mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-10 20:12:39 +01:00
636 lines
18 KiB
C
636 lines
18 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 2006.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/evp.h>
|
|
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/buf.h>
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/nid.h>
|
|
#include <openssl/rsa.h>
|
|
|
|
#include "../internal.h"
|
|
#include "../fipsmodule/rsa/internal.h"
|
|
#include "internal.h"
|
|
|
|
|
|
typedef struct {
|
|
// Key gen parameters
|
|
int nbits;
|
|
BIGNUM *pub_exp;
|
|
// RSA padding mode
|
|
int pad_mode;
|
|
// message digest
|
|
const EVP_MD *md;
|
|
// message digest for MGF1
|
|
const EVP_MD *mgf1md;
|
|
// PSS salt length
|
|
int saltlen;
|
|
// tbuf is a buffer which is either NULL, or is the size of the RSA modulus.
|
|
// It's used to store the output of RSA operations.
|
|
uint8_t *tbuf;
|
|
// OAEP label
|
|
uint8_t *oaep_label;
|
|
size_t oaep_labellen;
|
|
} RSA_PKEY_CTX;
|
|
|
|
typedef struct {
|
|
uint8_t *data;
|
|
size_t len;
|
|
} RSA_OAEP_LABEL_PARAMS;
|
|
|
|
static int pkey_rsa_init(EVP_PKEY_CTX *ctx) {
|
|
RSA_PKEY_CTX *rctx;
|
|
rctx = OPENSSL_malloc(sizeof(RSA_PKEY_CTX));
|
|
if (!rctx) {
|
|
return 0;
|
|
}
|
|
OPENSSL_memset(rctx, 0, sizeof(RSA_PKEY_CTX));
|
|
|
|
rctx->nbits = 2048;
|
|
rctx->pad_mode = RSA_PKCS1_PADDING;
|
|
rctx->saltlen = -2;
|
|
|
|
ctx->data = rctx;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int pkey_rsa_copy(EVP_PKEY_CTX *dst, EVP_PKEY_CTX *src) {
|
|
RSA_PKEY_CTX *dctx, *sctx;
|
|
if (!pkey_rsa_init(dst)) {
|
|
return 0;
|
|
}
|
|
sctx = src->data;
|
|
dctx = dst->data;
|
|
dctx->nbits = sctx->nbits;
|
|
if (sctx->pub_exp) {
|
|
dctx->pub_exp = BN_dup(sctx->pub_exp);
|
|
if (!dctx->pub_exp) {
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
dctx->pad_mode = sctx->pad_mode;
|
|
dctx->md = sctx->md;
|
|
dctx->mgf1md = sctx->mgf1md;
|
|
dctx->saltlen = sctx->saltlen;
|
|
if (sctx->oaep_label) {
|
|
OPENSSL_free(dctx->oaep_label);
|
|
dctx->oaep_label = BUF_memdup(sctx->oaep_label, sctx->oaep_labellen);
|
|
if (!dctx->oaep_label) {
|
|
return 0;
|
|
}
|
|
dctx->oaep_labellen = sctx->oaep_labellen;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void pkey_rsa_cleanup(EVP_PKEY_CTX *ctx) {
|
|
RSA_PKEY_CTX *rctx = ctx->data;
|
|
|
|
if (rctx == NULL) {
|
|
return;
|
|
}
|
|
|
|
BN_free(rctx->pub_exp);
|
|
OPENSSL_free(rctx->tbuf);
|
|
OPENSSL_free(rctx->oaep_label);
|
|
OPENSSL_free(rctx);
|
|
}
|
|
|
|
static int setup_tbuf(RSA_PKEY_CTX *ctx, EVP_PKEY_CTX *pk) {
|
|
if (ctx->tbuf) {
|
|
return 1;
|
|
}
|
|
ctx->tbuf = OPENSSL_malloc(EVP_PKEY_size(pk->pkey));
|
|
if (!ctx->tbuf) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int pkey_rsa_sign(EVP_PKEY_CTX *ctx, uint8_t *sig, size_t *siglen,
|
|
const uint8_t *tbs, size_t tbslen) {
|
|
RSA_PKEY_CTX *rctx = ctx->data;
|
|
RSA *rsa = ctx->pkey->pkey.rsa;
|
|
const size_t key_len = EVP_PKEY_size(ctx->pkey);
|
|
|
|
if (!sig) {
|
|
*siglen = key_len;
|
|
return 1;
|
|
}
|
|
|
|
if (*siglen < key_len) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
if (rctx->md) {
|
|
unsigned out_len;
|
|
switch (rctx->pad_mode) {
|
|
case RSA_PKCS1_PADDING:
|
|
if (!RSA_sign(EVP_MD_type(rctx->md), tbs, tbslen, sig, &out_len, rsa)) {
|
|
return 0;
|
|
}
|
|
*siglen = out_len;
|
|
return 1;
|
|
|
|
case RSA_PKCS1_PSS_PADDING:
|
|
return RSA_sign_pss_mgf1(rsa, siglen, sig, *siglen, tbs, tbslen,
|
|
rctx->md, rctx->mgf1md, rctx->saltlen);
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
return RSA_sign_raw(rsa, siglen, sig, *siglen, tbs, tbslen, rctx->pad_mode);
|
|
}
|
|
|
|
static int pkey_rsa_verify(EVP_PKEY_CTX *ctx, const uint8_t *sig,
|
|
size_t siglen, const uint8_t *tbs,
|
|
size_t tbslen) {
|
|
RSA_PKEY_CTX *rctx = ctx->data;
|
|
RSA *rsa = ctx->pkey->pkey.rsa;
|
|
|
|
if (rctx->md) {
|
|
switch (rctx->pad_mode) {
|
|
case RSA_PKCS1_PADDING:
|
|
return RSA_verify(EVP_MD_type(rctx->md), tbs, tbslen, sig, siglen, rsa);
|
|
|
|
case RSA_PKCS1_PSS_PADDING:
|
|
return RSA_verify_pss_mgf1(rsa, tbs, tbslen, rctx->md, rctx->mgf1md,
|
|
rctx->saltlen, sig, siglen);
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
size_t rslen;
|
|
const size_t key_len = EVP_PKEY_size(ctx->pkey);
|
|
if (!setup_tbuf(rctx, ctx) ||
|
|
!RSA_verify_raw(rsa, &rslen, rctx->tbuf, key_len, sig, siglen,
|
|
rctx->pad_mode) ||
|
|
rslen != tbslen ||
|
|
CRYPTO_memcmp(tbs, rctx->tbuf, rslen) != 0) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int pkey_rsa_verify_recover(EVP_PKEY_CTX *ctx, uint8_t *out,
|
|
size_t *out_len, const uint8_t *sig,
|
|
size_t sig_len) {
|
|
RSA_PKEY_CTX *rctx = ctx->data;
|
|
RSA *rsa = ctx->pkey->pkey.rsa;
|
|
const size_t key_len = EVP_PKEY_size(ctx->pkey);
|
|
|
|
if (out == NULL) {
|
|
*out_len = key_len;
|
|
return 1;
|
|
}
|
|
|
|
if (*out_len < key_len) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
if (rctx->md == NULL) {
|
|
return RSA_verify_raw(rsa, out_len, out, *out_len, sig, sig_len,
|
|
rctx->pad_mode);
|
|
}
|
|
|
|
if (rctx->pad_mode != RSA_PKCS1_PADDING) {
|
|
return 0;
|
|
}
|
|
|
|
// Assemble the encoded hash, using a placeholder hash value.
|
|
static const uint8_t kDummyHash[EVP_MAX_MD_SIZE] = {0};
|
|
const size_t hash_len = EVP_MD_size(rctx->md);
|
|
uint8_t *asn1_prefix;
|
|
size_t asn1_prefix_len;
|
|
int asn1_prefix_allocated;
|
|
if (!setup_tbuf(rctx, ctx) ||
|
|
!RSA_add_pkcs1_prefix(&asn1_prefix, &asn1_prefix_len,
|
|
&asn1_prefix_allocated, EVP_MD_type(rctx->md),
|
|
kDummyHash, hash_len)) {
|
|
return 0;
|
|
}
|
|
|
|
size_t rslen;
|
|
int ok = 1;
|
|
if (!RSA_verify_raw(rsa, &rslen, rctx->tbuf, key_len, sig, sig_len,
|
|
RSA_PKCS1_PADDING) ||
|
|
rslen != asn1_prefix_len ||
|
|
// Compare all but the hash suffix.
|
|
CRYPTO_memcmp(rctx->tbuf, asn1_prefix, asn1_prefix_len - hash_len) != 0) {
|
|
ok = 0;
|
|
}
|
|
|
|
if (asn1_prefix_allocated) {
|
|
OPENSSL_free(asn1_prefix);
|
|
}
|
|
|
|
if (!ok) {
|
|
return 0;
|
|
}
|
|
|
|
if (out != NULL) {
|
|
OPENSSL_memcpy(out, rctx->tbuf + rslen - hash_len, hash_len);
|
|
}
|
|
*out_len = hash_len;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int pkey_rsa_encrypt(EVP_PKEY_CTX *ctx, uint8_t *out, size_t *outlen,
|
|
const uint8_t *in, size_t inlen) {
|
|
RSA_PKEY_CTX *rctx = ctx->data;
|
|
RSA *rsa = ctx->pkey->pkey.rsa;
|
|
const size_t key_len = EVP_PKEY_size(ctx->pkey);
|
|
|
|
if (!out) {
|
|
*outlen = key_len;
|
|
return 1;
|
|
}
|
|
|
|
if (*outlen < key_len) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
|
|
if (!setup_tbuf(rctx, ctx) ||
|
|
!RSA_padding_add_PKCS1_OAEP_mgf1(rctx->tbuf, key_len, in, inlen,
|
|
rctx->oaep_label, rctx->oaep_labellen,
|
|
rctx->md, rctx->mgf1md) ||
|
|
!RSA_encrypt(rsa, outlen, out, *outlen, rctx->tbuf, key_len,
|
|
RSA_NO_PADDING)) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
return RSA_encrypt(rsa, outlen, out, *outlen, in, inlen, rctx->pad_mode);
|
|
}
|
|
|
|
static int pkey_rsa_decrypt(EVP_PKEY_CTX *ctx, uint8_t *out,
|
|
size_t *outlen, const uint8_t *in,
|
|
size_t inlen) {
|
|
RSA_PKEY_CTX *rctx = ctx->data;
|
|
RSA *rsa = ctx->pkey->pkey.rsa;
|
|
const size_t key_len = EVP_PKEY_size(ctx->pkey);
|
|
|
|
if (!out) {
|
|
*outlen = key_len;
|
|
return 1;
|
|
}
|
|
|
|
if (*outlen < key_len) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_BUFFER_TOO_SMALL);
|
|
return 0;
|
|
}
|
|
|
|
if (rctx->pad_mode == RSA_PKCS1_OAEP_PADDING) {
|
|
size_t padded_len;
|
|
if (!setup_tbuf(rctx, ctx) ||
|
|
!RSA_decrypt(rsa, &padded_len, rctx->tbuf, key_len, in, inlen,
|
|
RSA_NO_PADDING) ||
|
|
!RSA_padding_check_PKCS1_OAEP_mgf1(
|
|
out, outlen, key_len, rctx->tbuf, padded_len, rctx->oaep_label,
|
|
rctx->oaep_labellen, rctx->md, rctx->mgf1md)) {
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
return RSA_decrypt(rsa, outlen, out, key_len, in, inlen, rctx->pad_mode);
|
|
}
|
|
|
|
static int check_padding_md(const EVP_MD *md, int padding) {
|
|
if (!md) {
|
|
return 1;
|
|
}
|
|
|
|
if (padding == RSA_NO_PADDING) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int is_known_padding(int padding_mode) {
|
|
switch (padding_mode) {
|
|
case RSA_PKCS1_PADDING:
|
|
case RSA_NO_PADDING:
|
|
case RSA_PKCS1_OAEP_PADDING:
|
|
case RSA_PKCS1_PSS_PADDING:
|
|
return 1;
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int pkey_rsa_ctrl(EVP_PKEY_CTX *ctx, int type, int p1, void *p2) {
|
|
RSA_PKEY_CTX *rctx = ctx->data;
|
|
switch (type) {
|
|
case EVP_PKEY_CTRL_RSA_PADDING:
|
|
if (!is_known_padding(p1) || !check_padding_md(rctx->md, p1) ||
|
|
(p1 == RSA_PKCS1_PSS_PADDING &&
|
|
0 == (ctx->operation & (EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY))) ||
|
|
(p1 == RSA_PKCS1_OAEP_PADDING &&
|
|
0 == (ctx->operation & EVP_PKEY_OP_TYPE_CRYPT))) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_ILLEGAL_OR_UNSUPPORTED_PADDING_MODE);
|
|
return 0;
|
|
}
|
|
if ((p1 == RSA_PKCS1_PSS_PADDING || p1 == RSA_PKCS1_OAEP_PADDING) &&
|
|
rctx->md == NULL) {
|
|
rctx->md = EVP_sha1();
|
|
}
|
|
rctx->pad_mode = p1;
|
|
return 1;
|
|
|
|
case EVP_PKEY_CTRL_GET_RSA_PADDING:
|
|
*(int *)p2 = rctx->pad_mode;
|
|
return 1;
|
|
|
|
case EVP_PKEY_CTRL_RSA_PSS_SALTLEN:
|
|
case EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN:
|
|
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PSS_SALTLEN);
|
|
return 0;
|
|
}
|
|
if (type == EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN) {
|
|
*(int *)p2 = rctx->saltlen;
|
|
} else {
|
|
if (p1 < -2) {
|
|
return 0;
|
|
}
|
|
rctx->saltlen = p1;
|
|
}
|
|
return 1;
|
|
|
|
case EVP_PKEY_CTRL_RSA_KEYGEN_BITS:
|
|
if (p1 < 256) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_KEYBITS);
|
|
return 0;
|
|
}
|
|
rctx->nbits = p1;
|
|
return 1;
|
|
|
|
case EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP:
|
|
if (!p2) {
|
|
return 0;
|
|
}
|
|
BN_free(rctx->pub_exp);
|
|
rctx->pub_exp = p2;
|
|
return 1;
|
|
|
|
case EVP_PKEY_CTRL_RSA_OAEP_MD:
|
|
case EVP_PKEY_CTRL_GET_RSA_OAEP_MD:
|
|
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
|
|
return 0;
|
|
}
|
|
if (type == EVP_PKEY_CTRL_GET_RSA_OAEP_MD) {
|
|
*(const EVP_MD **)p2 = rctx->md;
|
|
} else {
|
|
rctx->md = p2;
|
|
}
|
|
return 1;
|
|
|
|
case EVP_PKEY_CTRL_MD:
|
|
if (!check_padding_md(p2, rctx->pad_mode)) {
|
|
return 0;
|
|
}
|
|
rctx->md = p2;
|
|
return 1;
|
|
|
|
case EVP_PKEY_CTRL_GET_MD:
|
|
*(const EVP_MD **)p2 = rctx->md;
|
|
return 1;
|
|
|
|
case EVP_PKEY_CTRL_RSA_MGF1_MD:
|
|
case EVP_PKEY_CTRL_GET_RSA_MGF1_MD:
|
|
if (rctx->pad_mode != RSA_PKCS1_PSS_PADDING &&
|
|
rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_MGF1_MD);
|
|
return 0;
|
|
}
|
|
if (type == EVP_PKEY_CTRL_GET_RSA_MGF1_MD) {
|
|
if (rctx->mgf1md) {
|
|
*(const EVP_MD **)p2 = rctx->mgf1md;
|
|
} else {
|
|
*(const EVP_MD **)p2 = rctx->md;
|
|
}
|
|
} else {
|
|
rctx->mgf1md = p2;
|
|
}
|
|
return 1;
|
|
|
|
case EVP_PKEY_CTRL_RSA_OAEP_LABEL: {
|
|
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
|
|
return 0;
|
|
}
|
|
OPENSSL_free(rctx->oaep_label);
|
|
RSA_OAEP_LABEL_PARAMS *params = p2;
|
|
rctx->oaep_label = params->data;
|
|
rctx->oaep_labellen = params->len;
|
|
return 1;
|
|
}
|
|
|
|
case EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL:
|
|
if (rctx->pad_mode != RSA_PKCS1_OAEP_PADDING) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PADDING_MODE);
|
|
return 0;
|
|
}
|
|
CBS_init((CBS *)p2, rctx->oaep_label, rctx->oaep_labellen);
|
|
return 1;
|
|
|
|
default:
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_COMMAND_NOT_SUPPORTED);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
static int pkey_rsa_keygen(EVP_PKEY_CTX *ctx, EVP_PKEY *pkey) {
|
|
RSA *rsa = NULL;
|
|
RSA_PKEY_CTX *rctx = ctx->data;
|
|
|
|
if (!rctx->pub_exp) {
|
|
rctx->pub_exp = BN_new();
|
|
if (!rctx->pub_exp || !BN_set_word(rctx->pub_exp, RSA_F4)) {
|
|
return 0;
|
|
}
|
|
}
|
|
rsa = RSA_new();
|
|
if (!rsa) {
|
|
return 0;
|
|
}
|
|
|
|
if (!RSA_generate_key_ex(rsa, rctx->nbits, rctx->pub_exp, NULL)) {
|
|
RSA_free(rsa);
|
|
return 0;
|
|
}
|
|
|
|
EVP_PKEY_assign_RSA(pkey, rsa);
|
|
return 1;
|
|
}
|
|
|
|
const EVP_PKEY_METHOD rsa_pkey_meth = {
|
|
EVP_PKEY_RSA,
|
|
pkey_rsa_init,
|
|
pkey_rsa_copy,
|
|
pkey_rsa_cleanup,
|
|
pkey_rsa_keygen,
|
|
pkey_rsa_sign,
|
|
NULL /* sign_message */,
|
|
pkey_rsa_verify,
|
|
NULL /* verify_message */,
|
|
pkey_rsa_verify_recover,
|
|
pkey_rsa_encrypt,
|
|
pkey_rsa_decrypt,
|
|
NULL /* derive */,
|
|
NULL /* paramgen */,
|
|
pkey_rsa_ctrl,
|
|
};
|
|
|
|
int EVP_PKEY_CTX_set_rsa_padding(EVP_PKEY_CTX *ctx, int padding) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, -1, EVP_PKEY_CTRL_RSA_PADDING,
|
|
padding, NULL);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_get_rsa_padding(EVP_PKEY_CTX *ctx, int *out_padding) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, -1, EVP_PKEY_CTRL_GET_RSA_PADDING,
|
|
0, out_padding);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_set_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int salt_len) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA,
|
|
(EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY),
|
|
EVP_PKEY_CTRL_RSA_PSS_SALTLEN, salt_len, NULL);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_get_rsa_pss_saltlen(EVP_PKEY_CTX *ctx, int *out_salt_len) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA,
|
|
(EVP_PKEY_OP_SIGN | EVP_PKEY_OP_VERIFY),
|
|
EVP_PKEY_CTRL_GET_RSA_PSS_SALTLEN, 0, out_salt_len);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_set_rsa_keygen_bits(EVP_PKEY_CTX *ctx, int bits) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_RSA_KEYGEN_BITS, bits, NULL);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_set_rsa_keygen_pubexp(EVP_PKEY_CTX *ctx, BIGNUM *e) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_KEYGEN,
|
|
EVP_PKEY_CTRL_RSA_KEYGEN_PUBEXP, 0, e);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_set_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_RSA_OAEP_MD, 0, (void *)md);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_get_rsa_oaep_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_GET_RSA_OAEP_MD, 0, (void*) out_md);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_set_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD *md) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA,
|
|
EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_RSA_MGF1_MD, 0, (void*) md);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_get_rsa_mgf1_md(EVP_PKEY_CTX *ctx, const EVP_MD **out_md) {
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA,
|
|
EVP_PKEY_OP_TYPE_SIG | EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_GET_RSA_MGF1_MD, 0, (void*) out_md);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_set0_rsa_oaep_label(EVP_PKEY_CTX *ctx, uint8_t *label,
|
|
size_t label_len) {
|
|
RSA_OAEP_LABEL_PARAMS params = {label, label_len};
|
|
return EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_RSA_OAEP_LABEL, 0, ¶ms);
|
|
}
|
|
|
|
int EVP_PKEY_CTX_get0_rsa_oaep_label(EVP_PKEY_CTX *ctx,
|
|
const uint8_t **out_label) {
|
|
CBS label;
|
|
if (!EVP_PKEY_CTX_ctrl(ctx, EVP_PKEY_RSA, EVP_PKEY_OP_TYPE_CRYPT,
|
|
EVP_PKEY_CTRL_GET_RSA_OAEP_LABEL, 0, &label)) {
|
|
return -1;
|
|
}
|
|
if (CBS_len(&label) > INT_MAX) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW);
|
|
return -1;
|
|
}
|
|
*out_label = CBS_data(&label);
|
|
return (int)CBS_len(&label);
|
|
}
|