx);
if (max_out < in_len) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_TOO_LONG);
goto err;
}
uint8_t *ptr;
int n1, n2;
if (!CBB_reserve(&encrypted_content, &ptr, max_out) ||
!EVP_CipherUpdate(&ctx, ptr, &n1, in, in_len) ||
!EVP_CipherFinal_ex(&ctx, ptr + n1, &n2) ||
!CBB_did_write(&encrypted_content, n1 + n2) ||
!CBB_flush(out)) {
goto err;
}
ret = 1;
err:
EVP_CIPHER_CTX_cleanup(&ctx);
return ret;
}
PKCS12 *PKCS12_create(const char *password, const char *name,
const EVP_PKEY *pkey, X509 *cert,
const STACK_OF(X509)* chain, int key_nid, int cert_nid,
int iterations, int mac_iterations, int key_type) {
if (key_nid == 0) {
key_nid = NID_pbe_WithSHA1And3_Key_TripleDES_CBC;
}
if (cert_nid == 0) {
cert_nid = NID_pbe_WithSHA1And40BitRC2_CBC;
}
if (iterations == 0) {
iterations = PKCS5_DEFAULT_ITERATIONS;
}
if (mac_iterations == 0) {
mac_iterations = 1;
}
if (// In OpenSSL, this specifies a non-standard Microsoft key usage extension
// which we do not currently support.
key_type != 0 ||
// In OpenSSL, -1 here means to use no encryption, which we do not
// currently support.
key_nid < 0 || cert_nid < 0 ||
// In OpenSSL, -1 here means to omit the MAC, which we do not
// currently support. Omitting it is also invalid for a password-based
// PKCS#12 file.
mac_iterations < 0 ||
// Don't encode empty objects.
(pkey == NULL && cert == NULL && sk_X509_num(chain) == 0)) {
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_OPTIONS);
return 0;
}
// Note that |password| may be NULL to specify no password, rather than the
// empty string. They are encoded differently in PKCS#12. (One is the empty
// byte array and the other is NUL-terminated UCS-2.)
size_t password_len = password != NULL ? strlen(password) : 0;
uint8_t key_id[EVP_MAX_MD_SIZE];
unsigned key_id_len = 0;
if (cert != NULL && pkey != NULL) {
if (!X509_check_private_key(cert, pkey) ||
// Matching OpenSSL, use the SHA-1 hash of the certificate as the local
// key ID. Some PKCS#12 consumers require one to connect the private key
// and certificate.
!X509_digest(cert, EVP_sha1(), key_id, &key_id_len)) {
return 0;
}
}
// See https://tools.ietf.org/html/rfc7292#section-4.
PKCS12 *ret = NULL;
CBB cbb, pfx, auth_safe, auth_safe_oid, auth_safe_wrapper, auth_safe_data,
content_infos;
uint8_t mac_key[EVP_MAX_MD_SIZE];
if (!CBB_init(&cbb, 0) ||
!CBB_add_asn1(&cbb, &pfx, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1_uint64(&pfx, 3) ||
// auth_safe is a data ContentInfo.
!CBB_add_asn1(&pfx, &auth_safe, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&auth_safe, &auth_safe_oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&auth_safe_oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
!CBB_add_asn1(&auth_safe, &auth_safe_wrapper,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
!CBB_add_asn1(&auth_safe_wrapper, &auth_safe_data,
CBS_ASN1_OCTETSTRING) ||
// See https://tools.ietf.org/html/rfc7292#section-4.1. |auth_safe|'s
// contains a SEQUENCE of ContentInfos.
!CBB_add_asn1(&auth_safe_data, &content_infos, CBS_ASN1_SEQUENCE)) {
goto err;
}
// If there are any certificates, place them in CertBags wrapped in a single
// encrypted ContentInfo.
if (cert != NULL || sk_X509_num(chain) > 0) {
uint8_t *data;
size_t len;
if (!make_cert_safe_contents(&data, &len, cert, chain, name, key_id,
key_id_len)) {
goto err;
}
int ok = add_encrypted_data(&content_infos, cert_nid, password,
password_len, iterations, data, len);
OPENSSL_free(data);
if (!ok) {
goto err;
}
}
// If there is a key, place it in a single PKCS8ShroudedKeyBag wrapped in an
// unencrypted ContentInfo. (One could also place it in a KeyBag inside an
// encrypted ContentInfo, but OpenSSL does not do this and some PKCS#12
// consumers do not support KeyBags.)
if (pkey != NULL) {
CBB content_info, oid, wrapper, data, safe_contents, bag, bag_oid,
bag_contents;
if (// Add another data ContentInfo.
!CBB_add_asn1(&content_infos, &content_info, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&content_info, &oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&oid, kPKCS7Data, sizeof(kPKCS7Data)) ||
!CBB_add_asn1(&content_info, &wrapper,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
!CBB_add_asn1(&wrapper, &data, CBS_ASN1_OCTETSTRING) ||
!CBB_add_asn1(&data, &safe_contents, CBS_ASN1_SEQUENCE) ||
// Add a SafeBag containing a PKCS8ShroudedKeyBag.
!CBB_add_asn1(&safe_contents, &bag, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&bag, &bag_oid, CBS_ASN1_OBJECT) ||
!CBB_add_bytes(&bag_oid, kPKCS8ShroudedKeyBag,
sizeof(kPKCS8ShroudedKeyBag)) ||
!CBB_add_asn1(&bag, &bag_contents,
CBS_ASN1_CONSTRUCTED | CBS_ASN1_CONTEXT_SPECIFIC | 0) ||
!PKCS8_marshal_encrypted_private_key(
&bag_contents, key_nid, NULL, password, password_len,
NULL /* generate a random salt */, 0 /* use default salt length */,
iterations, pkey) ||
!add_bag_attributes(&bag, name, key_id, key_id_len) ||
!CBB_flush(&content_infos)) {
goto err;
}
}
// Compute the MAC. Match OpenSSL in using SHA-1 as the hash function. The MAC
// covers |auth_safe_data|.
const EVP_MD *mac_md = EVP_sha1();
uint8_t mac_salt[PKCS5_SALT_LEN];
uint8_t mac[EVP_MAX_MD_SIZE];
unsigned mac_len;
if (!CBB_flush(&auth_safe_data) ||
!RAND_bytes(mac_salt, sizeof(mac_salt)) ||
!pkcs12_key_gen(password, password_len, mac_salt, sizeof(mac_salt),
PKCS12_MAC_ID, mac_iterations, EVP_MD_size(mac_md),
mac_key, mac_md) ||
!HMAC(mac_md, mac_key, EVP_MD_size(mac_md), CBB_data(&auth_safe_data),
CBB_len(&auth_safe_data), mac, &mac_len)) {
goto err;
}
CBB mac_data, digest_info, mac_cbb, mac_salt_cbb;
if (!CBB_add_asn1(&pfx, &mac_data, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1(&mac_data, &digest_info, CBS_ASN1_SEQUENCE) ||
!EVP_marshal_digest_algorithm(&digest_info, mac_md) ||
!CBB_add_asn1(&digest_info, &mac_cbb, CBS_ASN1_OCTETSTRING) ||
!CBB_add_bytes(&mac_cbb, mac, mac_len) ||
!CBB_add_asn1(&mac_data, &mac_salt_cbb, CBS_ASN1_OCTETSTRING) ||
!CBB_add_bytes(&mac_salt_cbb, mac_salt, sizeof(mac_salt)) ||
// The iteration count has a DEFAULT of 1, but RFC 7292 says "The default
// is for historical reasons and its use is deprecated." Thus we
// explicitly encode the iteration count, though it is not valid DER.
!CBB_add_asn1_uint64(&mac_data, mac_iterations)) {
goto err;
}
ret = OPENSSL_malloc(sizeof(PKCS12));
if (ret == NULL ||
!CBB_finish(&cbb, &ret->ber_bytes, &ret->ber_len)) {
OPENSSL_free(ret);
ret = NULL;
goto err;
}
err:
OPENSSL_cleanse(mac_key, sizeof(mac_key));
CBB_cleanup(&cbb);
return ret;
}
void PKCS12_free(PKCS12 *p12) {
if (p12 == NULL) {
return;
}
OPENSSL_free(p12->ber_bytes);
OPENSSL_free(p12);
}