mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-09 03:43:36 +01:00
307 lines
11 KiB
C
307 lines
11 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
|
|
* project 1999-2004.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1999 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/pkcs8.h>
|
|
|
|
#include <limits.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/bytestring.h>
|
|
#include <openssl/cipher.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/nid.h>
|
|
#include <openssl/rand.h>
|
|
|
|
#include "internal.h"
|
|
#include "../internal.h"
|
|
|
|
|
|
// 1.2.840.113549.1.5.12
|
|
static const uint8_t kPBKDF2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
|
|
0x0d, 0x01, 0x05, 0x0c};
|
|
|
|
// 1.2.840.113549.1.5.13
|
|
static const uint8_t kPBES2[] = {0x2a, 0x86, 0x48, 0x86, 0xf7,
|
|
0x0d, 0x01, 0x05, 0x0d};
|
|
|
|
// 1.2.840.113549.2.7
|
|
static const uint8_t kHMACWithSHA1[] = {0x2a, 0x86, 0x48, 0x86,
|
|
0xf7, 0x0d, 0x02, 0x07};
|
|
|
|
static const struct {
|
|
uint8_t oid[9];
|
|
uint8_t oid_len;
|
|
int nid;
|
|
const EVP_CIPHER *(*cipher_func)(void);
|
|
} kCipherOIDs[] = {
|
|
// 1.2.840.113549.3.2
|
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02},
|
|
8,
|
|
NID_rc2_cbc,
|
|
&EVP_rc2_cbc},
|
|
// 1.2.840.113549.3.7
|
|
{{0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07},
|
|
8,
|
|
NID_des_ede3_cbc,
|
|
&EVP_des_ede3_cbc},
|
|
// 2.16.840.1.101.3.4.1.2
|
|
{{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x02},
|
|
9,
|
|
NID_aes_128_cbc,
|
|
&EVP_aes_128_cbc},
|
|
// 2.16.840.1.101.3.4.1.22
|
|
{{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x16},
|
|
9,
|
|
NID_aes_192_cbc,
|
|
&EVP_aes_192_cbc},
|
|
// 2.16.840.1.101.3.4.1.42
|
|
{{0x60, 0x86, 0x48, 0x01, 0x65, 0x03, 0x04, 0x01, 0x2a},
|
|
9,
|
|
NID_aes_256_cbc,
|
|
&EVP_aes_256_cbc},
|
|
};
|
|
|
|
static const EVP_CIPHER *cbs_to_cipher(const CBS *cbs) {
|
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) {
|
|
if (CBS_mem_equal(cbs, kCipherOIDs[i].oid, kCipherOIDs[i].oid_len)) {
|
|
return kCipherOIDs[i].cipher_func();
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
static int add_cipher_oid(CBB *out, int nid) {
|
|
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kCipherOIDs); i++) {
|
|
if (kCipherOIDs[i].nid == nid) {
|
|
CBB child;
|
|
return CBB_add_asn1(out, &child, CBS_ASN1_OBJECT) &&
|
|
CBB_add_bytes(&child, kCipherOIDs[i].oid,
|
|
kCipherOIDs[i].oid_len) &&
|
|
CBB_flush(out);
|
|
}
|
|
}
|
|
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER);
|
|
return 0;
|
|
}
|
|
|
|
static int pkcs5_pbe2_cipher_init(EVP_CIPHER_CTX *ctx, const EVP_CIPHER *cipher,
|
|
unsigned iterations, const char *pass,
|
|
size_t pass_len, const uint8_t *salt,
|
|
size_t salt_len, const uint8_t *iv,
|
|
size_t iv_len, int enc) {
|
|
if (iv_len != EVP_CIPHER_iv_length(cipher)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_ERROR_SETTING_CIPHER_PARAMS);
|
|
return 0;
|
|
}
|
|
|
|
uint8_t key[EVP_MAX_KEY_LENGTH];
|
|
int ret = PKCS5_PBKDF2_HMAC_SHA1(pass, pass_len, salt, salt_len, iterations,
|
|
EVP_CIPHER_key_length(cipher), key) &&
|
|
EVP_CipherInit_ex(ctx, cipher, NULL /* engine */, key, iv, enc);
|
|
OPENSSL_cleanse(key, EVP_MAX_KEY_LENGTH);
|
|
return ret;
|
|
}
|
|
|
|
int PKCS5_pbe2_encrypt_init(CBB *out, EVP_CIPHER_CTX *ctx,
|
|
const EVP_CIPHER *cipher, unsigned iterations,
|
|
const char *pass, size_t pass_len,
|
|
const uint8_t *salt, size_t salt_len) {
|
|
int cipher_nid = EVP_CIPHER_nid(cipher);
|
|
if (cipher_nid == NID_undef) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_CIPHER_HAS_NO_OBJECT_IDENTIFIER);
|
|
return 0;
|
|
}
|
|
|
|
// Generate a random IV.
|
|
uint8_t iv[EVP_MAX_IV_LENGTH];
|
|
if (!RAND_bytes(iv, EVP_CIPHER_iv_length(cipher))) {
|
|
return 0;
|
|
}
|
|
|
|
// See RFC 2898, appendix A.
|
|
CBB algorithm, oid, param, kdf, kdf_oid, kdf_param, salt_cbb, cipher_cbb,
|
|
iv_cbb;
|
|
if (!CBB_add_asn1(out, &algorithm, CBS_ASN1_SEQUENCE) ||
|
|
!CBB_add_asn1(&algorithm, &oid, CBS_ASN1_OBJECT) ||
|
|
!CBB_add_bytes(&oid, kPBES2, sizeof(kPBES2)) ||
|
|
!CBB_add_asn1(&algorithm, ¶m, CBS_ASN1_SEQUENCE) ||
|
|
!CBB_add_asn1(¶m, &kdf, CBS_ASN1_SEQUENCE) ||
|
|
!CBB_add_asn1(&kdf, &kdf_oid, CBS_ASN1_OBJECT) ||
|
|
!CBB_add_bytes(&kdf_oid, kPBKDF2, sizeof(kPBKDF2)) ||
|
|
!CBB_add_asn1(&kdf, &kdf_param, CBS_ASN1_SEQUENCE) ||
|
|
!CBB_add_asn1(&kdf_param, &salt_cbb, CBS_ASN1_OCTETSTRING) ||
|
|
!CBB_add_bytes(&salt_cbb, salt, salt_len) ||
|
|
!CBB_add_asn1_uint64(&kdf_param, iterations) ||
|
|
// Specify a key length for RC2.
|
|
(cipher_nid == NID_rc2_cbc &&
|
|
!CBB_add_asn1_uint64(&kdf_param, EVP_CIPHER_key_length(cipher))) ||
|
|
// Omit the PRF. We use the default hmacWithSHA1.
|
|
!CBB_add_asn1(¶m, &cipher_cbb, CBS_ASN1_SEQUENCE) ||
|
|
!add_cipher_oid(&cipher_cbb, cipher_nid) ||
|
|
// RFC 2898 says RC2-CBC and RC5-CBC-Pad use a SEQUENCE with version and
|
|
// IV, but OpenSSL always uses an OCTET STRING IV, so we do the same.
|
|
!CBB_add_asn1(&cipher_cbb, &iv_cbb, CBS_ASN1_OCTETSTRING) ||
|
|
!CBB_add_bytes(&iv_cbb, iv, EVP_CIPHER_iv_length(cipher)) ||
|
|
!CBB_flush(out)) {
|
|
return 0;
|
|
}
|
|
|
|
return pkcs5_pbe2_cipher_init(ctx, cipher, iterations, pass, pass_len, salt,
|
|
salt_len, iv, EVP_CIPHER_iv_length(cipher),
|
|
1 /* encrypt */);
|
|
}
|
|
|
|
int PKCS5_pbe2_decrypt_init(const struct pbe_suite *suite, EVP_CIPHER_CTX *ctx,
|
|
const char *pass, size_t pass_len, CBS *param) {
|
|
CBS pbe_param, kdf, kdf_obj, enc_scheme, enc_obj;
|
|
if (!CBS_get_asn1(param, &pbe_param, CBS_ASN1_SEQUENCE) ||
|
|
CBS_len(param) != 0 ||
|
|
!CBS_get_asn1(&pbe_param, &kdf, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&pbe_param, &enc_scheme, CBS_ASN1_SEQUENCE) ||
|
|
CBS_len(&pbe_param) != 0 ||
|
|
!CBS_get_asn1(&kdf, &kdf_obj, CBS_ASN1_OBJECT) ||
|
|
!CBS_get_asn1(&enc_scheme, &enc_obj, CBS_ASN1_OBJECT)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
// Only PBKDF2 is supported.
|
|
if (!CBS_mem_equal(&kdf_obj, kPBKDF2, sizeof(kPBKDF2))) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEY_DERIVATION_FUNCTION);
|
|
return 0;
|
|
}
|
|
|
|
// See if we recognise the encryption algorithm.
|
|
const EVP_CIPHER *cipher = cbs_to_cipher(&enc_obj);
|
|
if (cipher == NULL) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_CIPHER);
|
|
return 0;
|
|
}
|
|
|
|
// Parse the KDF parameters. See RFC 8018, appendix A.2.
|
|
CBS pbkdf2_params, salt;
|
|
uint64_t iterations;
|
|
if (!CBS_get_asn1(&kdf, &pbkdf2_params, CBS_ASN1_SEQUENCE) ||
|
|
CBS_len(&kdf) != 0 ||
|
|
!CBS_get_asn1(&pbkdf2_params, &salt, CBS_ASN1_OCTETSTRING) ||
|
|
!CBS_get_asn1_uint64(&pbkdf2_params, &iterations)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (iterations == 0 || iterations > UINT_MAX) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_BAD_ITERATION_COUNT);
|
|
return 0;
|
|
}
|
|
|
|
// The optional keyLength parameter, if present, must match the key length of
|
|
// the cipher.
|
|
if (CBS_peek_asn1_tag(&pbkdf2_params, CBS_ASN1_INTEGER)) {
|
|
uint64_t key_len;
|
|
if (!CBS_get_asn1_uint64(&pbkdf2_params, &key_len)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
if (key_len != EVP_CIPHER_key_length(cipher)) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_KEYLENGTH);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (CBS_len(&pbkdf2_params) != 0) {
|
|
CBS alg_id, prf;
|
|
if (!CBS_get_asn1(&pbkdf2_params, &alg_id, CBS_ASN1_SEQUENCE) ||
|
|
!CBS_get_asn1(&alg_id, &prf, CBS_ASN1_OBJECT) ||
|
|
CBS_len(&pbkdf2_params) != 0) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
|
|
// We only support hmacWithSHA1. It is the DEFAULT, so DER requires it be
|
|
// omitted, but we match OpenSSL in tolerating it being present.
|
|
if (!CBS_mem_equal(&prf, kHMACWithSHA1, sizeof(kHMACWithSHA1))) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF);
|
|
return 0;
|
|
}
|
|
|
|
// hmacWithSHA1 has a NULL parameter.
|
|
CBS null;
|
|
if (!CBS_get_asn1(&alg_id, &null, CBS_ASN1_NULL) ||
|
|
CBS_len(&null) != 0 ||
|
|
CBS_len(&alg_id) != 0) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_DECODE_ERROR);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
// Parse the encryption scheme parameters. Note OpenSSL does not match the
|
|
// specification. Per RFC 2898, this should depend on the encryption scheme.
|
|
// In particular, RC2-CBC uses a SEQUENCE with version and IV. We align with
|
|
// OpenSSL.
|
|
CBS iv;
|
|
if (!CBS_get_asn1(&enc_scheme, &iv, CBS_ASN1_OCTETSTRING) ||
|
|
CBS_len(&enc_scheme) != 0) {
|
|
OPENSSL_PUT_ERROR(PKCS8, PKCS8_R_UNSUPPORTED_PRF);
|
|
return 0;
|
|
}
|
|
|
|
return pkcs5_pbe2_cipher_init(ctx, cipher, (unsigned)iterations, pass,
|
|
pass_len, CBS_data(&salt), CBS_len(&salt),
|
|
CBS_data(&iv), CBS_len(&iv), 0 /* decrypt */);
|
|
}
|