mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-05 18:27:11 +01:00
113 lines
4.2 KiB
C
113 lines
4.2 KiB
C
#ifndef FPX_H_
|
|
#define FPX_H_
|
|
|
|
#include "utils.h"
|
|
|
|
#if defined(__cplusplus)
|
|
extern "C" {
|
|
#endif
|
|
|
|
// Modular addition, c = a+b mod p.
|
|
void sike_fpadd(const felm_t a, const felm_t b, felm_t c);
|
|
// Modular subtraction, c = a-b mod p.
|
|
void sike_fpsub(const felm_t a, const felm_t b, felm_t c);
|
|
// Modular division by two, c = a/2 mod p.
|
|
void sike_fpdiv2(const felm_t a, felm_t c);
|
|
// Modular correction to reduce field element a in [0, 2*p-1] to [0, p-1].
|
|
void sike_fpcorrection(felm_t a);
|
|
// Multiprecision multiply, c = a*b, where lng(a) = lng(b) = nwords.
|
|
void sike_mpmul(const felm_t a, const felm_t b, dfelm_t c);
|
|
// 443-bit Montgomery reduction, c = a mod p. Buffer 'a' is modified after
|
|
// call returns.
|
|
void sike_fprdc(dfelm_t a, felm_t c);
|
|
// Double 2x443-bit multiprecision subtraction, c = c-a-b
|
|
void sike_mpdblsubx2_asm(const felm_t a, const felm_t b, felm_t c);
|
|
// Multiprecision subtraction, c = a-b
|
|
crypto_word_t sike_mpsubx2_asm(const dfelm_t a, const dfelm_t b, dfelm_t c);
|
|
// 443-bit multiprecision addition, c = a+b
|
|
void sike_mpadd_asm(const felm_t a, const felm_t b, felm_t c);
|
|
// Modular negation, a = -a mod p.
|
|
void sike_fpneg(felm_t a);
|
|
// Copy of a field element, c = a
|
|
void sike_fpcopy(const felm_t a, felm_t c);
|
|
// Copy a field element, c = a.
|
|
void sike_fpzero(felm_t a);
|
|
// If option = 0xFF...FF x=y; y=x, otherwise swap doesn't happen. Constant time.
|
|
void sike_cswap_asm(point_proj_t x, point_proj_t y, const crypto_word_t option);
|
|
// Conversion from Montgomery representation to standard representation,
|
|
// c = ma*R^(-1) mod p = a mod p, where ma in [0, p-1].
|
|
void sike_from_mont(const felm_t ma, felm_t c);
|
|
// Field multiplication using Montgomery arithmetic, c = a*b*R^-1 mod p443, where R=2^768
|
|
void sike_fpmul_mont(const felm_t ma, const felm_t mb, felm_t mc);
|
|
// GF(p443^2) multiplication using Montgomery arithmetic, c = a*b in GF(p443^2)
|
|
void sike_fp2mul_mont(const f2elm_t a, const f2elm_t b, f2elm_t c);
|
|
// GF(p443^2) inversion using Montgomery arithmetic, a = (a0-i*a1)/(a0^2+a1^2)
|
|
void sike_fp2inv_mont(f2elm_t a);
|
|
// GF(p^2) squaring using Montgomery arithmetic, c = a^2 in GF(p^2).
|
|
void sike_fp2sqr_mont(const f2elm_t a, f2elm_t c);
|
|
// Modular correction, a = a in GF(p^2).
|
|
void sike_fp2correction(f2elm_t a);
|
|
|
|
#if defined(__cplusplus)
|
|
} // extern C
|
|
#endif
|
|
|
|
// GF(p^2) addition, c = a+b in GF(p^2).
|
|
#define sike_fp2add(a, b, c) \
|
|
do { \
|
|
sike_fpadd(a->c0, b->c0, c->c0); \
|
|
sike_fpadd(a->c1, b->c1, c->c1); \
|
|
} while(0)
|
|
|
|
// GF(p^2) subtraction, c = a-b in GF(p^2).
|
|
#define sike_fp2sub(a,b,c) \
|
|
do { \
|
|
sike_fpsub(a->c0, b->c0, c->c0); \
|
|
sike_fpsub(a->c1, b->c1, c->c1); \
|
|
} while(0)
|
|
|
|
// Copy a GF(p^2) element, c = a.
|
|
#define sike_fp2copy(a, c) \
|
|
do { \
|
|
sike_fpcopy(a->c0, c->c0); \
|
|
sike_fpcopy(a->c1, c->c1); \
|
|
} while(0)
|
|
|
|
// GF(p^2) negation, a = -a in GF(p^2).
|
|
#define sike_fp2neg(a) \
|
|
do { \
|
|
sike_fpneg(a->c0); \
|
|
sike_fpneg(a->c1); \
|
|
} while(0)
|
|
|
|
// GF(p^2) division by two, c = a/2 in GF(p^2).
|
|
#define sike_fp2div2(a, c) \
|
|
do { \
|
|
sike_fpdiv2(a->c0, c->c0); \
|
|
sike_fpdiv2(a->c1, c->c1); \
|
|
} while(0)
|
|
|
|
// Modular correction, a = a in GF(p^2).
|
|
#define sike_fp2correction(a) \
|
|
do { \
|
|
sike_fpcorrection(a->c0); \
|
|
sike_fpcorrection(a->c1); \
|
|
} while(0)
|
|
|
|
// Conversion of a GF(p^2) element to Montgomery representation,
|
|
// mc_i = a_i*R^2*R^(-1) = a_i*R in GF(p^2).
|
|
#define sike_to_fp2mont(a, mc) \
|
|
do { \
|
|
sike_fpmul_mont(a->c0, sike_params.mont_R2, mc->c0); \
|
|
sike_fpmul_mont(a->c1, sike_params.mont_R2, mc->c1); \
|
|
} while (0)
|
|
|
|
// Conversion of a GF(p^2) element from Montgomery representation to standard representation,
|
|
// c_i = ma_i*R^(-1) = a_i in GF(p^2).
|
|
#define sike_from_fp2mont(ma, c) \
|
|
do { \
|
|
sike_from_mont(ma->c0, c->c0); \
|
|
sike_from_mont(ma->c1, c->c1); \
|
|
} while(0)
|
|
|
|
#endif // FPX_H_
|