mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-05 10:24:41 +01:00
518 lines
18 KiB
C
518 lines
18 KiB
C
/*
|
|
* jdsample.c
|
|
*
|
|
* This file was part of the Independent JPEG Group's software:
|
|
* Copyright (C) 1991-1996, Thomas G. Lane.
|
|
* libjpeg-turbo Modifications:
|
|
* Copyright 2009 Pierre Ossman <ossman@cendio.se> for Cendio AB
|
|
* Copyright (C) 2010, 2015-2016, D. R. Commander.
|
|
* Copyright (C) 2014, MIPS Technologies, Inc., California.
|
|
* Copyright (C) 2015, Google, Inc.
|
|
* Copyright (C) 2019, Arm Limited.
|
|
* For conditions of distribution and use, see the accompanying README.ijg
|
|
* file.
|
|
*
|
|
* This file contains upsampling routines.
|
|
*
|
|
* Upsampling input data is counted in "row groups". A row group
|
|
* is defined to be (v_samp_factor * DCT_scaled_size / min_DCT_scaled_size)
|
|
* sample rows of each component. Upsampling will normally produce
|
|
* max_v_samp_factor pixel rows from each row group (but this could vary
|
|
* if the upsampler is applying a scale factor of its own).
|
|
*
|
|
* An excellent reference for image resampling is
|
|
* Digital Image Warping, George Wolberg, 1990.
|
|
* Pub. by IEEE Computer Society Press, Los Alamitos, CA. ISBN 0-8186-8944-7.
|
|
*/
|
|
|
|
#include "jinclude.h"
|
|
#include "jdsample.h"
|
|
#include "jsimd.h"
|
|
#include "jpegcomp.h"
|
|
|
|
|
|
|
|
/*
|
|
* Initialize for an upsampling pass.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
start_pass_upsample(j_decompress_ptr cinfo)
|
|
{
|
|
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
|
|
|
/* Mark the conversion buffer empty */
|
|
upsample->next_row_out = cinfo->max_v_samp_factor;
|
|
/* Initialize total-height counter for detecting bottom of image */
|
|
upsample->rows_to_go = cinfo->output_height;
|
|
}
|
|
|
|
|
|
/*
|
|
* Control routine to do upsampling (and color conversion).
|
|
*
|
|
* In this version we upsample each component independently.
|
|
* We upsample one row group into the conversion buffer, then apply
|
|
* color conversion a row at a time.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
sep_upsample(j_decompress_ptr cinfo, JSAMPIMAGE input_buf,
|
|
JDIMENSION *in_row_group_ctr, JDIMENSION in_row_groups_avail,
|
|
JSAMPARRAY output_buf, JDIMENSION *out_row_ctr,
|
|
JDIMENSION out_rows_avail)
|
|
{
|
|
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
|
int ci;
|
|
jpeg_component_info *compptr;
|
|
JDIMENSION num_rows;
|
|
|
|
/* Fill the conversion buffer, if it's empty */
|
|
if (upsample->next_row_out >= cinfo->max_v_samp_factor) {
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
/* Invoke per-component upsample method. Notice we pass a POINTER
|
|
* to color_buf[ci], so that fullsize_upsample can change it.
|
|
*/
|
|
(*upsample->methods[ci]) (cinfo, compptr,
|
|
input_buf[ci] + (*in_row_group_ctr * upsample->rowgroup_height[ci]),
|
|
upsample->color_buf + ci);
|
|
}
|
|
upsample->next_row_out = 0;
|
|
}
|
|
|
|
/* Color-convert and emit rows */
|
|
|
|
/* How many we have in the buffer: */
|
|
num_rows = (JDIMENSION)(cinfo->max_v_samp_factor - upsample->next_row_out);
|
|
/* Not more than the distance to the end of the image. Need this test
|
|
* in case the image height is not a multiple of max_v_samp_factor:
|
|
*/
|
|
if (num_rows > upsample->rows_to_go)
|
|
num_rows = upsample->rows_to_go;
|
|
/* And not more than what the client can accept: */
|
|
out_rows_avail -= *out_row_ctr;
|
|
if (num_rows > out_rows_avail)
|
|
num_rows = out_rows_avail;
|
|
|
|
(*cinfo->cconvert->color_convert) (cinfo, upsample->color_buf,
|
|
(JDIMENSION)upsample->next_row_out,
|
|
output_buf + *out_row_ctr, (int)num_rows);
|
|
|
|
/* Adjust counts */
|
|
*out_row_ctr += num_rows;
|
|
upsample->rows_to_go -= num_rows;
|
|
upsample->next_row_out += num_rows;
|
|
/* When the buffer is emptied, declare this input row group consumed */
|
|
if (upsample->next_row_out >= cinfo->max_v_samp_factor)
|
|
(*in_row_group_ctr)++;
|
|
}
|
|
|
|
|
|
/*
|
|
* These are the routines invoked by sep_upsample to upsample pixel values
|
|
* of a single component. One row group is processed per call.
|
|
*/
|
|
|
|
|
|
/*
|
|
* For full-size components, we just make color_buf[ci] point at the
|
|
* input buffer, and thus avoid copying any data. Note that this is
|
|
* safe only because sep_upsample doesn't declare the input row group
|
|
* "consumed" until we are done color converting and emitting it.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
fullsize_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr)
|
|
{
|
|
*output_data_ptr = input_data;
|
|
}
|
|
|
|
|
|
/*
|
|
* This is a no-op version used for "uninteresting" components.
|
|
* These components will not be referenced by color conversion.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
noop_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr)
|
|
{
|
|
*output_data_ptr = NULL; /* safety check */
|
|
}
|
|
|
|
|
|
/*
|
|
* This version handles any integral sampling ratios.
|
|
* This is not used for typical JPEG files, so it need not be fast.
|
|
* Nor, for that matter, is it particularly accurate: the algorithm is
|
|
* simple replication of the input pixel onto the corresponding output
|
|
* pixels. The hi-falutin sampling literature refers to this as a
|
|
* "box filter". A box filter tends to introduce visible artifacts,
|
|
* so if you are actually going to use 3:1 or 4:1 sampling ratios
|
|
* you would be well advised to improve this code.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
int_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr)
|
|
{
|
|
my_upsample_ptr upsample = (my_upsample_ptr)cinfo->upsample;
|
|
JSAMPARRAY output_data = *output_data_ptr;
|
|
register JSAMPROW inptr, outptr;
|
|
register JSAMPLE invalue;
|
|
register int h;
|
|
JSAMPROW outend;
|
|
int h_expand, v_expand;
|
|
int inrow, outrow;
|
|
|
|
h_expand = upsample->h_expand[compptr->component_index];
|
|
v_expand = upsample->v_expand[compptr->component_index];
|
|
|
|
inrow = outrow = 0;
|
|
while (outrow < cinfo->max_v_samp_factor) {
|
|
/* Generate one output row with proper horizontal expansion */
|
|
inptr = input_data[inrow];
|
|
outptr = output_data[outrow];
|
|
outend = outptr + cinfo->output_width;
|
|
while (outptr < outend) {
|
|
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
|
for (h = h_expand; h > 0; h--) {
|
|
*outptr++ = invalue;
|
|
}
|
|
}
|
|
/* Generate any additional output rows by duplicating the first one */
|
|
if (v_expand > 1) {
|
|
jcopy_sample_rows(output_data, outrow, output_data, outrow + 1,
|
|
v_expand - 1, cinfo->output_width);
|
|
}
|
|
inrow++;
|
|
outrow += v_expand;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Fast processing for the common case of 2:1 horizontal and 1:1 vertical.
|
|
* It's still a box filter.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
h2v1_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr)
|
|
{
|
|
JSAMPARRAY output_data = *output_data_ptr;
|
|
register JSAMPROW inptr, outptr;
|
|
register JSAMPLE invalue;
|
|
JSAMPROW outend;
|
|
int inrow;
|
|
|
|
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
|
inptr = input_data[inrow];
|
|
outptr = output_data[inrow];
|
|
outend = outptr + cinfo->output_width;
|
|
while (outptr < outend) {
|
|
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
|
*outptr++ = invalue;
|
|
*outptr++ = invalue;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Fast processing for the common case of 2:1 horizontal and 2:1 vertical.
|
|
* It's still a box filter.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
h2v2_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr)
|
|
{
|
|
JSAMPARRAY output_data = *output_data_ptr;
|
|
register JSAMPROW inptr, outptr;
|
|
register JSAMPLE invalue;
|
|
JSAMPROW outend;
|
|
int inrow, outrow;
|
|
|
|
inrow = outrow = 0;
|
|
while (outrow < cinfo->max_v_samp_factor) {
|
|
inptr = input_data[inrow];
|
|
outptr = output_data[outrow];
|
|
outend = outptr + cinfo->output_width;
|
|
while (outptr < outend) {
|
|
invalue = *inptr++; /* don't need GETJSAMPLE() here */
|
|
*outptr++ = invalue;
|
|
*outptr++ = invalue;
|
|
}
|
|
jcopy_sample_rows(output_data, outrow, output_data, outrow + 1, 1,
|
|
cinfo->output_width);
|
|
inrow++;
|
|
outrow += 2;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Fancy processing for the common case of 2:1 horizontal and 1:1 vertical.
|
|
*
|
|
* The upsampling algorithm is linear interpolation between pixel centers,
|
|
* also known as a "triangle filter". This is a good compromise between
|
|
* speed and visual quality. The centers of the output pixels are 1/4 and 3/4
|
|
* of the way between input pixel centers.
|
|
*
|
|
* A note about the "bias" calculations: when rounding fractional values to
|
|
* integer, we do not want to always round 0.5 up to the next integer.
|
|
* If we did that, we'd introduce a noticeable bias towards larger values.
|
|
* Instead, this code is arranged so that 0.5 will be rounded up or down at
|
|
* alternate pixel locations (a simple ordered dither pattern).
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
h2v1_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr)
|
|
{
|
|
JSAMPARRAY output_data = *output_data_ptr;
|
|
register JSAMPROW inptr, outptr;
|
|
register int invalue;
|
|
register JDIMENSION colctr;
|
|
int inrow;
|
|
|
|
for (inrow = 0; inrow < cinfo->max_v_samp_factor; inrow++) {
|
|
inptr = input_data[inrow];
|
|
outptr = output_data[inrow];
|
|
/* Special case for first column */
|
|
invalue = GETJSAMPLE(*inptr++);
|
|
*outptr++ = (JSAMPLE)invalue;
|
|
*outptr++ = (JSAMPLE)((invalue * 3 + GETJSAMPLE(*inptr) + 2) >> 2);
|
|
|
|
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
|
/* General case: 3/4 * nearer pixel + 1/4 * further pixel */
|
|
invalue = GETJSAMPLE(*inptr++) * 3;
|
|
*outptr++ = (JSAMPLE)((invalue + GETJSAMPLE(inptr[-2]) + 1) >> 2);
|
|
*outptr++ = (JSAMPLE)((invalue + GETJSAMPLE(*inptr) + 2) >> 2);
|
|
}
|
|
|
|
/* Special case for last column */
|
|
invalue = GETJSAMPLE(*inptr);
|
|
*outptr++ = (JSAMPLE)((invalue * 3 + GETJSAMPLE(inptr[-1]) + 1) >> 2);
|
|
*outptr++ = (JSAMPLE)invalue;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Fancy processing for 1:1 horizontal and 2:1 vertical (4:4:0 subsampling).
|
|
*
|
|
* This is a less common case, but it can be encountered when losslessly
|
|
* rotating/transposing a JPEG file that uses 4:2:2 chroma subsampling.
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
h1v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr)
|
|
{
|
|
JSAMPARRAY output_data = *output_data_ptr;
|
|
JSAMPROW inptr0, inptr1, outptr;
|
|
#if BITS_IN_JSAMPLE == 8
|
|
int thiscolsum, bias;
|
|
#else
|
|
JLONG thiscolsum, bias;
|
|
#endif
|
|
JDIMENSION colctr;
|
|
int inrow, outrow, v;
|
|
|
|
inrow = outrow = 0;
|
|
while (outrow < cinfo->max_v_samp_factor) {
|
|
for (v = 0; v < 2; v++) {
|
|
/* inptr0 points to nearest input row, inptr1 points to next nearest */
|
|
inptr0 = input_data[inrow];
|
|
if (v == 0) { /* next nearest is row above */
|
|
inptr1 = input_data[inrow - 1];
|
|
bias = 1;
|
|
} else { /* next nearest is row below */
|
|
inptr1 = input_data[inrow + 1];
|
|
bias = 2;
|
|
}
|
|
outptr = output_data[outrow++];
|
|
|
|
for (colctr = 0; colctr < compptr->downsampled_width; colctr++) {
|
|
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
|
*outptr++ = (JSAMPLE)((thiscolsum + bias) >> 2);
|
|
}
|
|
}
|
|
inrow++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Fancy processing for the common case of 2:1 horizontal and 2:1 vertical.
|
|
* Again a triangle filter; see comments for h2v1 case, above.
|
|
*
|
|
* It is OK for us to reference the adjacent input rows because we demanded
|
|
* context from the main buffer controller (see initialization code).
|
|
*/
|
|
|
|
METHODDEF(void)
|
|
h2v2_fancy_upsample(j_decompress_ptr cinfo, jpeg_component_info *compptr,
|
|
JSAMPARRAY input_data, JSAMPARRAY *output_data_ptr)
|
|
{
|
|
JSAMPARRAY output_data = *output_data_ptr;
|
|
register JSAMPROW inptr0, inptr1, outptr;
|
|
#if BITS_IN_JSAMPLE == 8
|
|
register int thiscolsum, lastcolsum, nextcolsum;
|
|
#else
|
|
register JLONG thiscolsum, lastcolsum, nextcolsum;
|
|
#endif
|
|
register JDIMENSION colctr;
|
|
int inrow, outrow, v;
|
|
|
|
inrow = outrow = 0;
|
|
while (outrow < cinfo->max_v_samp_factor) {
|
|
for (v = 0; v < 2; v++) {
|
|
/* inptr0 points to nearest input row, inptr1 points to next nearest */
|
|
inptr0 = input_data[inrow];
|
|
if (v == 0) /* next nearest is row above */
|
|
inptr1 = input_data[inrow - 1];
|
|
else /* next nearest is row below */
|
|
inptr1 = input_data[inrow + 1];
|
|
outptr = output_data[outrow++];
|
|
|
|
/* Special case for first column */
|
|
thiscolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
|
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
|
*outptr++ = (JSAMPLE)((thiscolsum * 4 + 8) >> 4);
|
|
*outptr++ = (JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
|
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
|
|
|
for (colctr = compptr->downsampled_width - 2; colctr > 0; colctr--) {
|
|
/* General case: 3/4 * nearer pixel + 1/4 * further pixel in each */
|
|
/* dimension, thus 9/16, 3/16, 3/16, 1/16 overall */
|
|
nextcolsum = GETJSAMPLE(*inptr0++) * 3 + GETJSAMPLE(*inptr1++);
|
|
*outptr++ = (JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
|
*outptr++ = (JSAMPLE)((thiscolsum * 3 + nextcolsum + 7) >> 4);
|
|
lastcolsum = thiscolsum; thiscolsum = nextcolsum;
|
|
}
|
|
|
|
/* Special case for last column */
|
|
*outptr++ = (JSAMPLE)((thiscolsum * 3 + lastcolsum + 8) >> 4);
|
|
*outptr++ = (JSAMPLE)((thiscolsum * 4 + 7) >> 4);
|
|
}
|
|
inrow++;
|
|
}
|
|
}
|
|
|
|
|
|
/*
|
|
* Module initialization routine for upsampling.
|
|
*/
|
|
|
|
GLOBAL(void)
|
|
jinit_upsampler(j_decompress_ptr cinfo)
|
|
{
|
|
my_upsample_ptr upsample;
|
|
int ci;
|
|
jpeg_component_info *compptr;
|
|
boolean need_buffer, do_fancy;
|
|
int h_in_group, v_in_group, h_out_group, v_out_group;
|
|
|
|
if (!cinfo->master->jinit_upsampler_no_alloc) {
|
|
upsample = (my_upsample_ptr)
|
|
(*cinfo->mem->alloc_small) ((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
sizeof(my_upsampler));
|
|
cinfo->upsample = (struct jpeg_upsampler *)upsample;
|
|
upsample->pub.start_pass = start_pass_upsample;
|
|
upsample->pub.upsample = sep_upsample;
|
|
upsample->pub.need_context_rows = FALSE; /* until we find out differently */
|
|
} else
|
|
upsample = (my_upsample_ptr)cinfo->upsample;
|
|
|
|
if (cinfo->CCIR601_sampling) /* this isn't supported */
|
|
ERREXIT(cinfo, JERR_CCIR601_NOTIMPL);
|
|
|
|
/* jdmainct.c doesn't support context rows when min_DCT_scaled_size = 1,
|
|
* so don't ask for it.
|
|
*/
|
|
do_fancy = cinfo->do_fancy_upsampling && cinfo->_min_DCT_scaled_size > 1;
|
|
|
|
/* Verify we can handle the sampling factors, select per-component methods,
|
|
* and create storage as needed.
|
|
*/
|
|
for (ci = 0, compptr = cinfo->comp_info; ci < cinfo->num_components;
|
|
ci++, compptr++) {
|
|
/* Compute size of an "input group" after IDCT scaling. This many samples
|
|
* are to be converted to max_h_samp_factor * max_v_samp_factor pixels.
|
|
*/
|
|
h_in_group = (compptr->h_samp_factor * compptr->_DCT_scaled_size) /
|
|
cinfo->_min_DCT_scaled_size;
|
|
v_in_group = (compptr->v_samp_factor * compptr->_DCT_scaled_size) /
|
|
cinfo->_min_DCT_scaled_size;
|
|
h_out_group = cinfo->max_h_samp_factor;
|
|
v_out_group = cinfo->max_v_samp_factor;
|
|
upsample->rowgroup_height[ci] = v_in_group; /* save for use later */
|
|
need_buffer = TRUE;
|
|
if (!compptr->component_needed) {
|
|
/* Don't bother to upsample an uninteresting component. */
|
|
upsample->methods[ci] = noop_upsample;
|
|
need_buffer = FALSE;
|
|
} else if (h_in_group == h_out_group && v_in_group == v_out_group) {
|
|
/* Fullsize components can be processed without any work. */
|
|
upsample->methods[ci] = fullsize_upsample;
|
|
need_buffer = FALSE;
|
|
} else if (h_in_group * 2 == h_out_group && v_in_group == v_out_group) {
|
|
/* Special cases for 2h1v upsampling */
|
|
if (do_fancy && compptr->downsampled_width > 2) {
|
|
if (jsimd_can_h2v1_fancy_upsample())
|
|
upsample->methods[ci] = jsimd_h2v1_fancy_upsample;
|
|
else
|
|
upsample->methods[ci] = h2v1_fancy_upsample;
|
|
} else {
|
|
if (jsimd_can_h2v1_upsample())
|
|
upsample->methods[ci] = jsimd_h2v1_upsample;
|
|
else
|
|
upsample->methods[ci] = h2v1_upsample;
|
|
}
|
|
} else if (h_in_group == h_out_group &&
|
|
v_in_group * 2 == v_out_group && do_fancy) {
|
|
/* Non-fancy upsampling is handled by the generic method */
|
|
upsample->methods[ci] = h1v2_fancy_upsample;
|
|
upsample->pub.need_context_rows = TRUE;
|
|
} else if (h_in_group * 2 == h_out_group &&
|
|
v_in_group * 2 == v_out_group) {
|
|
/* Special cases for 2h2v upsampling */
|
|
if (do_fancy && compptr->downsampled_width > 2) {
|
|
if (jsimd_can_h2v2_fancy_upsample())
|
|
upsample->methods[ci] = jsimd_h2v2_fancy_upsample;
|
|
else
|
|
upsample->methods[ci] = h2v2_fancy_upsample;
|
|
upsample->pub.need_context_rows = TRUE;
|
|
} else {
|
|
if (jsimd_can_h2v2_upsample())
|
|
upsample->methods[ci] = jsimd_h2v2_upsample;
|
|
else
|
|
upsample->methods[ci] = h2v2_upsample;
|
|
}
|
|
} else if ((h_out_group % h_in_group) == 0 &&
|
|
(v_out_group % v_in_group) == 0) {
|
|
/* Generic integral-factors upsampling method */
|
|
#if defined(__mips__)
|
|
if (jsimd_can_int_upsample())
|
|
upsample->methods[ci] = jsimd_int_upsample;
|
|
else
|
|
#endif
|
|
upsample->methods[ci] = int_upsample;
|
|
upsample->h_expand[ci] = (UINT8)(h_out_group / h_in_group);
|
|
upsample->v_expand[ci] = (UINT8)(v_out_group / v_in_group);
|
|
} else
|
|
ERREXIT(cinfo, JERR_FRACT_SAMPLE_NOTIMPL);
|
|
if (need_buffer && !cinfo->master->jinit_upsampler_no_alloc) {
|
|
upsample->color_buf[ci] = (*cinfo->mem->alloc_sarray)
|
|
((j_common_ptr)cinfo, JPOOL_IMAGE,
|
|
(JDIMENSION)jround_up((long)cinfo->output_width,
|
|
(long)cinfo->max_h_samp_factor),
|
|
(JDIMENSION)cinfo->max_v_samp_factor);
|
|
}
|
|
}
|
|
}
|