Telegram-Android/TMessagesProj/jni/boringssl/crypto/poly1305/poly1305_vec.c
2018-07-30 09:07:02 +07:00

839 lines
26 KiB
C

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
// This implementation of poly1305 is by Andrew Moon
// (https://github.com/floodyberry/poly1305-donna) and released as public
// domain. It implements SIMD vectorization based on the algorithm described in
// http://cr.yp.to/papers.html#neoncrypto. Unrolled to 2 powers, i.e. 64 byte
// block size
#include <openssl/poly1305.h>
#include "../internal.h"
#if !defined(OPENSSL_WINDOWS) && defined(OPENSSL_X86_64)
#include <emmintrin.h>
#define U8TO64_LE(m) (*(const uint64_t *)(m))
#define U8TO32_LE(m) (*(const uint32_t *)(m))
#define U64TO8_LE(m, v) (*(uint64_t *)(m)) = v
typedef __m128i xmmi;
static const alignas(16) uint32_t poly1305_x64_sse2_message_mask[4] = {
(1 << 26) - 1, 0, (1 << 26) - 1, 0};
static const alignas(16) uint32_t poly1305_x64_sse2_5[4] = {5, 0, 5, 0};
static const alignas(16) uint32_t poly1305_x64_sse2_1shl128[4] = {
(1 << 24), 0, (1 << 24), 0};
static inline uint128_t add128(uint128_t a, uint128_t b) { return a + b; }
static inline uint128_t add128_64(uint128_t a, uint64_t b) { return a + b; }
static inline uint128_t mul64x64_128(uint64_t a, uint64_t b) {
return (uint128_t)a * b;
}
static inline uint64_t lo128(uint128_t a) { return (uint64_t)a; }
static inline uint64_t shr128(uint128_t v, const int shift) {
return (uint64_t)(v >> shift);
}
static inline uint64_t shr128_pair(uint64_t hi, uint64_t lo, const int shift) {
return (uint64_t)((((uint128_t)hi << 64) | lo) >> shift);
}
typedef struct poly1305_power_t {
union {
xmmi v;
uint64_t u[2];
uint32_t d[4];
} R20, R21, R22, R23, R24, S21, S22, S23, S24;
} poly1305_power;
typedef struct poly1305_state_internal_t {
poly1305_power P[2]; /* 288 bytes, top 32 bit halves unused = 144
bytes of free storage */
union {
xmmi H[5]; // 80 bytes
uint64_t HH[10];
};
// uint64_t r0,r1,r2; [24 bytes]
// uint64_t pad0,pad1; [16 bytes]
uint64_t started; // 8 bytes
uint64_t leftover; // 8 bytes
uint8_t buffer[64]; // 64 bytes
} poly1305_state_internal; /* 448 bytes total + 63 bytes for
alignment = 511 bytes raw */
static inline poly1305_state_internal *poly1305_aligned_state(
poly1305_state *state) {
return (poly1305_state_internal *)(((uint64_t)state + 63) & ~63);
}
static inline size_t poly1305_min(size_t a, size_t b) {
return (a < b) ? a : b;
}
void CRYPTO_poly1305_init(poly1305_state *state, const uint8_t key[32]) {
poly1305_state_internal *st = poly1305_aligned_state(state);
poly1305_power *p;
uint64_t r0, r1, r2;
uint64_t t0, t1;
// clamp key
t0 = U8TO64_LE(key + 0);
t1 = U8TO64_LE(key + 8);
r0 = t0 & 0xffc0fffffff;
t0 >>= 44;
t0 |= t1 << 20;
r1 = t0 & 0xfffffc0ffff;
t1 >>= 24;
r2 = t1 & 0x00ffffffc0f;
// store r in un-used space of st->P[1]
p = &st->P[1];
p->R20.d[1] = (uint32_t)(r0);
p->R20.d[3] = (uint32_t)(r0 >> 32);
p->R21.d[1] = (uint32_t)(r1);
p->R21.d[3] = (uint32_t)(r1 >> 32);
p->R22.d[1] = (uint32_t)(r2);
p->R22.d[3] = (uint32_t)(r2 >> 32);
// store pad
p->R23.d[1] = U8TO32_LE(key + 16);
p->R23.d[3] = U8TO32_LE(key + 20);
p->R24.d[1] = U8TO32_LE(key + 24);
p->R24.d[3] = U8TO32_LE(key + 28);
// H = 0
st->H[0] = _mm_setzero_si128();
st->H[1] = _mm_setzero_si128();
st->H[2] = _mm_setzero_si128();
st->H[3] = _mm_setzero_si128();
st->H[4] = _mm_setzero_si128();
st->started = 0;
st->leftover = 0;
}
static void poly1305_first_block(poly1305_state_internal *st,
const uint8_t *m) {
const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask);
const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5);
const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128);
xmmi T5, T6;
poly1305_power *p;
uint128_t d[3];
uint64_t r0, r1, r2;
uint64_t r20, r21, r22, s22;
uint64_t pad0, pad1;
uint64_t c;
uint64_t i;
// pull out stored info
p = &st->P[1];
r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
pad0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
pad1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
// compute powers r^2,r^4
r20 = r0;
r21 = r1;
r22 = r2;
for (i = 0; i < 2; i++) {
s22 = r22 * (5 << 2);
d[0] = add128(mul64x64_128(r20, r20), mul64x64_128(r21 * 2, s22));
d[1] = add128(mul64x64_128(r22, s22), mul64x64_128(r20 * 2, r21));
d[2] = add128(mul64x64_128(r21, r21), mul64x64_128(r22 * 2, r20));
r20 = lo128(d[0]) & 0xfffffffffff;
c = shr128(d[0], 44);
d[1] = add128_64(d[1], c);
r21 = lo128(d[1]) & 0xfffffffffff;
c = shr128(d[1], 44);
d[2] = add128_64(d[2], c);
r22 = lo128(d[2]) & 0x3ffffffffff;
c = shr128(d[2], 42);
r20 += c * 5;
c = (r20 >> 44);
r20 = r20 & 0xfffffffffff;
r21 += c;
p->R20.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)(r20)&0x3ffffff),
_MM_SHUFFLE(1, 0, 1, 0));
p->R21.v = _mm_shuffle_epi32(
_mm_cvtsi32_si128((uint32_t)((r20 >> 26) | (r21 << 18)) & 0x3ffffff),
_MM_SHUFFLE(1, 0, 1, 0));
p->R22.v =
_mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r21 >> 8)) & 0x3ffffff),
_MM_SHUFFLE(1, 0, 1, 0));
p->R23.v = _mm_shuffle_epi32(
_mm_cvtsi32_si128((uint32_t)((r21 >> 34) | (r22 << 10)) & 0x3ffffff),
_MM_SHUFFLE(1, 0, 1, 0));
p->R24.v = _mm_shuffle_epi32(_mm_cvtsi32_si128((uint32_t)((r22 >> 16))),
_MM_SHUFFLE(1, 0, 1, 0));
p->S21.v = _mm_mul_epu32(p->R21.v, FIVE);
p->S22.v = _mm_mul_epu32(p->R22.v, FIVE);
p->S23.v = _mm_mul_epu32(p->R23.v, FIVE);
p->S24.v = _mm_mul_epu32(p->R24.v, FIVE);
p--;
}
// put saved info back
p = &st->P[1];
p->R20.d[1] = (uint32_t)(r0);
p->R20.d[3] = (uint32_t)(r0 >> 32);
p->R21.d[1] = (uint32_t)(r1);
p->R21.d[3] = (uint32_t)(r1 >> 32);
p->R22.d[1] = (uint32_t)(r2);
p->R22.d[3] = (uint32_t)(r2 >> 32);
p->R23.d[1] = (uint32_t)(pad0);
p->R23.d[3] = (uint32_t)(pad0 >> 32);
p->R24.d[1] = (uint32_t)(pad1);
p->R24.d[3] = (uint32_t)(pad1 >> 32);
// H = [Mx,My]
T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)),
_mm_loadl_epi64((const xmmi *)(m + 16)));
T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)),
_mm_loadl_epi64((const xmmi *)(m + 24)));
st->H[0] = _mm_and_si128(MMASK, T5);
st->H[1] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
st->H[2] = _mm_and_si128(MMASK, T5);
st->H[3] = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
st->H[4] = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
}
static void poly1305_blocks(poly1305_state_internal *st, const uint8_t *m,
size_t bytes) {
const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask);
const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5);
const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128);
poly1305_power *p;
xmmi H0, H1, H2, H3, H4;
xmmi T0, T1, T2, T3, T4, T5, T6;
xmmi M0, M1, M2, M3, M4;
xmmi C1, C2;
H0 = st->H[0];
H1 = st->H[1];
H2 = st->H[2];
H3 = st->H[3];
H4 = st->H[4];
while (bytes >= 64) {
// H *= [r^4,r^4]
p = &st->P[0];
T0 = _mm_mul_epu32(H0, p->R20.v);
T1 = _mm_mul_epu32(H0, p->R21.v);
T2 = _mm_mul_epu32(H0, p->R22.v);
T3 = _mm_mul_epu32(H0, p->R23.v);
T4 = _mm_mul_epu32(H0, p->R24.v);
T5 = _mm_mul_epu32(H1, p->S24.v);
T6 = _mm_mul_epu32(H1, p->R20.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H2, p->S23.v);
T6 = _mm_mul_epu32(H2, p->S24.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H3, p->S22.v);
T6 = _mm_mul_epu32(H3, p->S23.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H4, p->S21.v);
T6 = _mm_mul_epu32(H4, p->S22.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H1, p->R21.v);
T6 = _mm_mul_epu32(H1, p->R22.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H2, p->R20.v);
T6 = _mm_mul_epu32(H2, p->R21.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H3, p->S24.v);
T6 = _mm_mul_epu32(H3, p->R20.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H4, p->S23.v);
T6 = _mm_mul_epu32(H4, p->S24.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H1, p->R23.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H2, p->R22.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H3, p->R21.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H4, p->R20.v);
T4 = _mm_add_epi64(T4, T5);
// H += [Mx,My]*[r^2,r^2]
T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)),
_mm_loadl_epi64((const xmmi *)(m + 16)));
T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)),
_mm_loadl_epi64((const xmmi *)(m + 24)));
M0 = _mm_and_si128(MMASK, T5);
M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
M2 = _mm_and_si128(MMASK, T5);
M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
p = &st->P[1];
T5 = _mm_mul_epu32(M0, p->R20.v);
T6 = _mm_mul_epu32(M0, p->R21.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M1, p->S24.v);
T6 = _mm_mul_epu32(M1, p->R20.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M2, p->S23.v);
T6 = _mm_mul_epu32(M2, p->S24.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M3, p->S22.v);
T6 = _mm_mul_epu32(M3, p->S23.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M4, p->S21.v);
T6 = _mm_mul_epu32(M4, p->S22.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(M0, p->R22.v);
T6 = _mm_mul_epu32(M0, p->R23.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M1, p->R21.v);
T6 = _mm_mul_epu32(M1, p->R22.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M2, p->R20.v);
T6 = _mm_mul_epu32(M2, p->R21.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M3, p->S24.v);
T6 = _mm_mul_epu32(M3, p->R20.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M4, p->S23.v);
T6 = _mm_mul_epu32(M4, p->S24.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(M0, p->R24.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(M1, p->R23.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(M2, p->R22.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(M3, p->R21.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(M4, p->R20.v);
T4 = _mm_add_epi64(T4, T5);
// H += [Mx,My]
T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 32)),
_mm_loadl_epi64((const xmmi *)(m + 48)));
T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 40)),
_mm_loadl_epi64((const xmmi *)(m + 56)));
M0 = _mm_and_si128(MMASK, T5);
M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
M2 = _mm_and_si128(MMASK, T5);
M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
T0 = _mm_add_epi64(T0, M0);
T1 = _mm_add_epi64(T1, M1);
T2 = _mm_add_epi64(T2, M2);
T3 = _mm_add_epi64(T3, M3);
T4 = _mm_add_epi64(T4, M4);
// reduce
C1 = _mm_srli_epi64(T0, 26);
C2 = _mm_srli_epi64(T3, 26);
T0 = _mm_and_si128(T0, MMASK);
T3 = _mm_and_si128(T3, MMASK);
T1 = _mm_add_epi64(T1, C1);
T4 = _mm_add_epi64(T4, C2);
C1 = _mm_srli_epi64(T1, 26);
C2 = _mm_srli_epi64(T4, 26);
T1 = _mm_and_si128(T1, MMASK);
T4 = _mm_and_si128(T4, MMASK);
T2 = _mm_add_epi64(T2, C1);
T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
C1 = _mm_srli_epi64(T2, 26);
C2 = _mm_srli_epi64(T0, 26);
T2 = _mm_and_si128(T2, MMASK);
T0 = _mm_and_si128(T0, MMASK);
T3 = _mm_add_epi64(T3, C1);
T1 = _mm_add_epi64(T1, C2);
C1 = _mm_srli_epi64(T3, 26);
T3 = _mm_and_si128(T3, MMASK);
T4 = _mm_add_epi64(T4, C1);
// H = (H*[r^4,r^4] + [Mx,My]*[r^2,r^2] + [Mx,My])
H0 = T0;
H1 = T1;
H2 = T2;
H3 = T3;
H4 = T4;
m += 64;
bytes -= 64;
}
st->H[0] = H0;
st->H[1] = H1;
st->H[2] = H2;
st->H[3] = H3;
st->H[4] = H4;
}
static size_t poly1305_combine(poly1305_state_internal *st, const uint8_t *m,
size_t bytes) {
const xmmi MMASK = _mm_load_si128((const xmmi *)poly1305_x64_sse2_message_mask);
const xmmi HIBIT = _mm_load_si128((const xmmi *)poly1305_x64_sse2_1shl128);
const xmmi FIVE = _mm_load_si128((const xmmi *)poly1305_x64_sse2_5);
poly1305_power *p;
xmmi H0, H1, H2, H3, H4;
xmmi M0, M1, M2, M3, M4;
xmmi T0, T1, T2, T3, T4, T5, T6;
xmmi C1, C2;
uint64_t r0, r1, r2;
uint64_t t0, t1, t2, t3, t4;
uint64_t c;
size_t consumed = 0;
H0 = st->H[0];
H1 = st->H[1];
H2 = st->H[2];
H3 = st->H[3];
H4 = st->H[4];
// p = [r^2,r^2]
p = &st->P[1];
if (bytes >= 32) {
// H *= [r^2,r^2]
T0 = _mm_mul_epu32(H0, p->R20.v);
T1 = _mm_mul_epu32(H0, p->R21.v);
T2 = _mm_mul_epu32(H0, p->R22.v);
T3 = _mm_mul_epu32(H0, p->R23.v);
T4 = _mm_mul_epu32(H0, p->R24.v);
T5 = _mm_mul_epu32(H1, p->S24.v);
T6 = _mm_mul_epu32(H1, p->R20.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H2, p->S23.v);
T6 = _mm_mul_epu32(H2, p->S24.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H3, p->S22.v);
T6 = _mm_mul_epu32(H3, p->S23.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H4, p->S21.v);
T6 = _mm_mul_epu32(H4, p->S22.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H1, p->R21.v);
T6 = _mm_mul_epu32(H1, p->R22.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H2, p->R20.v);
T6 = _mm_mul_epu32(H2, p->R21.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H3, p->S24.v);
T6 = _mm_mul_epu32(H3, p->R20.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H4, p->S23.v);
T6 = _mm_mul_epu32(H4, p->S24.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H1, p->R23.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H2, p->R22.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H3, p->R21.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H4, p->R20.v);
T4 = _mm_add_epi64(T4, T5);
// H += [Mx,My]
T5 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 0)),
_mm_loadl_epi64((const xmmi *)(m + 16)));
T6 = _mm_unpacklo_epi64(_mm_loadl_epi64((const xmmi *)(m + 8)),
_mm_loadl_epi64((const xmmi *)(m + 24)));
M0 = _mm_and_si128(MMASK, T5);
M1 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
T5 = _mm_or_si128(_mm_srli_epi64(T5, 52), _mm_slli_epi64(T6, 12));
M2 = _mm_and_si128(MMASK, T5);
M3 = _mm_and_si128(MMASK, _mm_srli_epi64(T5, 26));
M4 = _mm_or_si128(_mm_srli_epi64(T6, 40), HIBIT);
T0 = _mm_add_epi64(T0, M0);
T1 = _mm_add_epi64(T1, M1);
T2 = _mm_add_epi64(T2, M2);
T3 = _mm_add_epi64(T3, M3);
T4 = _mm_add_epi64(T4, M4);
// reduce
C1 = _mm_srli_epi64(T0, 26);
C2 = _mm_srli_epi64(T3, 26);
T0 = _mm_and_si128(T0, MMASK);
T3 = _mm_and_si128(T3, MMASK);
T1 = _mm_add_epi64(T1, C1);
T4 = _mm_add_epi64(T4, C2);
C1 = _mm_srli_epi64(T1, 26);
C2 = _mm_srli_epi64(T4, 26);
T1 = _mm_and_si128(T1, MMASK);
T4 = _mm_and_si128(T4, MMASK);
T2 = _mm_add_epi64(T2, C1);
T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
C1 = _mm_srli_epi64(T2, 26);
C2 = _mm_srli_epi64(T0, 26);
T2 = _mm_and_si128(T2, MMASK);
T0 = _mm_and_si128(T0, MMASK);
T3 = _mm_add_epi64(T3, C1);
T1 = _mm_add_epi64(T1, C2);
C1 = _mm_srli_epi64(T3, 26);
T3 = _mm_and_si128(T3, MMASK);
T4 = _mm_add_epi64(T4, C1);
// H = (H*[r^2,r^2] + [Mx,My])
H0 = T0;
H1 = T1;
H2 = T2;
H3 = T3;
H4 = T4;
consumed = 32;
}
// finalize, H *= [r^2,r]
r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
p->R20.d[2] = (uint32_t)(r0)&0x3ffffff;
p->R21.d[2] = (uint32_t)((r0 >> 26) | (r1 << 18)) & 0x3ffffff;
p->R22.d[2] = (uint32_t)((r1 >> 8)) & 0x3ffffff;
p->R23.d[2] = (uint32_t)((r1 >> 34) | (r2 << 10)) & 0x3ffffff;
p->R24.d[2] = (uint32_t)((r2 >> 16));
p->S21.d[2] = p->R21.d[2] * 5;
p->S22.d[2] = p->R22.d[2] * 5;
p->S23.d[2] = p->R23.d[2] * 5;
p->S24.d[2] = p->R24.d[2] * 5;
// H *= [r^2,r]
T0 = _mm_mul_epu32(H0, p->R20.v);
T1 = _mm_mul_epu32(H0, p->R21.v);
T2 = _mm_mul_epu32(H0, p->R22.v);
T3 = _mm_mul_epu32(H0, p->R23.v);
T4 = _mm_mul_epu32(H0, p->R24.v);
T5 = _mm_mul_epu32(H1, p->S24.v);
T6 = _mm_mul_epu32(H1, p->R20.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H2, p->S23.v);
T6 = _mm_mul_epu32(H2, p->S24.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H3, p->S22.v);
T6 = _mm_mul_epu32(H3, p->S23.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H4, p->S21.v);
T6 = _mm_mul_epu32(H4, p->S22.v);
T0 = _mm_add_epi64(T0, T5);
T1 = _mm_add_epi64(T1, T6);
T5 = _mm_mul_epu32(H1, p->R21.v);
T6 = _mm_mul_epu32(H1, p->R22.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H2, p->R20.v);
T6 = _mm_mul_epu32(H2, p->R21.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H3, p->S24.v);
T6 = _mm_mul_epu32(H3, p->R20.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H4, p->S23.v);
T6 = _mm_mul_epu32(H4, p->S24.v);
T2 = _mm_add_epi64(T2, T5);
T3 = _mm_add_epi64(T3, T6);
T5 = _mm_mul_epu32(H1, p->R23.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H2, p->R22.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H3, p->R21.v);
T4 = _mm_add_epi64(T4, T5);
T5 = _mm_mul_epu32(H4, p->R20.v);
T4 = _mm_add_epi64(T4, T5);
C1 = _mm_srli_epi64(T0, 26);
C2 = _mm_srli_epi64(T3, 26);
T0 = _mm_and_si128(T0, MMASK);
T3 = _mm_and_si128(T3, MMASK);
T1 = _mm_add_epi64(T1, C1);
T4 = _mm_add_epi64(T4, C2);
C1 = _mm_srli_epi64(T1, 26);
C2 = _mm_srli_epi64(T4, 26);
T1 = _mm_and_si128(T1, MMASK);
T4 = _mm_and_si128(T4, MMASK);
T2 = _mm_add_epi64(T2, C1);
T0 = _mm_add_epi64(T0, _mm_mul_epu32(C2, FIVE));
C1 = _mm_srli_epi64(T2, 26);
C2 = _mm_srli_epi64(T0, 26);
T2 = _mm_and_si128(T2, MMASK);
T0 = _mm_and_si128(T0, MMASK);
T3 = _mm_add_epi64(T3, C1);
T1 = _mm_add_epi64(T1, C2);
C1 = _mm_srli_epi64(T3, 26);
T3 = _mm_and_si128(T3, MMASK);
T4 = _mm_add_epi64(T4, C1);
// H = H[0]+H[1]
H0 = _mm_add_epi64(T0, _mm_srli_si128(T0, 8));
H1 = _mm_add_epi64(T1, _mm_srli_si128(T1, 8));
H2 = _mm_add_epi64(T2, _mm_srli_si128(T2, 8));
H3 = _mm_add_epi64(T3, _mm_srli_si128(T3, 8));
H4 = _mm_add_epi64(T4, _mm_srli_si128(T4, 8));
t0 = _mm_cvtsi128_si32(H0);
c = (t0 >> 26);
t0 &= 0x3ffffff;
t1 = _mm_cvtsi128_si32(H1) + c;
c = (t1 >> 26);
t1 &= 0x3ffffff;
t2 = _mm_cvtsi128_si32(H2) + c;
c = (t2 >> 26);
t2 &= 0x3ffffff;
t3 = _mm_cvtsi128_si32(H3) + c;
c = (t3 >> 26);
t3 &= 0x3ffffff;
t4 = _mm_cvtsi128_si32(H4) + c;
c = (t4 >> 26);
t4 &= 0x3ffffff;
t0 = t0 + (c * 5);
c = (t0 >> 26);
t0 &= 0x3ffffff;
t1 = t1 + c;
st->HH[0] = ((t0) | (t1 << 26)) & UINT64_C(0xfffffffffff);
st->HH[1] = ((t1 >> 18) | (t2 << 8) | (t3 << 34)) & UINT64_C(0xfffffffffff);
st->HH[2] = ((t3 >> 10) | (t4 << 16)) & UINT64_C(0x3ffffffffff);
return consumed;
}
void CRYPTO_poly1305_update(poly1305_state *state, const uint8_t *m,
size_t bytes) {
poly1305_state_internal *st = poly1305_aligned_state(state);
size_t want;
// need at least 32 initial bytes to start the accelerated branch
if (!st->started) {
if ((st->leftover == 0) && (bytes > 32)) {
poly1305_first_block(st, m);
m += 32;
bytes -= 32;
} else {
want = poly1305_min(32 - st->leftover, bytes);
OPENSSL_memcpy(st->buffer + st->leftover, m, want);
bytes -= want;
m += want;
st->leftover += want;
if ((st->leftover < 32) || (bytes == 0)) {
return;
}
poly1305_first_block(st, st->buffer);
st->leftover = 0;
}
st->started = 1;
}
// handle leftover
if (st->leftover) {
want = poly1305_min(64 - st->leftover, bytes);
OPENSSL_memcpy(st->buffer + st->leftover, m, want);
bytes -= want;
m += want;
st->leftover += want;
if (st->leftover < 64) {
return;
}
poly1305_blocks(st, st->buffer, 64);
st->leftover = 0;
}
// process 64 byte blocks
if (bytes >= 64) {
want = (bytes & ~63);
poly1305_blocks(st, m, want);
m += want;
bytes -= want;
}
if (bytes) {
OPENSSL_memcpy(st->buffer + st->leftover, m, bytes);
st->leftover += bytes;
}
}
void CRYPTO_poly1305_finish(poly1305_state *state, uint8_t mac[16]) {
poly1305_state_internal *st = poly1305_aligned_state(state);
size_t leftover = st->leftover;
uint8_t *m = st->buffer;
uint128_t d[3];
uint64_t h0, h1, h2;
uint64_t t0, t1;
uint64_t g0, g1, g2, c, nc;
uint64_t r0, r1, r2, s1, s2;
poly1305_power *p;
if (st->started) {
size_t consumed = poly1305_combine(st, m, leftover);
leftover -= consumed;
m += consumed;
}
// st->HH will either be 0 or have the combined result
h0 = st->HH[0];
h1 = st->HH[1];
h2 = st->HH[2];
p = &st->P[1];
r0 = ((uint64_t)p->R20.d[3] << 32) | (uint64_t)p->R20.d[1];
r1 = ((uint64_t)p->R21.d[3] << 32) | (uint64_t)p->R21.d[1];
r2 = ((uint64_t)p->R22.d[3] << 32) | (uint64_t)p->R22.d[1];
s1 = r1 * (5 << 2);
s2 = r2 * (5 << 2);
if (leftover < 16) {
goto poly1305_donna_atmost15bytes;
}
poly1305_donna_atleast16bytes:
t0 = U8TO64_LE(m + 0);
t1 = U8TO64_LE(m + 8);
h0 += t0 & 0xfffffffffff;
t0 = shr128_pair(t1, t0, 44);
h1 += t0 & 0xfffffffffff;
h2 += (t1 >> 24) | ((uint64_t)1 << 40);
poly1305_donna_mul:
d[0] = add128(add128(mul64x64_128(h0, r0), mul64x64_128(h1, s2)),
mul64x64_128(h2, s1));
d[1] = add128(add128(mul64x64_128(h0, r1), mul64x64_128(h1, r0)),
mul64x64_128(h2, s2));
d[2] = add128(add128(mul64x64_128(h0, r2), mul64x64_128(h1, r1)),
mul64x64_128(h2, r0));
h0 = lo128(d[0]) & 0xfffffffffff;
c = shr128(d[0], 44);
d[1] = add128_64(d[1], c);
h1 = lo128(d[1]) & 0xfffffffffff;
c = shr128(d[1], 44);
d[2] = add128_64(d[2], c);
h2 = lo128(d[2]) & 0x3ffffffffff;
c = shr128(d[2], 42);
h0 += c * 5;
m += 16;
leftover -= 16;
if (leftover >= 16) {
goto poly1305_donna_atleast16bytes;
}
// final bytes
poly1305_donna_atmost15bytes:
if (!leftover) {
goto poly1305_donna_finish;
}
m[leftover++] = 1;
OPENSSL_memset(m + leftover, 0, 16 - leftover);
leftover = 16;
t0 = U8TO64_LE(m + 0);
t1 = U8TO64_LE(m + 8);
h0 += t0 & 0xfffffffffff;
t0 = shr128_pair(t1, t0, 44);
h1 += t0 & 0xfffffffffff;
h2 += (t1 >> 24);
goto poly1305_donna_mul;
poly1305_donna_finish:
c = (h0 >> 44);
h0 &= 0xfffffffffff;
h1 += c;
c = (h1 >> 44);
h1 &= 0xfffffffffff;
h2 += c;
c = (h2 >> 42);
h2 &= 0x3ffffffffff;
h0 += c * 5;
g0 = h0 + 5;
c = (g0 >> 44);
g0 &= 0xfffffffffff;
g1 = h1 + c;
c = (g1 >> 44);
g1 &= 0xfffffffffff;
g2 = h2 + c - ((uint64_t)1 << 42);
c = (g2 >> 63) - 1;
nc = ~c;
h0 = (h0 & nc) | (g0 & c);
h1 = (h1 & nc) | (g1 & c);
h2 = (h2 & nc) | (g2 & c);
// pad
t0 = ((uint64_t)p->R23.d[3] << 32) | (uint64_t)p->R23.d[1];
t1 = ((uint64_t)p->R24.d[3] << 32) | (uint64_t)p->R24.d[1];
h0 += (t0 & 0xfffffffffff);
c = (h0 >> 44);
h0 &= 0xfffffffffff;
t0 = shr128_pair(t1, t0, 44);
h1 += (t0 & 0xfffffffffff) + c;
c = (h1 >> 44);
h1 &= 0xfffffffffff;
t1 = (t1 >> 24);
h2 += (t1)+c;
U64TO8_LE(mac + 0, ((h0) | (h1 << 44)));
U64TO8_LE(mac + 8, ((h1 >> 20) | (h2 << 24)));
}
#endif // !OPENSSL_WINDOWS && OPENSSL_X86_64