Telegram-Android/TMessagesProj/jni/libyuv/source/scale_argb.cc

809 lines
28 KiB
C++

/*
* Copyright 2011 The LibYuv Project Authors. All rights reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "libyuv/scale.h"
#include <assert.h>
#include <string.h>
#include "libyuv/cpu_id.h"
#include "libyuv/planar_functions.h" // For CopyARGB
#include "libyuv/row.h"
#include "libyuv/scale_row.h"
#ifdef __cplusplus
namespace libyuv {
extern "C" {
#endif
static __inline int Abs(int v) {
return v >= 0 ? v : -v;
}
// ScaleARGB ARGB, 1/2
// This is an optimized version for scaling down a ARGB to 1/2 of
// its original size.
static void ScaleARGBDown2(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_argb, uint8* dst_argb,
int x, int dx, int y, int dy,
enum FilterMode filtering) {
int j;
int row_stride = src_stride * (dy >> 16);
void (*ScaleARGBRowDown2)(const uint8* src_argb, ptrdiff_t src_stride,
uint8* dst_argb, int dst_width) =
filtering == kFilterNone ? ScaleARGBRowDown2_C :
(filtering == kFilterLinear ? ScaleARGBRowDown2Linear_C :
ScaleARGBRowDown2Box_C);
assert(dx == 65536 * 2); // Test scale factor of 2.
assert((dy & 0x1ffff) == 0); // Test vertical scale is multiple of 2.
// Advance to odd row, even column.
if (filtering == kFilterBilinear) {
src_argb += (y >> 16) * src_stride + (x >> 16) * 4;
} else {
src_argb += (y >> 16) * src_stride + ((x >> 16) - 1) * 4;
}
#if defined(HAS_SCALEARGBROWDOWN2_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 4) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(row_stride, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) {
ScaleARGBRowDown2 = filtering == kFilterNone ? ScaleARGBRowDown2_SSE2 :
(filtering == kFilterLinear ? ScaleARGBRowDown2Linear_SSE2 :
ScaleARGBRowDown2Box_SSE2);
}
#elif defined(HAS_SCALEARGBROWDOWN2_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 8) &&
IS_ALIGNED(src_argb, 4) && IS_ALIGNED(row_stride, 4)) {
ScaleARGBRowDown2 = filtering ? ScaleARGBRowDown2Box_NEON :
ScaleARGBRowDown2_NEON;
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
for (j = 0; j < dst_height; ++j) {
ScaleARGBRowDown2(src_argb, src_stride, dst_argb, dst_width);
src_argb += row_stride;
dst_argb += dst_stride;
}
}
// ScaleARGB ARGB, 1/4
// This is an optimized version for scaling down a ARGB to 1/4 of
// its original size.
static void ScaleARGBDown4Box(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_argb, uint8* dst_argb,
int x, int dx, int y, int dy) {
int j;
// Allocate 2 rows of ARGB.
const int kRowSize = (dst_width * 2 * 4 + 15) & ~15;
align_buffer_64(row, kRowSize * 2);
int row_stride = src_stride * (dy >> 16);
void (*ScaleARGBRowDown2)(const uint8* src_argb, ptrdiff_t src_stride,
uint8* dst_argb, int dst_width) = ScaleARGBRowDown2Box_C;
// Advance to odd row, even column.
src_argb += (y >> 16) * src_stride + (x >> 16) * 4;
assert(dx == 65536 * 4); // Test scale factor of 4.
assert((dy & 0x3ffff) == 0); // Test vertical scale is multiple of 4.
#if defined(HAS_SCALEARGBROWDOWN2_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 4) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(row_stride, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) {
ScaleARGBRowDown2 = ScaleARGBRowDown2Box_SSE2;
}
#elif defined(HAS_SCALEARGBROWDOWN2_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 8) &&
IS_ALIGNED(src_argb, 4) && IS_ALIGNED(row_stride, 4)) {
ScaleARGBRowDown2 = ScaleARGBRowDown2Box_NEON;
}
#endif
for (j = 0; j < dst_height; ++j) {
ScaleARGBRowDown2(src_argb, src_stride, row, dst_width * 2);
ScaleARGBRowDown2(src_argb + src_stride * 2, src_stride,
row + kRowSize, dst_width * 2);
ScaleARGBRowDown2(row, kRowSize, dst_argb, dst_width);
src_argb += row_stride;
dst_argb += dst_stride;
}
free_aligned_buffer_64(row);
}
// ScaleARGB ARGB Even
// This is an optimized version for scaling down a ARGB to even
// multiple of its original size.
static void ScaleARGBDownEven(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_argb, uint8* dst_argb,
int x, int dx, int y, int dy,
enum FilterMode filtering) {
int j;
int col_step = dx >> 16;
int row_stride = (dy >> 16) * src_stride;
void (*ScaleARGBRowDownEven)(const uint8* src_argb, ptrdiff_t src_stride,
int src_step, uint8* dst_argb, int dst_width) =
filtering ? ScaleARGBRowDownEvenBox_C : ScaleARGBRowDownEven_C;
assert(IS_ALIGNED(src_width, 2));
assert(IS_ALIGNED(src_height, 2));
src_argb += (y >> 16) * src_stride + (x >> 16) * 4;
#if defined(HAS_SCALEARGBROWDOWNEVEN_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 4) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) {
ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_SSE2 :
ScaleARGBRowDownEven_SSE2;
}
#elif defined(HAS_SCALEARGBROWDOWNEVEN_NEON)
if (TestCpuFlag(kCpuHasNEON) && IS_ALIGNED(dst_width, 4) &&
IS_ALIGNED(src_argb, 4)) {
ScaleARGBRowDownEven = filtering ? ScaleARGBRowDownEvenBox_NEON :
ScaleARGBRowDownEven_NEON;
}
#endif
if (filtering == kFilterLinear) {
src_stride = 0;
}
for (j = 0; j < dst_height; ++j) {
ScaleARGBRowDownEven(src_argb, src_stride, col_step, dst_argb, dst_width);
src_argb += row_stride;
dst_argb += dst_stride;
}
}
// Scale ARGB down with bilinear interpolation.
static void ScaleARGBBilinearDown(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_argb, uint8* dst_argb,
int x, int dx, int y, int dy,
enum FilterMode filtering) {
int j;
void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb,
ptrdiff_t src_stride, int dst_width, int source_y_fraction) =
InterpolateRow_C;
void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb,
int dst_width, int x, int dx) =
(src_width >= 32768) ? ScaleARGBFilterCols64_C : ScaleARGBFilterCols_C;
int64 xlast = x + (int64)(dst_width - 1) * dx;
int64 xl = (dx >= 0) ? x : xlast;
int64 xr = (dx >= 0) ? xlast : x;
int clip_src_width;
xl = (xl >> 16) & ~3; // Left edge aligned.
xr = (xr >> 16) + 1; // Right most pixel used. Bilinear uses 2 pixels.
xr = (xr + 1 + 3) & ~3; // 1 beyond 4 pixel aligned right most pixel.
if (xr > src_width) {
xr = src_width;
}
clip_src_width = (int)(xr - xl) * 4; // Width aligned to 4.
src_argb += xl * 4;
x -= (int)(xl << 16);
#if defined(HAS_INTERPOLATEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && clip_src_width >= 16) {
InterpolateRow = InterpolateRow_Any_SSE2;
if (IS_ALIGNED(clip_src_width, 16)) {
InterpolateRow = InterpolateRow_Unaligned_SSE2;
if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16)) {
InterpolateRow = InterpolateRow_SSE2;
}
}
}
#endif
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && clip_src_width >= 16) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(clip_src_width, 16)) {
InterpolateRow = InterpolateRow_Unaligned_SSSE3;
if (IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && clip_src_width >= 32) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(clip_src_width, 32)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && clip_src_width >= 16) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(clip_src_width, 16)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROWS_MIPS_DSPR2)
if (TestCpuFlag(kCpuHasMIPS_DSPR2) && clip_src_width >= 4 &&
IS_ALIGNED(src_argb, 4) && IS_ALIGNED(src_stride, 4)) {
InterpolateRow = InterpolateRow_Any_MIPS_DSPR2;
if (IS_ALIGNED(clip_src_width, 4)) {
InterpolateRow = InterpolateRow_MIPS_DSPR2;
}
}
#endif
#if defined(HAS_SCALEARGBFILTERCOLS_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3;
}
#endif
// TODO(fbarchard): Consider not allocating row buffer for kFilterLinear.
// Allocate a row of ARGB.
{
align_buffer_64(row, clip_src_width * 4);
const int max_y = (src_height - 1) << 16;
if (y > max_y) {
y = max_y;
}
for (j = 0; j < dst_height; ++j) {
int yi = y >> 16;
const uint8* src = src_argb + yi * src_stride;
if (filtering == kFilterLinear) {
ScaleARGBFilterCols(dst_argb, src, dst_width, x, dx);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(row, src, src_stride, clip_src_width, yf);
ScaleARGBFilterCols(dst_argb, row, dst_width, x, dx);
}
dst_argb += dst_stride;
y += dy;
if (y > max_y) {
y = max_y;
}
}
free_aligned_buffer_64(row);
}
}
// Scale ARGB up with bilinear interpolation.
static void ScaleARGBBilinearUp(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_argb, uint8* dst_argb,
int x, int dx, int y, int dy,
enum FilterMode filtering) {
int j;
void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb,
ptrdiff_t src_stride, int dst_width, int source_y_fraction) =
InterpolateRow_C;
void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb,
int dst_width, int x, int dx) =
filtering ? ScaleARGBFilterCols_C : ScaleARGBCols_C;
const int max_y = (src_height - 1) << 16;
#if defined(HAS_INTERPOLATEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && dst_width >= 4) {
InterpolateRow = InterpolateRow_Any_SSE2;
if (IS_ALIGNED(dst_width, 4)) {
InterpolateRow = InterpolateRow_Unaligned_SSE2;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) {
InterpolateRow = InterpolateRow_SSE2;
}
}
}
#endif
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && dst_width >= 4) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(dst_width, 4)) {
InterpolateRow = InterpolateRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && dst_width >= 8) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(dst_width, 8)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && dst_width >= 4) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(dst_width, 4)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROWS_MIPS_DSPR2)
if (TestCpuFlag(kCpuHasMIPS_DSPR2) && dst_width >= 1 &&
IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride, 4)) {
InterpolateRow = InterpolateRow_MIPS_DSPR2;
}
#endif
if (src_width >= 32768) {
ScaleARGBFilterCols = filtering ?
ScaleARGBFilterCols64_C : ScaleARGBCols64_C;
}
#if defined(HAS_SCALEARGBFILTERCOLS_SSSE3)
if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3;
}
#endif
#if defined(HAS_SCALEARGBCOLS_SSE2)
if (!filtering && TestCpuFlag(kCpuHasSSE2) && src_width < 32768) {
ScaleARGBFilterCols = ScaleARGBCols_SSE2;
}
#endif
if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
ScaleARGBFilterCols = ScaleARGBColsUp2_C;
#if defined(HAS_SCALEARGBCOLSUP2_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) {
ScaleARGBFilterCols = ScaleARGBColsUp2_SSE2;
}
#endif
}
if (y > max_y) {
y = max_y;
}
{
int yi = y >> 16;
const uint8* src = src_argb + yi * src_stride;
// Allocate 2 rows of ARGB.
const int kRowSize = (dst_width * 4 + 15) & ~15;
align_buffer_64(row, kRowSize * 2);
uint8* rowptr = row;
int rowstride = kRowSize;
int lasty = yi;
ScaleARGBFilterCols(rowptr, src, dst_width, x, dx);
if (src_height > 1) {
src += src_stride;
}
ScaleARGBFilterCols(rowptr + rowstride, src, dst_width, x, dx);
src += src_stride;
for (j = 0; j < dst_height; ++j) {
yi = y >> 16;
if (yi != lasty) {
if (y > max_y) {
y = max_y;
yi = y >> 16;
src = src_argb + yi * src_stride;
}
if (yi != lasty) {
ScaleARGBFilterCols(rowptr, src, dst_width, x, dx);
rowptr += rowstride;
rowstride = -rowstride;
lasty = yi;
src += src_stride;
}
}
if (filtering == kFilterLinear) {
InterpolateRow(dst_argb, rowptr, 0, dst_width * 4, 0);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(dst_argb, rowptr, rowstride, dst_width * 4, yf);
}
dst_argb += dst_stride;
y += dy;
}
free_aligned_buffer_64(row);
}
}
#ifdef YUVSCALEUP
// Scale YUV to ARGB up with bilinear interpolation.
static void ScaleYUVToARGBBilinearUp(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride_y,
int src_stride_u,
int src_stride_v,
int dst_stride_argb,
const uint8* src_y,
const uint8* src_u,
const uint8* src_v,
uint8* dst_argb,
int x, int dx, int y, int dy,
enum FilterMode filtering) {
int j;
void (*I422ToARGBRow)(const uint8* y_buf,
const uint8* u_buf,
const uint8* v_buf,
uint8* rgb_buf,
int width) = I422ToARGBRow_C;
#if defined(HAS_I422TOARGBROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && src_width >= 8) {
I422ToARGBRow = I422ToARGBRow_Any_SSSE3;
if (IS_ALIGNED(src_width, 8)) {
I422ToARGBRow = I422ToARGBRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
I422ToARGBRow = I422ToARGBRow_SSSE3;
}
}
}
#endif
#if defined(HAS_I422TOARGBROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && src_width >= 16) {
I422ToARGBRow = I422ToARGBRow_Any_AVX2;
if (IS_ALIGNED(src_width, 16)) {
I422ToARGBRow = I422ToARGBRow_AVX2;
}
}
#endif
#if defined(HAS_I422TOARGBROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && src_width >= 8) {
I422ToARGBRow = I422ToARGBRow_Any_NEON;
if (IS_ALIGNED(src_width, 8)) {
I422ToARGBRow = I422ToARGBRow_NEON;
}
}
#endif
#if defined(HAS_I422TOARGBROW_MIPS_DSPR2)
if (TestCpuFlag(kCpuHasMIPS_DSPR2) && IS_ALIGNED(src_width, 4) &&
IS_ALIGNED(src_y, 4) && IS_ALIGNED(src_stride_y, 4) &&
IS_ALIGNED(src_u, 2) && IS_ALIGNED(src_stride_u, 2) &&
IS_ALIGNED(src_v, 2) && IS_ALIGNED(src_stride_v, 2) &&
IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) {
I422ToARGBRow = I422ToARGBRow_MIPS_DSPR2;
}
#endif
void (*InterpolateRow)(uint8* dst_argb, const uint8* src_argb,
ptrdiff_t src_stride, int dst_width, int source_y_fraction) =
InterpolateRow_C;
#if defined(HAS_INTERPOLATEROW_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && dst_width >= 4) {
InterpolateRow = InterpolateRow_Any_SSE2;
if (IS_ALIGNED(dst_width, 4)) {
InterpolateRow = InterpolateRow_Unaligned_SSE2;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
InterpolateRow = InterpolateRow_SSE2;
}
}
}
#endif
#if defined(HAS_INTERPOLATEROW_SSSE3)
if (TestCpuFlag(kCpuHasSSSE3) && dst_width >= 4) {
InterpolateRow = InterpolateRow_Any_SSSE3;
if (IS_ALIGNED(dst_width, 4)) {
InterpolateRow = InterpolateRow_Unaligned_SSSE3;
if (IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride_argb, 16)) {
InterpolateRow = InterpolateRow_SSSE3;
}
}
}
#endif
#if defined(HAS_INTERPOLATEROW_AVX2)
if (TestCpuFlag(kCpuHasAVX2) && dst_width >= 8) {
InterpolateRow = InterpolateRow_Any_AVX2;
if (IS_ALIGNED(dst_width, 8)) {
InterpolateRow = InterpolateRow_AVX2;
}
}
#endif
#if defined(HAS_INTERPOLATEROW_NEON)
if (TestCpuFlag(kCpuHasNEON) && dst_width >= 4) {
InterpolateRow = InterpolateRow_Any_NEON;
if (IS_ALIGNED(dst_width, 4)) {
InterpolateRow = InterpolateRow_NEON;
}
}
#endif
#if defined(HAS_INTERPOLATEROWS_MIPS_DSPR2)
if (TestCpuFlag(kCpuHasMIPS_DSPR2) && dst_width >= 1 &&
IS_ALIGNED(dst_argb, 4) && IS_ALIGNED(dst_stride_argb, 4)) {
InterpolateRow = InterpolateRow_MIPS_DSPR2;
}
#endif
void (*ScaleARGBFilterCols)(uint8* dst_argb, const uint8* src_argb,
int dst_width, int x, int dx) =
filtering ? ScaleARGBFilterCols_C : ScaleARGBCols_C;
if (src_width >= 32768) {
ScaleARGBFilterCols = filtering ?
ScaleARGBFilterCols64_C : ScaleARGBCols64_C;
}
#if defined(HAS_SCALEARGBFILTERCOLS_SSSE3)
if (filtering && TestCpuFlag(kCpuHasSSSE3) && src_width < 32768) {
ScaleARGBFilterCols = ScaleARGBFilterCols_SSSE3;
}
#endif
#if defined(HAS_SCALEARGBCOLS_SSE2)
if (!filtering && TestCpuFlag(kCpuHasSSE2) && src_width < 32768) {
ScaleARGBFilterCols = ScaleARGBCols_SSE2;
}
#endif
if (!filtering && src_width * 2 == dst_width && x < 0x8000) {
ScaleARGBFilterCols = ScaleARGBColsUp2_C;
#if defined(HAS_SCALEARGBCOLSUP2_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) {
ScaleARGBFilterCols = ScaleARGBColsUp2_SSE2;
}
#endif
}
const int max_y = (src_height - 1) << 16;
if (y > max_y) {
y = max_y;
}
const int kYShift = 1; // Shift Y by 1 to convert Y plane to UV coordinate.
int yi = y >> 16;
int uv_yi = yi >> kYShift;
const uint8* src_row_y = src_y + yi * src_stride_y;
const uint8* src_row_u = src_u + uv_yi * src_stride_u;
const uint8* src_row_v = src_v + uv_yi * src_stride_v;
// Allocate 2 rows of ARGB.
const int kRowSize = (dst_width * 4 + 15) & ~15;
align_buffer_64(row, kRowSize * 2);
// Allocate 1 row of ARGB for source conversion.
align_buffer_64(argb_row, src_width * 4);
uint8* rowptr = row;
int rowstride = kRowSize;
int lasty = yi;
// TODO(fbarchard): Convert first 2 rows of YUV to ARGB.
ScaleARGBFilterCols(rowptr, src_row_y, dst_width, x, dx);
if (src_height > 1) {
src_row_y += src_stride_y;
if (yi & 1) {
src_row_u += src_stride_u;
src_row_v += src_stride_v;
}
}
ScaleARGBFilterCols(rowptr + rowstride, src_row_y, dst_width, x, dx);
if (src_height > 2) {
src_row_y += src_stride_y;
if (!(yi & 1)) {
src_row_u += src_stride_u;
src_row_v += src_stride_v;
}
}
for (j = 0; j < dst_height; ++j) {
yi = y >> 16;
if (yi != lasty) {
if (y > max_y) {
y = max_y;
yi = y >> 16;
uv_yi = yi >> kYShift;
src_row_y = src_y + yi * src_stride_y;
src_row_u = src_u + uv_yi * src_stride_u;
src_row_v = src_v + uv_yi * src_stride_v;
}
if (yi != lasty) {
// TODO(fbarchard): Convert the clipped region of row.
I422ToARGBRow(src_row_y, src_row_u, src_row_v, argb_row, src_width);
ScaleARGBFilterCols(rowptr, argb_row, dst_width, x, dx);
rowptr += rowstride;
rowstride = -rowstride;
lasty = yi;
src_row_y += src_stride_y;
if (yi & 1) {
src_row_u += src_stride_u;
src_row_v += src_stride_v;
}
}
}
if (filtering == kFilterLinear) {
InterpolateRow(dst_argb, rowptr, 0, dst_width * 4, 0);
} else {
int yf = (y >> 8) & 255;
InterpolateRow(dst_argb, rowptr, rowstride, dst_width * 4, yf);
}
dst_argb += dst_stride_argb;
y += dy;
}
free_aligned_buffer_64(row);
free_aligned_buffer_64(row_argb);
}
#endif
// Scale ARGB to/from any dimensions, without interpolation.
// Fixed point math is used for performance: The upper 16 bits
// of x and dx is the integer part of the source position and
// the lower 16 bits are the fixed decimal part.
static void ScaleARGBSimple(int src_width, int src_height,
int dst_width, int dst_height,
int src_stride, int dst_stride,
const uint8* src_argb, uint8* dst_argb,
int x, int dx, int y, int dy) {
int j;
void (*ScaleARGBCols)(uint8* dst_argb, const uint8* src_argb,
int dst_width, int x, int dx) =
(src_width >= 32768) ? ScaleARGBCols64_C : ScaleARGBCols_C;
#if defined(HAS_SCALEARGBCOLS_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && src_width < 32768) {
ScaleARGBCols = ScaleARGBCols_SSE2;
}
#endif
if (src_width * 2 == dst_width && x < 0x8000) {
ScaleARGBCols = ScaleARGBColsUp2_C;
#if defined(HAS_SCALEARGBCOLSUP2_SSE2)
if (TestCpuFlag(kCpuHasSSE2) && IS_ALIGNED(dst_width, 8) &&
IS_ALIGNED(src_argb, 16) && IS_ALIGNED(src_stride, 16) &&
IS_ALIGNED(dst_argb, 16) && IS_ALIGNED(dst_stride, 16)) {
ScaleARGBCols = ScaleARGBColsUp2_SSE2;
}
#endif
}
for (j = 0; j < dst_height; ++j) {
ScaleARGBCols(dst_argb, src_argb + (y >> 16) * src_stride,
dst_width, x, dx);
dst_argb += dst_stride;
y += dy;
}
}
// ScaleARGB a ARGB.
// This function in turn calls a scaling function
// suitable for handling the desired resolutions.
static void ScaleARGB(const uint8* src, int src_stride,
int src_width, int src_height,
uint8* dst, int dst_stride,
int dst_width, int dst_height,
int clip_x, int clip_y, int clip_width, int clip_height,
enum FilterMode filtering) {
// Initial source x/y coordinate and step values as 16.16 fixed point.
int x = 0;
int y = 0;
int dx = 0;
int dy = 0;
// ARGB does not support box filter yet, but allow the user to pass it.
// Simplify filtering when possible.
filtering = ScaleFilterReduce(src_width, src_height,
dst_width, dst_height,
filtering);
// Negative src_height means invert the image.
if (src_height < 0) {
src_height = -src_height;
src = src + (src_height - 1) * src_stride;
src_stride = -src_stride;
}
ScaleSlope(src_width, src_height, dst_width, dst_height, filtering,
&x, &y, &dx, &dy);
src_width = Abs(src_width);
if (clip_x) {
int64 clipf = (int64)(clip_x) * dx;
x += (clipf & 0xffff);
src += (clipf >> 16) * 4;
dst += clip_x * 4;
}
if (clip_y) {
int64 clipf = (int64)(clip_y) * dy;
y += (clipf & 0xffff);
src += (clipf >> 16) * src_stride;
dst += clip_y * dst_stride;
}
// Special case for integer step values.
if (((dx | dy) & 0xffff) == 0) {
if (!dx || !dy) { // 1 pixel wide and/or tall.
filtering = kFilterNone;
} else {
// Optimized even scale down. ie 2, 4, 6, 8, 10x.
if (!(dx & 0x10000) && !(dy & 0x10000)) {
if (dx == 0x20000) {
// Optimized 1/2 downsample.
ScaleARGBDown2(src_width, src_height,
clip_width, clip_height,
src_stride, dst_stride, src, dst,
x, dx, y, dy, filtering);
return;
}
if (dx == 0x40000 && filtering == kFilterBox) {
// Optimized 1/4 box downsample.
ScaleARGBDown4Box(src_width, src_height,
clip_width, clip_height,
src_stride, dst_stride, src, dst,
x, dx, y, dy);
return;
}
ScaleARGBDownEven(src_width, src_height,
clip_width, clip_height,
src_stride, dst_stride, src, dst,
x, dx, y, dy, filtering);
return;
}
// Optimized odd scale down. ie 3, 5, 7, 9x.
if ((dx & 0x10000) && (dy & 0x10000)) {
filtering = kFilterNone;
if (dx == 0x10000 && dy == 0x10000) {
// Straight copy.
ARGBCopy(src + (y >> 16) * src_stride + (x >> 16) * 4, src_stride,
dst, dst_stride, clip_width, clip_height);
return;
}
}
}
}
if (dx == 0x10000 && (x & 0xffff) == 0) {
// Arbitrary scale vertically, but unscaled vertically.
ScalePlaneVertical(src_height,
clip_width, clip_height,
src_stride, dst_stride, src, dst,
x, y, dy, 4, filtering);
return;
}
if (filtering && dy < 65536) {
ScaleARGBBilinearUp(src_width, src_height,
clip_width, clip_height,
src_stride, dst_stride, src, dst,
x, dx, y, dy, filtering);
return;
}
if (filtering) {
ScaleARGBBilinearDown(src_width, src_height,
clip_width, clip_height,
src_stride, dst_stride, src, dst,
x, dx, y, dy, filtering);
return;
}
ScaleARGBSimple(src_width, src_height, clip_width, clip_height,
src_stride, dst_stride, src, dst,
x, dx, y, dy);
}
LIBYUV_API
int ARGBScaleClip(const uint8* src_argb, int src_stride_argb,
int src_width, int src_height,
uint8* dst_argb, int dst_stride_argb,
int dst_width, int dst_height,
int clip_x, int clip_y, int clip_width, int clip_height,
enum FilterMode filtering) {
if (!src_argb || src_width == 0 || src_height == 0 ||
!dst_argb || dst_width <= 0 || dst_height <= 0 ||
clip_x < 0 || clip_y < 0 ||
(clip_x + clip_width) > dst_width ||
(clip_y + clip_height) > dst_height) {
return -1;
}
ScaleARGB(src_argb, src_stride_argb, src_width, src_height,
dst_argb, dst_stride_argb, dst_width, dst_height,
clip_x, clip_y, clip_width, clip_height, filtering);
return 0;
}
// Scale an ARGB image.
LIBYUV_API
int ARGBScale(const uint8* src_argb, int src_stride_argb,
int src_width, int src_height,
uint8* dst_argb, int dst_stride_argb,
int dst_width, int dst_height,
enum FilterMode filtering) {
if (!src_argb || src_width == 0 || src_height == 0 ||
!dst_argb || dst_width <= 0 || dst_height <= 0) {
return -1;
}
ScaleARGB(src_argb, src_stride_argb, src_width, src_height,
dst_argb, dst_stride_argb, dst_width, dst_height,
0, 0, dst_width, dst_height, filtering);
return 0;
}
#ifdef __cplusplus
} // extern "C"
} // namespace libyuv
#endif