mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-25 09:34:24 +01:00
1171 lines
32 KiB
C++
1171 lines
32 KiB
C++
/*
|
|
* Copyright 2004 The WebRTC Project Authors. All rights reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "rtc_base/thread.h"
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
#include <comdef.h>
|
|
#elif defined(WEBRTC_POSIX)
|
|
#include <time.h>
|
|
#else
|
|
#error "Either WEBRTC_WIN or WEBRTC_POSIX needs to be defined."
|
|
#endif
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
// Disable warning that we don't care about:
|
|
// warning C4722: destructor never returns, potential memory leak
|
|
#pragma warning(disable : 4722)
|
|
#endif
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <utility>
|
|
|
|
#include "absl/algorithm/container.h"
|
|
#include "rtc_base/atomic_ops.h"
|
|
#include "rtc_base/checks.h"
|
|
#include "rtc_base/deprecated/recursive_critical_section.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/null_socket_server.h"
|
|
#include "rtc_base/synchronization/sequence_checker.h"
|
|
#include "rtc_base/task_utils/to_queued_task.h"
|
|
#include "rtc_base/time_utils.h"
|
|
#include "rtc_base/trace_event.h"
|
|
|
|
#if defined(WEBRTC_MAC)
|
|
#include "rtc_base/system/cocoa_threading.h"
|
|
|
|
/*
|
|
* These are forward-declarations for methods that are part of the
|
|
* ObjC runtime. They are declared in the private header objc-internal.h.
|
|
* These calls are what clang inserts when using @autoreleasepool in ObjC,
|
|
* but here they are used directly in order to keep this file C++.
|
|
* https://clang.llvm.org/docs/AutomaticReferenceCounting.html#runtime-support
|
|
*/
|
|
extern "C" {
|
|
void* objc_autoreleasePoolPush(void);
|
|
void objc_autoreleasePoolPop(void* pool);
|
|
}
|
|
|
|
namespace {
|
|
class ScopedAutoReleasePool {
|
|
public:
|
|
ScopedAutoReleasePool() : pool_(objc_autoreleasePoolPush()) {}
|
|
~ScopedAutoReleasePool() { objc_autoreleasePoolPop(pool_); }
|
|
|
|
private:
|
|
void* const pool_;
|
|
};
|
|
} // namespace
|
|
#endif
|
|
|
|
namespace rtc {
|
|
namespace {
|
|
|
|
const int kSlowDispatchLoggingThreshold = 50; // 50 ms
|
|
|
|
class MessageHandlerWithTask final : public MessageHandler {
|
|
public:
|
|
MessageHandlerWithTask() = default;
|
|
|
|
void OnMessage(Message* msg) override {
|
|
static_cast<rtc_thread_internal::MessageLikeTask*>(msg->pdata)->Run();
|
|
delete msg->pdata;
|
|
}
|
|
|
|
private:
|
|
~MessageHandlerWithTask() override {}
|
|
|
|
RTC_DISALLOW_COPY_AND_ASSIGN(MessageHandlerWithTask);
|
|
};
|
|
|
|
class RTC_SCOPED_LOCKABLE MarkProcessingCritScope {
|
|
public:
|
|
MarkProcessingCritScope(const RecursiveCriticalSection* cs,
|
|
size_t* processing) RTC_EXCLUSIVE_LOCK_FUNCTION(cs)
|
|
: cs_(cs), processing_(processing) {
|
|
cs_->Enter();
|
|
*processing_ += 1;
|
|
}
|
|
|
|
~MarkProcessingCritScope() RTC_UNLOCK_FUNCTION() {
|
|
*processing_ -= 1;
|
|
cs_->Leave();
|
|
}
|
|
|
|
private:
|
|
const RecursiveCriticalSection* const cs_;
|
|
size_t* processing_;
|
|
|
|
RTC_DISALLOW_COPY_AND_ASSIGN(MarkProcessingCritScope);
|
|
};
|
|
|
|
} // namespace
|
|
|
|
ThreadManager* ThreadManager::Instance() {
|
|
static ThreadManager* const thread_manager = new ThreadManager();
|
|
return thread_manager;
|
|
}
|
|
|
|
ThreadManager::~ThreadManager() {
|
|
// By above RTC_DEFINE_STATIC_LOCAL.
|
|
RTC_NOTREACHED() << "ThreadManager should never be destructed.";
|
|
}
|
|
|
|
// static
|
|
void ThreadManager::Add(Thread* message_queue) {
|
|
return Instance()->AddInternal(message_queue);
|
|
}
|
|
void ThreadManager::AddInternal(Thread* message_queue) {
|
|
CritScope cs(&crit_);
|
|
// Prevent changes while the list of message queues is processed.
|
|
RTC_DCHECK_EQ(processing_, 0);
|
|
message_queues_.push_back(message_queue);
|
|
}
|
|
|
|
// static
|
|
void ThreadManager::Remove(Thread* message_queue) {
|
|
return Instance()->RemoveInternal(message_queue);
|
|
}
|
|
void ThreadManager::RemoveInternal(Thread* message_queue) {
|
|
{
|
|
CritScope cs(&crit_);
|
|
// Prevent changes while the list of message queues is processed.
|
|
RTC_DCHECK_EQ(processing_, 0);
|
|
std::vector<Thread*>::iterator iter;
|
|
iter = absl::c_find(message_queues_, message_queue);
|
|
if (iter != message_queues_.end()) {
|
|
message_queues_.erase(iter);
|
|
}
|
|
#if RTC_DCHECK_IS_ON
|
|
RemoveFromSendGraph(message_queue);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#if RTC_DCHECK_IS_ON
|
|
void ThreadManager::RemoveFromSendGraph(Thread* thread) {
|
|
for (auto it = send_graph_.begin(); it != send_graph_.end();) {
|
|
if (it->first == thread) {
|
|
it = send_graph_.erase(it);
|
|
} else {
|
|
it->second.erase(thread);
|
|
++it;
|
|
}
|
|
}
|
|
}
|
|
|
|
void ThreadManager::RegisterSendAndCheckForCycles(Thread* source,
|
|
Thread* target) {
|
|
CritScope cs(&crit_);
|
|
std::deque<Thread*> all_targets({target});
|
|
// We check the pre-existing who-sends-to-who graph for any path from target
|
|
// to source. This loop is guaranteed to terminate because per the send graph
|
|
// invariant, there are no cycles in the graph.
|
|
for (size_t i = 0; i < all_targets.size(); i++) {
|
|
const auto& targets = send_graph_[all_targets[i]];
|
|
all_targets.insert(all_targets.end(), targets.begin(), targets.end());
|
|
}
|
|
RTC_CHECK_EQ(absl::c_count(all_targets, source), 0)
|
|
<< " send loop between " << source->name() << " and " << target->name();
|
|
|
|
// We may now insert source -> target without creating a cycle, since there
|
|
// was no path from target to source per the prior CHECK.
|
|
send_graph_[source].insert(target);
|
|
}
|
|
#endif
|
|
|
|
// static
|
|
void ThreadManager::Clear(MessageHandler* handler) {
|
|
return Instance()->ClearInternal(handler);
|
|
}
|
|
void ThreadManager::ClearInternal(MessageHandler* handler) {
|
|
// Deleted objects may cause re-entrant calls to ClearInternal. This is
|
|
// allowed as the list of message queues does not change while queues are
|
|
// cleared.
|
|
MarkProcessingCritScope cs(&crit_, &processing_);
|
|
for (Thread* queue : message_queues_) {
|
|
queue->Clear(handler);
|
|
}
|
|
}
|
|
|
|
// static
|
|
void ThreadManager::ProcessAllMessageQueuesForTesting() {
|
|
return Instance()->ProcessAllMessageQueuesInternal();
|
|
}
|
|
|
|
void ThreadManager::ProcessAllMessageQueuesInternal() {
|
|
// This works by posting a delayed message at the current time and waiting
|
|
// for it to be dispatched on all queues, which will ensure that all messages
|
|
// that came before it were also dispatched.
|
|
volatile int queues_not_done = 0;
|
|
|
|
// This class is used so that whether the posted message is processed, or the
|
|
// message queue is simply cleared, queues_not_done gets decremented.
|
|
class ScopedIncrement : public MessageData {
|
|
public:
|
|
ScopedIncrement(volatile int* value) : value_(value) {
|
|
AtomicOps::Increment(value_);
|
|
}
|
|
~ScopedIncrement() override { AtomicOps::Decrement(value_); }
|
|
|
|
private:
|
|
volatile int* value_;
|
|
};
|
|
|
|
{
|
|
MarkProcessingCritScope cs(&crit_, &processing_);
|
|
for (Thread* queue : message_queues_) {
|
|
if (!queue->IsProcessingMessagesForTesting()) {
|
|
// If the queue is not processing messages, it can
|
|
// be ignored. If we tried to post a message to it, it would be dropped
|
|
// or ignored.
|
|
continue;
|
|
}
|
|
queue->PostDelayed(RTC_FROM_HERE, 0, nullptr, MQID_DISPOSE,
|
|
new ScopedIncrement(&queues_not_done));
|
|
}
|
|
}
|
|
|
|
rtc::Thread* current = rtc::Thread::Current();
|
|
// Note: One of the message queues may have been on this thread, which is
|
|
// why we can't synchronously wait for queues_not_done to go to 0; we need
|
|
// to process messages as well.
|
|
while (AtomicOps::AcquireLoad(&queues_not_done) > 0) {
|
|
if (current) {
|
|
current->ProcessMessages(0);
|
|
}
|
|
}
|
|
}
|
|
|
|
// static
|
|
Thread* Thread::Current() {
|
|
ThreadManager* manager = ThreadManager::Instance();
|
|
Thread* thread = manager->CurrentThread();
|
|
|
|
#ifndef NO_MAIN_THREAD_WRAPPING
|
|
// Only autowrap the thread which instantiated the ThreadManager.
|
|
if (!thread && manager->IsMainThread()) {
|
|
thread = new Thread(SocketServer::CreateDefault());
|
|
thread->WrapCurrentWithThreadManager(manager, true);
|
|
}
|
|
#endif
|
|
|
|
return thread;
|
|
}
|
|
|
|
#if defined(WEBRTC_POSIX)
|
|
ThreadManager::ThreadManager() : main_thread_ref_(CurrentThreadRef()) {
|
|
#if defined(WEBRTC_MAC)
|
|
InitCocoaMultiThreading();
|
|
#endif
|
|
pthread_key_create(&key_, nullptr);
|
|
}
|
|
|
|
Thread* ThreadManager::CurrentThread() {
|
|
return static_cast<Thread*>(pthread_getspecific(key_));
|
|
}
|
|
|
|
void ThreadManager::SetCurrentThreadInternal(Thread* thread) {
|
|
pthread_setspecific(key_, thread);
|
|
}
|
|
#endif
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
ThreadManager::ThreadManager()
|
|
: key_(TlsAlloc()), main_thread_ref_(CurrentThreadRef()) {}
|
|
|
|
Thread* ThreadManager::CurrentThread() {
|
|
return static_cast<Thread*>(TlsGetValue(key_));
|
|
}
|
|
|
|
void ThreadManager::SetCurrentThreadInternal(Thread* thread) {
|
|
TlsSetValue(key_, thread);
|
|
}
|
|
#endif
|
|
|
|
void ThreadManager::SetCurrentThread(Thread* thread) {
|
|
#if RTC_DLOG_IS_ON
|
|
if (CurrentThread() && thread) {
|
|
RTC_DLOG(LS_ERROR) << "SetCurrentThread: Overwriting an existing value?";
|
|
}
|
|
#endif // RTC_DLOG_IS_ON
|
|
|
|
if (thread) {
|
|
thread->EnsureIsCurrentTaskQueue();
|
|
} else {
|
|
Thread* current = CurrentThread();
|
|
if (current) {
|
|
// The current thread is being cleared, e.g. as a result of
|
|
// UnwrapCurrent() being called or when a thread is being stopped
|
|
// (see PreRun()). This signals that the Thread instance is being detached
|
|
// from the thread, which also means that TaskQueue::Current() must not
|
|
// return a pointer to the Thread instance.
|
|
current->ClearCurrentTaskQueue();
|
|
}
|
|
}
|
|
|
|
SetCurrentThreadInternal(thread);
|
|
}
|
|
|
|
void rtc::ThreadManager::ChangeCurrentThreadForTest(rtc::Thread* thread) {
|
|
SetCurrentThreadInternal(thread);
|
|
}
|
|
|
|
Thread* ThreadManager::WrapCurrentThread() {
|
|
Thread* result = CurrentThread();
|
|
if (nullptr == result) {
|
|
result = new Thread(SocketServer::CreateDefault());
|
|
result->WrapCurrentWithThreadManager(this, true);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void ThreadManager::UnwrapCurrentThread() {
|
|
Thread* t = CurrentThread();
|
|
if (t && !(t->IsOwned())) {
|
|
t->UnwrapCurrent();
|
|
delete t;
|
|
}
|
|
}
|
|
|
|
bool ThreadManager::IsMainThread() {
|
|
return IsThreadRefEqual(CurrentThreadRef(), main_thread_ref_);
|
|
}
|
|
|
|
Thread::ScopedDisallowBlockingCalls::ScopedDisallowBlockingCalls()
|
|
: thread_(Thread::Current()),
|
|
previous_state_(thread_->SetAllowBlockingCalls(false)) {}
|
|
|
|
Thread::ScopedDisallowBlockingCalls::~ScopedDisallowBlockingCalls() {
|
|
RTC_DCHECK(thread_->IsCurrent());
|
|
thread_->SetAllowBlockingCalls(previous_state_);
|
|
}
|
|
|
|
Thread::Thread(SocketServer* ss) : Thread(ss, /*do_init=*/true) {}
|
|
|
|
Thread::Thread(std::unique_ptr<SocketServer> ss)
|
|
: Thread(std::move(ss), /*do_init=*/true) {}
|
|
|
|
Thread::Thread(SocketServer* ss, bool do_init)
|
|
: fPeekKeep_(false),
|
|
delayed_next_num_(0),
|
|
fInitialized_(false),
|
|
fDestroyed_(false),
|
|
stop_(0),
|
|
ss_(ss) {
|
|
RTC_DCHECK(ss);
|
|
ss_->SetMessageQueue(this);
|
|
SetName("Thread", this); // default name
|
|
if (do_init) {
|
|
DoInit();
|
|
}
|
|
}
|
|
|
|
Thread::Thread(std::unique_ptr<SocketServer> ss, bool do_init)
|
|
: Thread(ss.get(), do_init) {
|
|
own_ss_ = std::move(ss);
|
|
}
|
|
|
|
Thread::~Thread() {
|
|
Stop();
|
|
DoDestroy();
|
|
}
|
|
|
|
void Thread::DoInit() {
|
|
if (fInitialized_) {
|
|
return;
|
|
}
|
|
|
|
fInitialized_ = true;
|
|
ThreadManager::Add(this);
|
|
}
|
|
|
|
void Thread::DoDestroy() {
|
|
if (fDestroyed_) {
|
|
return;
|
|
}
|
|
|
|
fDestroyed_ = true;
|
|
// The signal is done from here to ensure
|
|
// that it always gets called when the queue
|
|
// is going away.
|
|
SignalQueueDestroyed();
|
|
ThreadManager::Remove(this);
|
|
ClearInternal(nullptr, MQID_ANY, nullptr);
|
|
|
|
if (ss_) {
|
|
ss_->SetMessageQueue(nullptr);
|
|
}
|
|
}
|
|
|
|
SocketServer* Thread::socketserver() {
|
|
return ss_;
|
|
}
|
|
|
|
void Thread::WakeUpSocketServer() {
|
|
ss_->WakeUp();
|
|
}
|
|
|
|
void Thread::Quit() {
|
|
AtomicOps::ReleaseStore(&stop_, 1);
|
|
WakeUpSocketServer();
|
|
}
|
|
|
|
bool Thread::IsQuitting() {
|
|
return AtomicOps::AcquireLoad(&stop_) != 0;
|
|
}
|
|
|
|
void Thread::Restart() {
|
|
AtomicOps::ReleaseStore(&stop_, 0);
|
|
}
|
|
|
|
bool Thread::Peek(Message* pmsg, int cmsWait) {
|
|
if (fPeekKeep_) {
|
|
*pmsg = msgPeek_;
|
|
return true;
|
|
}
|
|
if (!Get(pmsg, cmsWait))
|
|
return false;
|
|
msgPeek_ = *pmsg;
|
|
fPeekKeep_ = true;
|
|
return true;
|
|
}
|
|
|
|
bool Thread::Get(Message* pmsg, int cmsWait, bool process_io) {
|
|
// Return and clear peek if present
|
|
// Always return the peek if it exists so there is Peek/Get symmetry
|
|
|
|
if (fPeekKeep_) {
|
|
*pmsg = msgPeek_;
|
|
fPeekKeep_ = false;
|
|
return true;
|
|
}
|
|
|
|
// Get w/wait + timer scan / dispatch + socket / event multiplexer dispatch
|
|
|
|
int64_t cmsTotal = cmsWait;
|
|
int64_t cmsElapsed = 0;
|
|
int64_t msStart = TimeMillis();
|
|
int64_t msCurrent = msStart;
|
|
while (true) {
|
|
// Check for posted events
|
|
int64_t cmsDelayNext = kForever;
|
|
bool first_pass = true;
|
|
while (true) {
|
|
// All queue operations need to be locked, but nothing else in this loop
|
|
// (specifically handling disposed message) can happen inside the crit.
|
|
// Otherwise, disposed MessageHandlers will cause deadlocks.
|
|
{
|
|
CritScope cs(&crit_);
|
|
// On the first pass, check for delayed messages that have been
|
|
// triggered and calculate the next trigger time.
|
|
if (first_pass) {
|
|
first_pass = false;
|
|
while (!delayed_messages_.empty()) {
|
|
if (msCurrent < delayed_messages_.top().run_time_ms_) {
|
|
cmsDelayNext =
|
|
TimeDiff(delayed_messages_.top().run_time_ms_, msCurrent);
|
|
break;
|
|
}
|
|
messages_.push_back(delayed_messages_.top().msg_);
|
|
delayed_messages_.pop();
|
|
}
|
|
}
|
|
// Pull a message off the message queue, if available.
|
|
if (messages_.empty()) {
|
|
break;
|
|
} else {
|
|
*pmsg = messages_.front();
|
|
messages_.pop_front();
|
|
}
|
|
} // crit_ is released here.
|
|
|
|
// If this was a dispose message, delete it and skip it.
|
|
if (MQID_DISPOSE == pmsg->message_id) {
|
|
RTC_DCHECK(nullptr == pmsg->phandler);
|
|
delete pmsg->pdata;
|
|
*pmsg = Message();
|
|
continue;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (IsQuitting())
|
|
break;
|
|
|
|
// Which is shorter, the delay wait or the asked wait?
|
|
|
|
int64_t cmsNext;
|
|
if (cmsWait == kForever) {
|
|
cmsNext = cmsDelayNext;
|
|
} else {
|
|
cmsNext = std::max<int64_t>(0, cmsTotal - cmsElapsed);
|
|
if ((cmsDelayNext != kForever) && (cmsDelayNext < cmsNext))
|
|
cmsNext = cmsDelayNext;
|
|
}
|
|
|
|
{
|
|
// Wait and multiplex in the meantime
|
|
if (!ss_->Wait(static_cast<int>(cmsNext), process_io))
|
|
return false;
|
|
}
|
|
|
|
// If the specified timeout expired, return
|
|
|
|
msCurrent = TimeMillis();
|
|
cmsElapsed = TimeDiff(msCurrent, msStart);
|
|
if (cmsWait != kForever) {
|
|
if (cmsElapsed >= cmsWait)
|
|
return false;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void Thread::Post(const Location& posted_from,
|
|
MessageHandler* phandler,
|
|
uint32_t id,
|
|
MessageData* pdata,
|
|
bool time_sensitive) {
|
|
RTC_DCHECK(!time_sensitive);
|
|
if (IsQuitting()) {
|
|
delete pdata;
|
|
return;
|
|
}
|
|
|
|
// Keep thread safe
|
|
// Add the message to the end of the queue
|
|
// Signal for the multiplexer to return
|
|
|
|
{
|
|
CritScope cs(&crit_);
|
|
Message msg;
|
|
msg.posted_from = posted_from;
|
|
msg.phandler = phandler;
|
|
msg.message_id = id;
|
|
msg.pdata = pdata;
|
|
messages_.push_back(msg);
|
|
}
|
|
WakeUpSocketServer();
|
|
}
|
|
|
|
void Thread::PostDelayed(const Location& posted_from,
|
|
int delay_ms,
|
|
MessageHandler* phandler,
|
|
uint32_t id,
|
|
MessageData* pdata) {
|
|
return DoDelayPost(posted_from, delay_ms, TimeAfter(delay_ms), phandler, id,
|
|
pdata);
|
|
}
|
|
|
|
void Thread::PostAt(const Location& posted_from,
|
|
int64_t run_at_ms,
|
|
MessageHandler* phandler,
|
|
uint32_t id,
|
|
MessageData* pdata) {
|
|
return DoDelayPost(posted_from, TimeUntil(run_at_ms), run_at_ms, phandler, id,
|
|
pdata);
|
|
}
|
|
|
|
void Thread::DoDelayPost(const Location& posted_from,
|
|
int64_t delay_ms,
|
|
int64_t run_at_ms,
|
|
MessageHandler* phandler,
|
|
uint32_t id,
|
|
MessageData* pdata) {
|
|
if (IsQuitting()) {
|
|
delete pdata;
|
|
return;
|
|
}
|
|
|
|
// Keep thread safe
|
|
// Add to the priority queue. Gets sorted soonest first.
|
|
// Signal for the multiplexer to return.
|
|
|
|
{
|
|
CritScope cs(&crit_);
|
|
Message msg;
|
|
msg.posted_from = posted_from;
|
|
msg.phandler = phandler;
|
|
msg.message_id = id;
|
|
msg.pdata = pdata;
|
|
DelayedMessage delayed(delay_ms, run_at_ms, delayed_next_num_, msg);
|
|
delayed_messages_.push(delayed);
|
|
// If this message queue processes 1 message every millisecond for 50 days,
|
|
// we will wrap this number. Even then, only messages with identical times
|
|
// will be misordered, and then only briefly. This is probably ok.
|
|
++delayed_next_num_;
|
|
RTC_DCHECK_NE(0, delayed_next_num_);
|
|
}
|
|
WakeUpSocketServer();
|
|
}
|
|
|
|
int Thread::GetDelay() {
|
|
CritScope cs(&crit_);
|
|
|
|
if (!messages_.empty())
|
|
return 0;
|
|
|
|
if (!delayed_messages_.empty()) {
|
|
int delay = TimeUntil(delayed_messages_.top().run_time_ms_);
|
|
if (delay < 0)
|
|
delay = 0;
|
|
return delay;
|
|
}
|
|
|
|
return kForever;
|
|
}
|
|
|
|
void Thread::ClearInternal(MessageHandler* phandler,
|
|
uint32_t id,
|
|
MessageList* removed) {
|
|
// Remove messages with phandler
|
|
|
|
if (fPeekKeep_ && msgPeek_.Match(phandler, id)) {
|
|
if (removed) {
|
|
removed->push_back(msgPeek_);
|
|
} else {
|
|
delete msgPeek_.pdata;
|
|
}
|
|
fPeekKeep_ = false;
|
|
}
|
|
|
|
// Remove from ordered message queue
|
|
|
|
for (auto it = messages_.begin(); it != messages_.end();) {
|
|
if (it->Match(phandler, id)) {
|
|
if (removed) {
|
|
removed->push_back(*it);
|
|
} else {
|
|
delete it->pdata;
|
|
}
|
|
it = messages_.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
}
|
|
|
|
// Remove from priority queue. Not directly iterable, so use this approach
|
|
|
|
auto new_end = delayed_messages_.container().begin();
|
|
for (auto it = new_end; it != delayed_messages_.container().end(); ++it) {
|
|
if (it->msg_.Match(phandler, id)) {
|
|
if (removed) {
|
|
removed->push_back(it->msg_);
|
|
} else {
|
|
delete it->msg_.pdata;
|
|
}
|
|
} else {
|
|
*new_end++ = *it;
|
|
}
|
|
}
|
|
delayed_messages_.container().erase(new_end,
|
|
delayed_messages_.container().end());
|
|
delayed_messages_.reheap();
|
|
}
|
|
|
|
void Thread::Dispatch(Message* pmsg) {
|
|
TRACE_EVENT2("webrtc", "Thread::Dispatch", "src_file",
|
|
pmsg->posted_from.file_name(), "src_func",
|
|
pmsg->posted_from.function_name());
|
|
int64_t start_time = TimeMillis();
|
|
pmsg->phandler->OnMessage(pmsg);
|
|
int64_t end_time = TimeMillis();
|
|
int64_t diff = TimeDiff(end_time, start_time);
|
|
if (diff >= kSlowDispatchLoggingThreshold) {
|
|
RTC_LOG(LS_INFO) << "Message took " << diff
|
|
<< "ms to dispatch. Posted from: "
|
|
<< pmsg->posted_from.ToString();
|
|
}
|
|
}
|
|
|
|
bool Thread::IsCurrent() const {
|
|
return ThreadManager::Instance()->CurrentThread() == this;
|
|
}
|
|
|
|
std::unique_ptr<Thread> Thread::CreateWithSocketServer() {
|
|
return std::unique_ptr<Thread>(new Thread(SocketServer::CreateDefault()));
|
|
}
|
|
|
|
std::unique_ptr<Thread> Thread::Create() {
|
|
return std::unique_ptr<Thread>(
|
|
new Thread(std::unique_ptr<SocketServer>(new NullSocketServer())));
|
|
}
|
|
|
|
bool Thread::SleepMs(int milliseconds) {
|
|
AssertBlockingIsAllowedOnCurrentThread();
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
::Sleep(milliseconds);
|
|
return true;
|
|
#else
|
|
// POSIX has both a usleep() and a nanosleep(), but the former is deprecated,
|
|
// so we use nanosleep() even though it has greater precision than necessary.
|
|
struct timespec ts;
|
|
ts.tv_sec = milliseconds / 1000;
|
|
ts.tv_nsec = (milliseconds % 1000) * 1000000;
|
|
int ret = nanosleep(&ts, nullptr);
|
|
if (ret != 0) {
|
|
RTC_LOG_ERR(LS_WARNING) << "nanosleep() returning early";
|
|
return false;
|
|
}
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
bool Thread::SetName(const std::string& name, const void* obj) {
|
|
RTC_DCHECK(!IsRunning());
|
|
|
|
name_ = name;
|
|
if (obj) {
|
|
// The %p specifier typically produce at most 16 hex digits, possibly with a
|
|
// 0x prefix. But format is implementation defined, so add some margin.
|
|
char buf[30];
|
|
snprintf(buf, sizeof(buf), " 0x%p", obj);
|
|
name_ += buf;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Thread::Start() {
|
|
RTC_DCHECK(!IsRunning());
|
|
|
|
if (IsRunning())
|
|
return false;
|
|
|
|
Restart(); // reset IsQuitting() if the thread is being restarted
|
|
|
|
// Make sure that ThreadManager is created on the main thread before
|
|
// we start a new thread.
|
|
ThreadManager::Instance();
|
|
|
|
owned_ = true;
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
thread_ = CreateThread(nullptr, 0, PreRun, this, 0, &thread_id_);
|
|
if (!thread_) {
|
|
return false;
|
|
}
|
|
#elif defined(WEBRTC_POSIX)
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
|
|
int error_code = pthread_create(&thread_, &attr, PreRun, this);
|
|
if (0 != error_code) {
|
|
RTC_LOG(LS_ERROR) << "Unable to create pthread, error " << error_code;
|
|
thread_ = 0;
|
|
return false;
|
|
}
|
|
RTC_DCHECK(thread_);
|
|
#endif
|
|
return true;
|
|
}
|
|
|
|
bool Thread::WrapCurrent() {
|
|
return WrapCurrentWithThreadManager(ThreadManager::Instance(), true);
|
|
}
|
|
|
|
void Thread::UnwrapCurrent() {
|
|
// Clears the platform-specific thread-specific storage.
|
|
ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
#if defined(WEBRTC_WIN)
|
|
if (thread_ != nullptr) {
|
|
if (!CloseHandle(thread_)) {
|
|
RTC_LOG_GLE(LS_ERROR)
|
|
<< "When unwrapping thread, failed to close handle.";
|
|
}
|
|
thread_ = nullptr;
|
|
thread_id_ = 0;
|
|
}
|
|
#elif defined(WEBRTC_POSIX)
|
|
thread_ = 0;
|
|
#endif
|
|
}
|
|
|
|
void Thread::SafeWrapCurrent() {
|
|
WrapCurrentWithThreadManager(ThreadManager::Instance(), false);
|
|
}
|
|
|
|
void Thread::Join() {
|
|
if (!IsRunning())
|
|
return;
|
|
|
|
RTC_DCHECK(!IsCurrent());
|
|
if (Current() && !Current()->blocking_calls_allowed_) {
|
|
RTC_LOG(LS_WARNING) << "Waiting for the thread to join, "
|
|
"but blocking calls have been disallowed";
|
|
}
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
RTC_DCHECK(thread_ != nullptr);
|
|
WaitForSingleObject(thread_, INFINITE);
|
|
CloseHandle(thread_);
|
|
thread_ = nullptr;
|
|
thread_id_ = 0;
|
|
#elif defined(WEBRTC_POSIX)
|
|
pthread_join(thread_, nullptr);
|
|
thread_ = 0;
|
|
#endif
|
|
}
|
|
|
|
bool Thread::SetAllowBlockingCalls(bool allow) {
|
|
RTC_DCHECK(IsCurrent());
|
|
bool previous = blocking_calls_allowed_;
|
|
blocking_calls_allowed_ = allow;
|
|
return previous;
|
|
}
|
|
|
|
// static
|
|
void Thread::AssertBlockingIsAllowedOnCurrentThread() {
|
|
#if !defined(NDEBUG)
|
|
Thread* current = Thread::Current();
|
|
RTC_DCHECK(!current || current->blocking_calls_allowed_);
|
|
#endif
|
|
}
|
|
|
|
// static
|
|
#if defined(WEBRTC_WIN)
|
|
DWORD WINAPI Thread::PreRun(LPVOID pv) {
|
|
#else
|
|
void* Thread::PreRun(void* pv) {
|
|
#endif
|
|
Thread* thread = static_cast<Thread*>(pv);
|
|
ThreadManager::Instance()->SetCurrentThread(thread);
|
|
rtc::SetCurrentThreadName(thread->name_.c_str());
|
|
#if defined(WEBRTC_MAC)
|
|
ScopedAutoReleasePool pool;
|
|
#endif
|
|
thread->Run();
|
|
|
|
ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
#ifdef WEBRTC_WIN
|
|
return 0;
|
|
#else
|
|
return nullptr;
|
|
#endif
|
|
} // namespace rtc
|
|
|
|
void Thread::Run() {
|
|
ProcessMessages(kForever);
|
|
}
|
|
|
|
bool Thread::IsOwned() {
|
|
RTC_DCHECK(IsRunning());
|
|
return owned_;
|
|
}
|
|
|
|
void Thread::Stop() {
|
|
Thread::Quit();
|
|
Join();
|
|
}
|
|
|
|
void Thread::Send(const Location& posted_from,
|
|
MessageHandler* phandler,
|
|
uint32_t id,
|
|
MessageData* pdata) {
|
|
RTC_DCHECK(!IsQuitting());
|
|
if (IsQuitting())
|
|
return;
|
|
|
|
// Sent messages are sent to the MessageHandler directly, in the context
|
|
// of "thread", like Win32 SendMessage. If in the right context,
|
|
// call the handler directly.
|
|
Message msg;
|
|
msg.posted_from = posted_from;
|
|
msg.phandler = phandler;
|
|
msg.message_id = id;
|
|
msg.pdata = pdata;
|
|
if (IsCurrent()) {
|
|
msg.phandler->OnMessage(&msg);
|
|
return;
|
|
}
|
|
|
|
AssertBlockingIsAllowedOnCurrentThread();
|
|
|
|
AutoThread thread;
|
|
Thread* current_thread = Thread::Current();
|
|
RTC_DCHECK(current_thread != nullptr); // AutoThread ensures this
|
|
RTC_DCHECK(current_thread->IsInvokeToThreadAllowed(this));
|
|
#if RTC_DCHECK_IS_ON
|
|
ThreadManager::Instance()->RegisterSendAndCheckForCycles(current_thread,
|
|
this);
|
|
#endif
|
|
bool ready = false;
|
|
PostTask(
|
|
webrtc::ToQueuedTask([msg]() mutable { msg.phandler->OnMessage(&msg); },
|
|
[this, &ready, current_thread] {
|
|
CritScope cs(&crit_);
|
|
ready = true;
|
|
current_thread->socketserver()->WakeUp();
|
|
}));
|
|
|
|
bool waited = false;
|
|
crit_.Enter();
|
|
while (!ready) {
|
|
crit_.Leave();
|
|
current_thread->socketserver()->Wait(kForever, false);
|
|
waited = true;
|
|
crit_.Enter();
|
|
}
|
|
crit_.Leave();
|
|
|
|
// Our Wait loop above may have consumed some WakeUp events for this
|
|
// Thread, that weren't relevant to this Send. Losing these WakeUps can
|
|
// cause problems for some SocketServers.
|
|
//
|
|
// Concrete example:
|
|
// Win32SocketServer on thread A calls Send on thread B. While processing the
|
|
// message, thread B Posts a message to A. We consume the wakeup for that
|
|
// Post while waiting for the Send to complete, which means that when we exit
|
|
// this loop, we need to issue another WakeUp, or else the Posted message
|
|
// won't be processed in a timely manner.
|
|
|
|
if (waited) {
|
|
current_thread->socketserver()->WakeUp();
|
|
}
|
|
}
|
|
|
|
void Thread::InvokeInternal(const Location& posted_from,
|
|
rtc::FunctionView<void()> functor) {
|
|
TRACE_EVENT2("webrtc", "Thread::Invoke", "src_file", posted_from.file_name(),
|
|
"src_func", posted_from.function_name());
|
|
|
|
class FunctorMessageHandler : public MessageHandler {
|
|
public:
|
|
explicit FunctorMessageHandler(rtc::FunctionView<void()> functor)
|
|
: functor_(functor) {}
|
|
void OnMessage(Message* msg) override { functor_(); }
|
|
|
|
private:
|
|
rtc::FunctionView<void()> functor_;
|
|
} handler(functor);
|
|
|
|
Send(posted_from, &handler);
|
|
}
|
|
|
|
// Called by the ThreadManager when being set as the current thread.
|
|
void Thread::EnsureIsCurrentTaskQueue() {
|
|
task_queue_registration_ =
|
|
std::make_unique<TaskQueueBase::CurrentTaskQueueSetter>(this);
|
|
}
|
|
|
|
// Called by the ThreadManager when being set as the current thread.
|
|
void Thread::ClearCurrentTaskQueue() {
|
|
task_queue_registration_.reset();
|
|
}
|
|
|
|
void Thread::QueuedTaskHandler::OnMessage(Message* msg) {
|
|
RTC_DCHECK(msg);
|
|
auto* data = static_cast<ScopedMessageData<webrtc::QueuedTask>*>(msg->pdata);
|
|
std::unique_ptr<webrtc::QueuedTask> task = std::move(data->data());
|
|
// Thread expects handler to own Message::pdata when OnMessage is called
|
|
// Since MessageData is no longer needed, delete it.
|
|
delete data;
|
|
|
|
// QueuedTask interface uses Run return value to communicate who owns the
|
|
// task. false means QueuedTask took the ownership.
|
|
if (!task->Run())
|
|
task.release();
|
|
}
|
|
|
|
void Thread::AllowInvokesToThread(Thread* thread) {
|
|
#if (!defined(NDEBUG) || defined(DCHECK_ALWAYS_ON))
|
|
if (!IsCurrent()) {
|
|
PostTask(webrtc::ToQueuedTask(
|
|
[thread, this]() { AllowInvokesToThread(thread); }));
|
|
return;
|
|
}
|
|
RTC_DCHECK_RUN_ON(this);
|
|
allowed_threads_.push_back(thread);
|
|
invoke_policy_enabled_ = true;
|
|
#endif
|
|
}
|
|
|
|
void Thread::DisallowAllInvokes() {
|
|
#if (!defined(NDEBUG) || defined(DCHECK_ALWAYS_ON))
|
|
if (!IsCurrent()) {
|
|
PostTask(webrtc::ToQueuedTask([this]() { DisallowAllInvokes(); }));
|
|
return;
|
|
}
|
|
RTC_DCHECK_RUN_ON(this);
|
|
allowed_threads_.clear();
|
|
invoke_policy_enabled_ = true;
|
|
#endif
|
|
}
|
|
|
|
// Returns true if no policies added or if there is at least one policy
|
|
// that permits invocation to |target| thread.
|
|
bool Thread::IsInvokeToThreadAllowed(rtc::Thread* target) {
|
|
#if (!defined(NDEBUG) || defined(DCHECK_ALWAYS_ON))
|
|
RTC_DCHECK_RUN_ON(this);
|
|
if (!invoke_policy_enabled_) {
|
|
return true;
|
|
}
|
|
for (const auto* thread : allowed_threads_) {
|
|
if (thread == target) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
#else
|
|
return true;
|
|
#endif
|
|
}
|
|
|
|
void Thread::PostTask(std::unique_ptr<webrtc::QueuedTask> task) {
|
|
// Though Post takes MessageData by raw pointer (last parameter), it still
|
|
// takes it with ownership.
|
|
Post(RTC_FROM_HERE, &queued_task_handler_,
|
|
/*id=*/0, new ScopedMessageData<webrtc::QueuedTask>(std::move(task)));
|
|
}
|
|
|
|
void Thread::PostDelayedTask(std::unique_ptr<webrtc::QueuedTask> task,
|
|
uint32_t milliseconds) {
|
|
// Though PostDelayed takes MessageData by raw pointer (last parameter),
|
|
// it still takes it with ownership.
|
|
PostDelayed(RTC_FROM_HERE, milliseconds, &queued_task_handler_,
|
|
/*id=*/0,
|
|
new ScopedMessageData<webrtc::QueuedTask>(std::move(task)));
|
|
}
|
|
|
|
void Thread::Delete() {
|
|
Stop();
|
|
delete this;
|
|
}
|
|
|
|
bool Thread::IsProcessingMessagesForTesting() {
|
|
return (owned_ || IsCurrent()) && !IsQuitting();
|
|
}
|
|
|
|
void Thread::Clear(MessageHandler* phandler,
|
|
uint32_t id,
|
|
MessageList* removed) {
|
|
CritScope cs(&crit_);
|
|
ClearInternal(phandler, id, removed);
|
|
}
|
|
|
|
bool Thread::ProcessMessages(int cmsLoop) {
|
|
// Using ProcessMessages with a custom clock for testing and a time greater
|
|
// than 0 doesn't work, since it's not guaranteed to advance the custom
|
|
// clock's time, and may get stuck in an infinite loop.
|
|
RTC_DCHECK(GetClockForTesting() == nullptr || cmsLoop == 0 ||
|
|
cmsLoop == kForever);
|
|
int64_t msEnd = (kForever == cmsLoop) ? 0 : TimeAfter(cmsLoop);
|
|
int cmsNext = cmsLoop;
|
|
|
|
while (true) {
|
|
#if defined(WEBRTC_MAC)
|
|
ScopedAutoReleasePool pool;
|
|
#endif
|
|
Message msg;
|
|
if (!Get(&msg, cmsNext))
|
|
return !IsQuitting();
|
|
Dispatch(&msg);
|
|
|
|
if (cmsLoop != kForever) {
|
|
cmsNext = static_cast<int>(TimeUntil(msEnd));
|
|
if (cmsNext < 0)
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool Thread::WrapCurrentWithThreadManager(ThreadManager* thread_manager,
|
|
bool need_synchronize_access) {
|
|
RTC_DCHECK(!IsRunning());
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
if (need_synchronize_access) {
|
|
// We explicitly ask for no rights other than synchronization.
|
|
// This gives us the best chance of succeeding.
|
|
thread_ = OpenThread(SYNCHRONIZE, FALSE, GetCurrentThreadId());
|
|
if (!thread_) {
|
|
RTC_LOG_GLE(LS_ERROR) << "Unable to get handle to thread.";
|
|
return false;
|
|
}
|
|
thread_id_ = GetCurrentThreadId();
|
|
}
|
|
#elif defined(WEBRTC_POSIX)
|
|
thread_ = pthread_self();
|
|
#endif
|
|
owned_ = false;
|
|
thread_manager->SetCurrentThread(this);
|
|
return true;
|
|
}
|
|
|
|
bool Thread::IsRunning() {
|
|
#if defined(WEBRTC_WIN)
|
|
return thread_ != nullptr;
|
|
#elif defined(WEBRTC_POSIX)
|
|
return thread_ != 0;
|
|
#endif
|
|
}
|
|
|
|
// static
|
|
MessageHandler* Thread::GetPostTaskMessageHandler() {
|
|
// Allocate at first call, never deallocate.
|
|
static MessageHandler* handler = new MessageHandlerWithTask;
|
|
return handler;
|
|
}
|
|
|
|
AutoThread::AutoThread()
|
|
: Thread(SocketServer::CreateDefault(), /*do_init=*/false) {
|
|
if (!ThreadManager::Instance()->CurrentThread()) {
|
|
// DoInit registers with ThreadManager. Do that only if we intend to
|
|
// be rtc::Thread::Current(), otherwise ProcessAllMessageQueuesInternal will
|
|
// post a message to a queue that no running thread is serving.
|
|
DoInit();
|
|
ThreadManager::Instance()->SetCurrentThread(this);
|
|
}
|
|
}
|
|
|
|
AutoThread::~AutoThread() {
|
|
Stop();
|
|
DoDestroy();
|
|
if (ThreadManager::Instance()->CurrentThread() == this) {
|
|
ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
}
|
|
}
|
|
|
|
AutoSocketServerThread::AutoSocketServerThread(SocketServer* ss)
|
|
: Thread(ss, /*do_init=*/false) {
|
|
DoInit();
|
|
old_thread_ = ThreadManager::Instance()->CurrentThread();
|
|
// Temporarily set the current thread to nullptr so that we can keep checks
|
|
// around that catch unintentional pointer overwrites.
|
|
rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
rtc::ThreadManager::Instance()->SetCurrentThread(this);
|
|
if (old_thread_) {
|
|
ThreadManager::Remove(old_thread_);
|
|
}
|
|
}
|
|
|
|
AutoSocketServerThread::~AutoSocketServerThread() {
|
|
RTC_DCHECK(ThreadManager::Instance()->CurrentThread() == this);
|
|
// Some tests post destroy messages to this thread. To avoid memory
|
|
// leaks, we have to process those messages. In particular
|
|
// P2PTransportChannelPingTest, relying on the message posted in
|
|
// cricket::Connection::Destroy.
|
|
ProcessMessages(0);
|
|
// Stop and destroy the thread before clearing it as the current thread.
|
|
// Sometimes there are messages left in the Thread that will be
|
|
// destroyed by DoDestroy, and sometimes the destructors of the message and/or
|
|
// its contents rely on this thread still being set as the current thread.
|
|
Stop();
|
|
DoDestroy();
|
|
rtc::ThreadManager::Instance()->SetCurrentThread(nullptr);
|
|
rtc::ThreadManager::Instance()->SetCurrentThread(old_thread_);
|
|
if (old_thread_) {
|
|
ThreadManager::Add(old_thread_);
|
|
}
|
|
}
|
|
|
|
} // namespace rtc
|