Telegram-Android/TMessagesProj/jni/boringssl/crypto/evp/print.c
2018-07-30 09:07:02 +07:00

489 lines
13 KiB
C

/* ====================================================================
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. All advertising materials mentioning features or use of this
* software must display the following acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
*
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
* endorse or promote products derived from this software without
* prior written permission. For written permission, please contact
* licensing@OpenSSL.org.
*
* 5. Products derived from this software may not be called "OpenSSL"
* nor may "OpenSSL" appear in their names without prior written
* permission of the OpenSSL Project.
*
* 6. Redistributions of any form whatsoever must retain the following
* acknowledgment:
* "This product includes software developed by the OpenSSL Project
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
*
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
* OF THE POSSIBILITY OF SUCH DAMAGE.
* ====================================================================
*
* This product includes cryptographic software written by Eric Young
* (eay@cryptsoft.com). This product includes software written by Tim
* Hudson (tjh@cryptsoft.com). */
#include <openssl/evp.h>
#include <openssl/bio.h>
#include <openssl/bn.h>
#include <openssl/dsa.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/mem.h>
#include <openssl/rsa.h>
#include "../internal.h"
#include "../fipsmodule/rsa/internal.h"
static int bn_print(BIO *bp, const char *number, const BIGNUM *num,
uint8_t *buf, int off) {
if (num == NULL) {
return 1;
}
if (!BIO_indent(bp, off, 128)) {
return 0;
}
if (BN_is_zero(num)) {
if (BIO_printf(bp, "%s 0\n", number) <= 0) {
return 0;
}
return 1;
}
if (BN_num_bytes(num) <= sizeof(long)) {
const char *neg = BN_is_negative(num) ? "-" : "";
if (BIO_printf(bp, "%s %s%lu (%s0x%lx)\n", number, neg,
(unsigned long)num->d[0], neg,
(unsigned long)num->d[0]) <= 0) {
return 0;
}
} else {
buf[0] = 0;
if (BIO_printf(bp, "%s%s", number,
(BN_is_negative(num)) ? " (Negative)" : "") <= 0) {
return 0;
}
int n = BN_bn2bin(num, &buf[1]);
if (buf[1] & 0x80) {
n++;
} else {
buf++;
}
int i;
for (i = 0; i < n; i++) {
if ((i % 15) == 0) {
if (BIO_puts(bp, "\n") <= 0 ||
!BIO_indent(bp, off + 4, 128)) {
return 0;
}
}
if (BIO_printf(bp, "%02x%s", buf[i], ((i + 1) == n) ? "" : ":") <= 0) {
return 0;
}
}
if (BIO_write(bp, "\n", 1) <= 0) {
return 0;
}
}
return 1;
}
static void update_buflen(const BIGNUM *b, size_t *pbuflen) {
if (!b) {
return;
}
size_t len = BN_num_bytes(b);
if (*pbuflen < len) {
*pbuflen = len;
}
}
// RSA keys.
static int do_rsa_print(BIO *out, const RSA *rsa, int off,
int include_private) {
const char *s, *str;
uint8_t *m = NULL;
int ret = 0, mod_len = 0;
size_t buf_len = 0;
update_buflen(rsa->n, &buf_len);
update_buflen(rsa->e, &buf_len);
if (include_private) {
update_buflen(rsa->d, &buf_len);
update_buflen(rsa->p, &buf_len);
update_buflen(rsa->q, &buf_len);
update_buflen(rsa->dmp1, &buf_len);
update_buflen(rsa->dmq1, &buf_len);
update_buflen(rsa->iqmp, &buf_len);
}
m = (uint8_t *)OPENSSL_malloc(buf_len + 10);
if (m == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
if (rsa->n != NULL) {
mod_len = BN_num_bits(rsa->n);
}
if (!BIO_indent(out, off, 128)) {
goto err;
}
if (include_private && rsa->d) {
if (BIO_printf(out, "Private-Key: (%d bit)\n", mod_len) <= 0) {
goto err;
}
str = "modulus:";
s = "publicExponent:";
} else {
if (BIO_printf(out, "Public-Key: (%d bit)\n", mod_len) <= 0) {
goto err;
}
str = "Modulus:";
s = "Exponent:";
}
if (!bn_print(out, str, rsa->n, m, off) ||
!bn_print(out, s, rsa->e, m, off)) {
goto err;
}
if (include_private) {
if (!bn_print(out, "privateExponent:", rsa->d, m, off) ||
!bn_print(out, "prime1:", rsa->p, m, off) ||
!bn_print(out, "prime2:", rsa->q, m, off) ||
!bn_print(out, "exponent1:", rsa->dmp1, m, off) ||
!bn_print(out, "exponent2:", rsa->dmq1, m, off) ||
!bn_print(out, "coefficient:", rsa->iqmp, m, off)) {
goto err;
}
}
ret = 1;
err:
OPENSSL_free(m);
return ret;
}
static int rsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_rsa_print(bp, pkey->pkey.rsa, indent, 0);
}
static int rsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_rsa_print(bp, pkey->pkey.rsa, indent, 1);
}
// DSA keys.
static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) {
uint8_t *m = NULL;
int ret = 0;
size_t buf_len = 0;
const char *ktype = NULL;
const BIGNUM *priv_key, *pub_key;
priv_key = NULL;
if (ptype == 2) {
priv_key = x->priv_key;
}
pub_key = NULL;
if (ptype > 0) {
pub_key = x->pub_key;
}
ktype = "DSA-Parameters";
if (ptype == 2) {
ktype = "Private-Key";
} else if (ptype == 1) {
ktype = "Public-Key";
}
update_buflen(x->p, &buf_len);
update_buflen(x->q, &buf_len);
update_buflen(x->g, &buf_len);
update_buflen(priv_key, &buf_len);
update_buflen(pub_key, &buf_len);
m = (uint8_t *)OPENSSL_malloc(buf_len + 10);
if (m == NULL) {
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
goto err;
}
if (priv_key) {
if (!BIO_indent(bp, off, 128) ||
BIO_printf(bp, "%s: (%d bit)\n", ktype, BN_num_bits(x->p)) <= 0) {
goto err;
}
}
if (!bn_print(bp, "priv:", priv_key, m, off) ||
!bn_print(bp, "pub: ", pub_key, m, off) ||
!bn_print(bp, "P: ", x->p, m, off) ||
!bn_print(bp, "Q: ", x->q, m, off) ||
!bn_print(bp, "G: ", x->g, m, off)) {
goto err;
}
ret = 1;
err:
OPENSSL_free(m);
return ret;
}
static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_dsa_print(bp, pkey->pkey.dsa, indent, 0);
}
static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_dsa_print(bp, pkey->pkey.dsa, indent, 1);
}
static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_dsa_print(bp, pkey->pkey.dsa, indent, 2);
}
// EC keys.
static int do_EC_KEY_print(BIO *bp, const EC_KEY *x, int off, int ktype) {
uint8_t *buffer = NULL;
const char *ecstr;
size_t buf_len = 0, i;
int ret = 0, reason = ERR_R_BIO_LIB;
BIGNUM *order = NULL;
BN_CTX *ctx = NULL;
const EC_GROUP *group;
const EC_POINT *public_key;
const BIGNUM *priv_key;
uint8_t *pub_key_bytes = NULL;
size_t pub_key_bytes_len = 0;
if (x == NULL || (group = EC_KEY_get0_group(x)) == NULL) {
reason = ERR_R_PASSED_NULL_PARAMETER;
goto err;
}
ctx = BN_CTX_new();
if (ctx == NULL) {
reason = ERR_R_MALLOC_FAILURE;
goto err;
}
if (ktype > 0) {
public_key = EC_KEY_get0_public_key(x);
if (public_key != NULL) {
pub_key_bytes_len = EC_POINT_point2oct(
group, public_key, EC_KEY_get_conv_form(x), NULL, 0, ctx);
if (pub_key_bytes_len == 0) {
reason = ERR_R_MALLOC_FAILURE;
goto err;
}
pub_key_bytes = OPENSSL_malloc(pub_key_bytes_len);
if (pub_key_bytes == NULL) {
reason = ERR_R_MALLOC_FAILURE;
goto err;
}
pub_key_bytes_len =
EC_POINT_point2oct(group, public_key, EC_KEY_get_conv_form(x),
pub_key_bytes, pub_key_bytes_len, ctx);
if (pub_key_bytes_len == 0) {
reason = ERR_R_MALLOC_FAILURE;
goto err;
}
buf_len = pub_key_bytes_len;
}
}
if (ktype == 2) {
priv_key = EC_KEY_get0_private_key(x);
if (priv_key && (i = (size_t)BN_num_bytes(priv_key)) > buf_len) {
buf_len = i;
}
} else {
priv_key = NULL;
}
if (ktype > 0) {
buf_len += 10;
if ((buffer = OPENSSL_malloc(buf_len)) == NULL) {
reason = ERR_R_MALLOC_FAILURE;
goto err;
}
}
if (ktype == 2) {
ecstr = "Private-Key";
} else if (ktype == 1) {
ecstr = "Public-Key";
} else {
ecstr = "ECDSA-Parameters";
}
if (!BIO_indent(bp, off, 128)) {
goto err;
}
order = BN_new();
if (order == NULL || !EC_GROUP_get_order(group, order, NULL) ||
BIO_printf(bp, "%s: (%d bit)\n", ecstr, BN_num_bits(order)) <= 0) {
goto err;
}
if ((priv_key != NULL) &&
!bn_print(bp, "priv:", priv_key, buffer, off)) {
goto err;
}
if (pub_key_bytes != NULL) {
BIO_hexdump(bp, pub_key_bytes, pub_key_bytes_len, off);
}
// TODO(fork): implement
/*
if (!ECPKParameters_print(bp, group, off))
goto err; */
ret = 1;
err:
if (!ret) {
OPENSSL_PUT_ERROR(EVP, reason);
}
OPENSSL_free(pub_key_bytes);
BN_free(order);
BN_CTX_free(ctx);
OPENSSL_free(buffer);
return ret;
}
static int eckey_param_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 0);
}
static int eckey_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 1);
}
static int eckey_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *ctx) {
return do_EC_KEY_print(bp, pkey->pkey.ec, indent, 2);
}
typedef struct {
int type;
int (*pub_print)(BIO *out, const EVP_PKEY *pkey, int indent, ASN1_PCTX *pctx);
int (*priv_print)(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx);
int (*param_print)(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx);
} EVP_PKEY_PRINT_METHOD;
static EVP_PKEY_PRINT_METHOD kPrintMethods[] = {
{
EVP_PKEY_RSA,
rsa_pub_print,
rsa_priv_print,
NULL /* param_print */,
},
{
EVP_PKEY_DSA,
dsa_pub_print,
dsa_priv_print,
dsa_param_print,
},
{
EVP_PKEY_EC,
eckey_pub_print,
eckey_priv_print,
eckey_param_print,
},
};
static size_t kPrintMethodsLen = OPENSSL_ARRAY_SIZE(kPrintMethods);
static EVP_PKEY_PRINT_METHOD *find_method(int type) {
for (size_t i = 0; i < kPrintMethodsLen; i++) {
if (kPrintMethods[i].type == type) {
return &kPrintMethods[i];
}
}
return NULL;
}
static int print_unsupported(BIO *out, const EVP_PKEY *pkey, int indent,
const char *kstr) {
BIO_indent(out, indent, 128);
BIO_printf(out, "%s algorithm unsupported\n", kstr);
return 1;
}
int EVP_PKEY_print_public(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx) {
EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type);
if (method != NULL && method->pub_print != NULL) {
return method->pub_print(out, pkey, indent, pctx);
}
return print_unsupported(out, pkey, indent, "Public Key");
}
int EVP_PKEY_print_private(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx) {
EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type);
if (method != NULL && method->priv_print != NULL) {
return method->priv_print(out, pkey, indent, pctx);
}
return print_unsupported(out, pkey, indent, "Private Key");
}
int EVP_PKEY_print_params(BIO *out, const EVP_PKEY *pkey, int indent,
ASN1_PCTX *pctx) {
EVP_PKEY_PRINT_METHOD *method = find_method(pkey->type);
if (method != NULL && method->param_print != NULL) {
return method->param_print(out, pkey, indent, pctx);
}
return print_unsupported(out, pkey, indent, "Parameters");
}