mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-11 12:31:30 +01:00
585 lines
14 KiB
C
585 lines
14 KiB
C
/* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL project
|
|
* 2006.
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 2006 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* licensing@OpenSSL.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/evp.h>
|
|
|
|
#include <openssl/asn1.h>
|
|
#include <openssl/asn1t.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/dsa.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/obj.h>
|
|
#include <openssl/x509.h>
|
|
|
|
#include "../dsa/internal.h"
|
|
#include "internal.h"
|
|
|
|
|
|
static int dsa_pub_decode(EVP_PKEY *pkey, X509_PUBKEY *pubkey) {
|
|
const uint8_t *p, *pm;
|
|
int pklen, pmlen;
|
|
int ptype;
|
|
void *pval;
|
|
ASN1_STRING *pstr;
|
|
X509_ALGOR *palg;
|
|
ASN1_INTEGER *public_key = NULL;
|
|
|
|
DSA *dsa = NULL;
|
|
|
|
if (!X509_PUBKEY_get0_param(NULL, &p, &pklen, &palg, pubkey)) {
|
|
return 0;
|
|
}
|
|
X509_ALGOR_get0(NULL, &ptype, &pval, palg);
|
|
|
|
if (ptype == V_ASN1_SEQUENCE) {
|
|
pstr = pval;
|
|
pm = pstr->data;
|
|
pmlen = pstr->length;
|
|
|
|
dsa = d2i_DSAparams(NULL, &pm, pmlen);
|
|
if (dsa == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
} else if (ptype == V_ASN1_NULL || ptype == V_ASN1_UNDEF) {
|
|
dsa = DSA_new();
|
|
if (dsa == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
} else {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_PARAMETER_ENCODING_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
public_key = d2i_ASN1_INTEGER(NULL, &p, pklen);
|
|
if (public_key == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
dsa->pub_key = ASN1_INTEGER_to_BN(public_key, NULL);
|
|
if (dsa->pub_key == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_BN_DECODE_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
ASN1_INTEGER_free(public_key);
|
|
EVP_PKEY_assign_DSA(pkey, dsa);
|
|
return 1;
|
|
|
|
err:
|
|
ASN1_INTEGER_free(public_key);
|
|
DSA_free(dsa);
|
|
return 0;
|
|
}
|
|
|
|
static int dsa_pub_encode(X509_PUBKEY *pk, const EVP_PKEY *pkey) {
|
|
DSA *dsa;
|
|
ASN1_STRING *pval = NULL;
|
|
uint8_t *penc = NULL;
|
|
int penclen;
|
|
|
|
dsa = pkey->pkey.dsa;
|
|
dsa->write_params = 0;
|
|
|
|
int ptype;
|
|
if (dsa->p && dsa->q && dsa->g) {
|
|
pval = ASN1_STRING_new();
|
|
if (!pval) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
pval->length = i2d_DSAparams(dsa, &pval->data);
|
|
if (pval->length <= 0) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
ptype = V_ASN1_SEQUENCE;
|
|
} else {
|
|
ptype = V_ASN1_UNDEF;
|
|
}
|
|
|
|
penclen = i2d_DSAPublicKey(dsa, &penc);
|
|
if (penclen <= 0) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
if (X509_PUBKEY_set0_param(pk, OBJ_nid2obj(EVP_PKEY_DSA), ptype, pval,
|
|
penc, penclen)) {
|
|
return 1;
|
|
}
|
|
|
|
err:
|
|
OPENSSL_free(penc);
|
|
ASN1_STRING_free(pval);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int dsa_priv_decode(EVP_PKEY *pkey, PKCS8_PRIV_KEY_INFO *p8) {
|
|
const uint8_t *p, *pm;
|
|
int pklen, pmlen;
|
|
int ptype;
|
|
void *pval;
|
|
ASN1_STRING *pstr;
|
|
X509_ALGOR *palg;
|
|
ASN1_INTEGER *privkey = NULL;
|
|
BN_CTX *ctx = NULL;
|
|
|
|
/* In PKCS#8 DSA: you just get a private key integer and parameters in the
|
|
* AlgorithmIdentifier the pubkey must be recalculated. */
|
|
|
|
STACK_OF(ASN1_TYPE) *ndsa = NULL;
|
|
DSA *dsa = NULL;
|
|
|
|
if (!PKCS8_pkey_get0(NULL, &p, &pklen, &palg, p8)) {
|
|
return 0;
|
|
}
|
|
X509_ALGOR_get0(NULL, &ptype, &pval, palg);
|
|
|
|
/* Check for broken DSA PKCS#8, UGH! */
|
|
if (*p == (V_ASN1_SEQUENCE | V_ASN1_CONSTRUCTED)) {
|
|
ASN1_TYPE *t1, *t2;
|
|
ndsa = d2i_ASN1_SEQUENCE_ANY(NULL, &p, pklen);
|
|
if (ndsa == NULL) {
|
|
goto decerr;
|
|
}
|
|
if (sk_ASN1_TYPE_num(ndsa) != 2) {
|
|
goto decerr;
|
|
}
|
|
|
|
/* Handle Two broken types:
|
|
* SEQUENCE {parameters, priv_key}
|
|
* SEQUENCE {pub_key, priv_key}. */
|
|
|
|
t1 = sk_ASN1_TYPE_value(ndsa, 0);
|
|
t2 = sk_ASN1_TYPE_value(ndsa, 1);
|
|
if (t1->type == V_ASN1_SEQUENCE) {
|
|
p8->broken = PKCS8_EMBEDDED_PARAM;
|
|
pval = t1->value.ptr;
|
|
} else if (ptype == V_ASN1_SEQUENCE) {
|
|
p8->broken = PKCS8_NS_DB;
|
|
} else {
|
|
goto decerr;
|
|
}
|
|
|
|
if (t2->type != V_ASN1_INTEGER) {
|
|
goto decerr;
|
|
}
|
|
|
|
privkey = t2->value.integer;
|
|
} else {
|
|
const uint8_t *q = p;
|
|
privkey = d2i_ASN1_INTEGER(NULL, &p, pklen);
|
|
if (privkey == NULL) {
|
|
goto decerr;
|
|
}
|
|
if (privkey->type == V_ASN1_NEG_INTEGER) {
|
|
p8->broken = PKCS8_NEG_PRIVKEY;
|
|
ASN1_INTEGER_free(privkey);
|
|
privkey = d2i_ASN1_UINTEGER(NULL, &q, pklen);
|
|
if (privkey == NULL) {
|
|
goto decerr;
|
|
}
|
|
}
|
|
if (ptype != V_ASN1_SEQUENCE) {
|
|
goto decerr;
|
|
}
|
|
}
|
|
|
|
pstr = pval;
|
|
pm = pstr->data;
|
|
pmlen = pstr->length;
|
|
dsa = d2i_DSAparams(NULL, &pm, pmlen);
|
|
if (dsa == NULL) {
|
|
goto decerr;
|
|
}
|
|
/* We have parameters. Now set private key */
|
|
dsa->priv_key = ASN1_INTEGER_to_BN(privkey, NULL);
|
|
if (dsa->priv_key == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_LIB_BN);
|
|
goto dsaerr;
|
|
}
|
|
/* Calculate public key. */
|
|
dsa->pub_key = BN_new();
|
|
if (dsa->pub_key == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto dsaerr;
|
|
}
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto dsaerr;
|
|
}
|
|
|
|
if (!BN_mod_exp(dsa->pub_key, dsa->g, dsa->priv_key, dsa->p, ctx)) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_LIB_BN);
|
|
goto dsaerr;
|
|
}
|
|
|
|
EVP_PKEY_assign_DSA(pkey, dsa);
|
|
BN_CTX_free(ctx);
|
|
sk_ASN1_TYPE_pop_free(ndsa, ASN1_TYPE_free);
|
|
ASN1_INTEGER_free(privkey);
|
|
|
|
return 1;
|
|
|
|
decerr:
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
|
|
|
|
dsaerr:
|
|
BN_CTX_free(ctx);
|
|
ASN1_INTEGER_free(privkey);
|
|
sk_ASN1_TYPE_pop_free(ndsa, ASN1_TYPE_free);
|
|
DSA_free(dsa);
|
|
return 0;
|
|
}
|
|
|
|
static int dsa_priv_encode(PKCS8_PRIV_KEY_INFO *p8, const EVP_PKEY *pkey) {
|
|
ASN1_STRING *params = NULL;
|
|
ASN1_INTEGER *prkey = NULL;
|
|
uint8_t *dp = NULL;
|
|
int dplen;
|
|
|
|
if (!pkey->pkey.dsa || !pkey->pkey.dsa->priv_key) {
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_MISSING_PARAMETERS);
|
|
goto err;
|
|
}
|
|
|
|
params = ASN1_STRING_new();
|
|
if (!params) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
params->length = i2d_DSAparams(pkey->pkey.dsa, ¶ms->data);
|
|
if (params->length <= 0) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
params->type = V_ASN1_SEQUENCE;
|
|
|
|
/* Get private key into integer. */
|
|
prkey = BN_to_ASN1_INTEGER(pkey->pkey.dsa->priv_key, NULL);
|
|
|
|
if (!prkey) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_LIB_BN);
|
|
goto err;
|
|
}
|
|
|
|
dplen = i2d_ASN1_INTEGER(prkey, &dp);
|
|
|
|
ASN1_INTEGER_free(prkey);
|
|
prkey = NULL;
|
|
|
|
if (!PKCS8_pkey_set0(p8, (ASN1_OBJECT *)OBJ_nid2obj(NID_dsa), 0,
|
|
V_ASN1_SEQUENCE, params, dp, dplen)) {
|
|
goto err;
|
|
}
|
|
|
|
return 1;
|
|
|
|
err:
|
|
OPENSSL_free(dp);
|
|
ASN1_STRING_free(params);
|
|
ASN1_INTEGER_free(prkey);
|
|
return 0;
|
|
}
|
|
|
|
static int int_dsa_size(const EVP_PKEY *pkey) {
|
|
return DSA_size(pkey->pkey.dsa);
|
|
}
|
|
|
|
static int dsa_bits(const EVP_PKEY *pkey) {
|
|
return BN_num_bits(pkey->pkey.dsa->p);
|
|
}
|
|
|
|
static int dsa_missing_parameters(const EVP_PKEY *pkey) {
|
|
DSA *dsa;
|
|
dsa = pkey->pkey.dsa;
|
|
if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int dup_bn_into(BIGNUM **out, BIGNUM *src) {
|
|
BIGNUM *a;
|
|
|
|
a = BN_dup(src);
|
|
if (a == NULL) {
|
|
return 0;
|
|
}
|
|
BN_free(*out);
|
|
*out = a;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int dsa_copy_parameters(EVP_PKEY *to, const EVP_PKEY *from) {
|
|
if (!dup_bn_into(&to->pkey.dsa->p, from->pkey.dsa->p) ||
|
|
!dup_bn_into(&to->pkey.dsa->q, from->pkey.dsa->q) ||
|
|
!dup_bn_into(&to->pkey.dsa->g, from->pkey.dsa->g)) {
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int dsa_cmp_parameters(const EVP_PKEY *a, const EVP_PKEY *b) {
|
|
return BN_cmp(a->pkey.dsa->p, b->pkey.dsa->p) == 0 &&
|
|
BN_cmp(a->pkey.dsa->q, b->pkey.dsa->q) == 0 &&
|
|
BN_cmp(a->pkey.dsa->g, b->pkey.dsa->g) == 0;
|
|
}
|
|
|
|
static int dsa_pub_cmp(const EVP_PKEY *a, const EVP_PKEY *b) {
|
|
return BN_cmp(b->pkey.dsa->pub_key, a->pkey.dsa->pub_key) == 0;
|
|
}
|
|
|
|
static void int_dsa_free(EVP_PKEY *pkey) { DSA_free(pkey->pkey.dsa); }
|
|
|
|
static void update_buflen(const BIGNUM *b, size_t *pbuflen) {
|
|
size_t i;
|
|
|
|
if (!b) {
|
|
return;
|
|
}
|
|
i = BN_num_bytes(b);
|
|
if (*pbuflen < i) {
|
|
*pbuflen = i;
|
|
}
|
|
}
|
|
|
|
static int do_dsa_print(BIO *bp, const DSA *x, int off, int ptype) {
|
|
uint8_t *m = NULL;
|
|
int ret = 0;
|
|
size_t buf_len = 0;
|
|
const char *ktype = NULL;
|
|
|
|
const BIGNUM *priv_key, *pub_key;
|
|
|
|
priv_key = NULL;
|
|
if (ptype == 2) {
|
|
priv_key = x->priv_key;
|
|
}
|
|
|
|
pub_key = NULL;
|
|
if (ptype > 0) {
|
|
pub_key = x->pub_key;
|
|
}
|
|
|
|
ktype = "DSA-Parameters";
|
|
if (ptype == 2) {
|
|
ktype = "Private-Key";
|
|
} else if (ptype == 1) {
|
|
ktype = "Public-Key";
|
|
}
|
|
|
|
update_buflen(x->p, &buf_len);
|
|
update_buflen(x->q, &buf_len);
|
|
update_buflen(x->g, &buf_len);
|
|
update_buflen(priv_key, &buf_len);
|
|
update_buflen(pub_key, &buf_len);
|
|
|
|
m = (uint8_t *)OPENSSL_malloc(buf_len + 10);
|
|
if (m == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
if (priv_key) {
|
|
if (!BIO_indent(bp, off, 128) ||
|
|
BIO_printf(bp, "%s: (%d bit)\n", ktype, BN_num_bits(x->p)) <= 0) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!ASN1_bn_print(bp, "priv:", priv_key, m, off) ||
|
|
!ASN1_bn_print(bp, "pub: ", pub_key, m, off) ||
|
|
!ASN1_bn_print(bp, "P: ", x->p, m, off) ||
|
|
!ASN1_bn_print(bp, "Q: ", x->q, m, off) ||
|
|
!ASN1_bn_print(bp, "G: ", x->g, m, off)) {
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
OPENSSL_free(m);
|
|
return ret;
|
|
}
|
|
|
|
static int dsa_param_decode(EVP_PKEY *pkey, const uint8_t **pder, int derlen) {
|
|
DSA *dsa;
|
|
dsa = d2i_DSAparams(NULL, pder, derlen);
|
|
if (dsa == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_DSA_LIB);
|
|
return 0;
|
|
}
|
|
EVP_PKEY_assign_DSA(pkey, dsa);
|
|
return 1;
|
|
}
|
|
|
|
static int dsa_param_encode(const EVP_PKEY *pkey, uint8_t **pder) {
|
|
return i2d_DSAparams(pkey->pkey.dsa, pder);
|
|
}
|
|
|
|
static int dsa_param_print(BIO *bp, const EVP_PKEY *pkey, int indent,
|
|
ASN1_PCTX *ctx) {
|
|
return do_dsa_print(bp, pkey->pkey.dsa, indent, 0);
|
|
}
|
|
|
|
static int dsa_pub_print(BIO *bp, const EVP_PKEY *pkey, int indent,
|
|
ASN1_PCTX *ctx) {
|
|
return do_dsa_print(bp, pkey->pkey.dsa, indent, 1);
|
|
}
|
|
|
|
static int dsa_priv_print(BIO *bp, const EVP_PKEY *pkey, int indent,
|
|
ASN1_PCTX *ctx) {
|
|
return do_dsa_print(bp, pkey->pkey.dsa, indent, 2);
|
|
}
|
|
|
|
static int old_dsa_priv_decode(EVP_PKEY *pkey, const uint8_t **pder,
|
|
int derlen) {
|
|
DSA *dsa;
|
|
dsa = d2i_DSAPrivateKey(NULL, pder, derlen);
|
|
if (dsa == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_DSA_LIB);
|
|
return 0;
|
|
}
|
|
EVP_PKEY_assign_DSA(pkey, dsa);
|
|
return 1;
|
|
}
|
|
|
|
static int old_dsa_priv_encode(const EVP_PKEY *pkey, uint8_t **pder) {
|
|
return i2d_DSAPrivateKey(pkey->pkey.dsa, pder);
|
|
}
|
|
|
|
static int dsa_sig_print(BIO *bp, const X509_ALGOR *sigalg,
|
|
const ASN1_STRING *sig, int indent, ASN1_PCTX *pctx) {
|
|
DSA_SIG *dsa_sig;
|
|
const uint8_t *p;
|
|
|
|
if (!sig) {
|
|
return BIO_puts(bp, "\n") > 0;
|
|
}
|
|
|
|
p = sig->data;
|
|
dsa_sig = d2i_DSA_SIG(NULL, &p, sig->length);
|
|
if (dsa_sig == NULL) {
|
|
return X509_signature_dump(bp, sig, indent);
|
|
}
|
|
|
|
int rv = 0;
|
|
size_t buf_len = 0;
|
|
uint8_t *m = NULL;
|
|
|
|
update_buflen(dsa_sig->r, &buf_len);
|
|
update_buflen(dsa_sig->s, &buf_len);
|
|
m = OPENSSL_malloc(buf_len + 10);
|
|
if (m == NULL) {
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
if (BIO_write(bp, "\n", 1) != 1 ||
|
|
!ASN1_bn_print(bp, "r: ", dsa_sig->r, m, indent) ||
|
|
!ASN1_bn_print(bp, "s: ", dsa_sig->s, m, indent)) {
|
|
goto err;
|
|
}
|
|
rv = 1;
|
|
|
|
err:
|
|
OPENSSL_free(m);
|
|
DSA_SIG_free(dsa_sig);
|
|
return rv;
|
|
}
|
|
|
|
const EVP_PKEY_ASN1_METHOD dsa_asn1_meth = {
|
|
EVP_PKEY_DSA,
|
|
EVP_PKEY_DSA,
|
|
0,
|
|
|
|
"DSA",
|
|
|
|
dsa_pub_decode,
|
|
dsa_pub_encode,
|
|
dsa_pub_cmp,
|
|
dsa_pub_print,
|
|
|
|
dsa_priv_decode,
|
|
dsa_priv_encode,
|
|
dsa_priv_print,
|
|
|
|
NULL /* pkey_opaque */,
|
|
NULL /* pkey_supports_digest */,
|
|
|
|
int_dsa_size,
|
|
dsa_bits,
|
|
|
|
dsa_param_decode,
|
|
dsa_param_encode,
|
|
dsa_missing_parameters,
|
|
dsa_copy_parameters,
|
|
dsa_cmp_parameters,
|
|
dsa_param_print,
|
|
dsa_sig_print,
|
|
|
|
int_dsa_free,
|
|
old_dsa_priv_decode,
|
|
old_dsa_priv_encode,
|
|
};
|