Telegram-Android/TMessagesProj/jni/exoplayer/libFLAC/lpc_intrin_sse.c
2018-07-30 09:07:02 +07:00

454 lines
12 KiB
C
Executable file

/* libFLAC - Free Lossless Audio Codec library
* Copyright (C) 2000-2009 Josh Coalson
* Copyright (C) 2011-2016 Xiph.Org Foundation
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* - Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* - Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* - Neither the name of the Xiph.org Foundation nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifdef HAVE_CONFIG_H
# include <config.h>
#endif
#include "private/cpu.h"
#ifndef FLAC__INTEGER_ONLY_LIBRARY
#ifndef FLAC__NO_ASM
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
#include "private/lpc.h"
#ifdef FLAC__SSE_SUPPORTED
#include "FLAC/assert.h"
#include "FLAC/format.h"
#include <xmmintrin.h> /* SSE */
/* new routines: more unaligned loads, less shuffle
* old routines: less unaligned loads, more shuffle
* these *_old routines are equivalent to the ASM routines in ia32/lpc_asm.nasm
*/
/* new routines: faster on current Intel (starting from Core i aka Nehalem) and all AMD CPUs */
FLAC__SSE_TARGET("sse")
void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_4_new(const FLAC__real data[], uint32_t data_len, uint32_t lag, FLAC__real autoc[])
{
int i;
int limit = data_len - 4;
__m128 sum0;
(void) lag;
FLAC__ASSERT(lag <= 4);
FLAC__ASSERT(lag <= data_len);
sum0 = _mm_setzero_ps();
for(i = 0; i <= limit; i++) {
__m128 d, d0;
d0 = _mm_loadu_ps(data+i);
d = _mm_shuffle_ps(d0, d0, 0);
sum0 = _mm_add_ps(sum0, _mm_mul_ps(d0, d));
}
{
__m128 d0 = _mm_setzero_ps();
limit++; if(limit < 0) limit = 0;
for(i = data_len-1; i >= limit; i--) {
__m128 d;
d = _mm_load_ss(data+i); d = _mm_shuffle_ps(d, d, 0);
d0 = _mm_shuffle_ps(d0, d0, _MM_SHUFFLE(2,1,0,3));
d0 = _mm_move_ss(d0, d);
sum0 = _mm_add_ps(sum0, _mm_mul_ps(d, d0));
}
}
_mm_storeu_ps(autoc, sum0);
}
FLAC__SSE_TARGET("sse")
void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_8_new(const FLAC__real data[], uint32_t data_len, uint32_t lag, FLAC__real autoc[])
{
int i;
int limit = data_len - 8;
__m128 sum0, sum1;
(void) lag;
FLAC__ASSERT(lag <= 8);
FLAC__ASSERT(lag <= data_len);
sum0 = _mm_setzero_ps();
sum1 = _mm_setzero_ps();
for(i = 0; i <= limit; i++) {
__m128 d, d0, d1;
d0 = _mm_loadu_ps(data+i);
d1 = _mm_loadu_ps(data+i+4);
d = _mm_shuffle_ps(d0, d0, 0);
sum0 = _mm_add_ps(sum0, _mm_mul_ps(d0, d));
sum1 = _mm_add_ps(sum1, _mm_mul_ps(d1, d));
}
{
__m128 d0 = _mm_setzero_ps();
__m128 d1 = _mm_setzero_ps();
limit++; if(limit < 0) limit = 0;
for(i = data_len-1; i >= limit; i--) {
__m128 d;
d = _mm_load_ss(data+i); d = _mm_shuffle_ps(d, d, 0);
d1 = _mm_shuffle_ps(d1, d1, _MM_SHUFFLE(2,1,0,3));
d0 = _mm_shuffle_ps(d0, d0, _MM_SHUFFLE(2,1,0,3));
d1 = _mm_move_ss(d1, d0);
d0 = _mm_move_ss(d0, d);
sum1 = _mm_add_ps(sum1, _mm_mul_ps(d, d1));
sum0 = _mm_add_ps(sum0, _mm_mul_ps(d, d0));
}
}
_mm_storeu_ps(autoc, sum0);
_mm_storeu_ps(autoc+4, sum1);
}
FLAC__SSE_TARGET("sse")
void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_12_new(const FLAC__real data[], uint32_t data_len, uint32_t lag, FLAC__real autoc[])
{
int i;
int limit = data_len - 12;
__m128 sum0, sum1, sum2;
(void) lag;
FLAC__ASSERT(lag <= 12);
FLAC__ASSERT(lag <= data_len);
sum0 = _mm_setzero_ps();
sum1 = _mm_setzero_ps();
sum2 = _mm_setzero_ps();
for(i = 0; i <= limit; i++) {
__m128 d, d0, d1, d2;
d0 = _mm_loadu_ps(data+i);
d1 = _mm_loadu_ps(data+i+4);
d2 = _mm_loadu_ps(data+i+8);
d = _mm_shuffle_ps(d0, d0, 0);
sum0 = _mm_add_ps(sum0, _mm_mul_ps(d0, d));
sum1 = _mm_add_ps(sum1, _mm_mul_ps(d1, d));
sum2 = _mm_add_ps(sum2, _mm_mul_ps(d2, d));
}
{
__m128 d0 = _mm_setzero_ps();
__m128 d1 = _mm_setzero_ps();
__m128 d2 = _mm_setzero_ps();
limit++; if(limit < 0) limit = 0;
for(i = data_len-1; i >= limit; i--) {
__m128 d;
d = _mm_load_ss(data+i); d = _mm_shuffle_ps(d, d, 0);
d2 = _mm_shuffle_ps(d2, d2, _MM_SHUFFLE(2,1,0,3));
d1 = _mm_shuffle_ps(d1, d1, _MM_SHUFFLE(2,1,0,3));
d0 = _mm_shuffle_ps(d0, d0, _MM_SHUFFLE(2,1,0,3));
d2 = _mm_move_ss(d2, d1);
d1 = _mm_move_ss(d1, d0);
d0 = _mm_move_ss(d0, d);
sum2 = _mm_add_ps(sum2, _mm_mul_ps(d, d2));
sum1 = _mm_add_ps(sum1, _mm_mul_ps(d, d1));
sum0 = _mm_add_ps(sum0, _mm_mul_ps(d, d0));
}
}
_mm_storeu_ps(autoc, sum0);
_mm_storeu_ps(autoc+4, sum1);
_mm_storeu_ps(autoc+8, sum2);
}
FLAC__SSE_TARGET("sse")
void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_16_new(const FLAC__real data[], uint32_t data_len, uint32_t lag, FLAC__real autoc[])
{
int i;
int limit = data_len - 16;
__m128 sum0, sum1, sum2, sum3;
(void) lag;
FLAC__ASSERT(lag <= 16);
FLAC__ASSERT(lag <= data_len);
sum0 = _mm_setzero_ps();
sum1 = _mm_setzero_ps();
sum2 = _mm_setzero_ps();
sum3 = _mm_setzero_ps();
for(i = 0; i <= limit; i++) {
__m128 d, d0, d1, d2, d3;
d0 = _mm_loadu_ps(data+i);
d1 = _mm_loadu_ps(data+i+4);
d2 = _mm_loadu_ps(data+i+8);
d3 = _mm_loadu_ps(data+i+12);
d = _mm_shuffle_ps(d0, d0, 0);
sum0 = _mm_add_ps(sum0, _mm_mul_ps(d0, d));
sum1 = _mm_add_ps(sum1, _mm_mul_ps(d1, d));
sum2 = _mm_add_ps(sum2, _mm_mul_ps(d2, d));
sum3 = _mm_add_ps(sum3, _mm_mul_ps(d3, d));
}
{
__m128 d0 = _mm_setzero_ps();
__m128 d1 = _mm_setzero_ps();
__m128 d2 = _mm_setzero_ps();
__m128 d3 = _mm_setzero_ps();
limit++; if(limit < 0) limit = 0;
for(i = data_len-1; i >= limit; i--) {
__m128 d;
d = _mm_load_ss(data+i); d = _mm_shuffle_ps(d, d, 0);
d3 = _mm_shuffle_ps(d3, d3, _MM_SHUFFLE(2,1,0,3));
d2 = _mm_shuffle_ps(d2, d2, _MM_SHUFFLE(2,1,0,3));
d1 = _mm_shuffle_ps(d1, d1, _MM_SHUFFLE(2,1,0,3));
d0 = _mm_shuffle_ps(d0, d0, _MM_SHUFFLE(2,1,0,3));
d3 = _mm_move_ss(d3, d2);
d2 = _mm_move_ss(d2, d1);
d1 = _mm_move_ss(d1, d0);
d0 = _mm_move_ss(d0, d);
sum3 = _mm_add_ps(sum3, _mm_mul_ps(d, d3));
sum2 = _mm_add_ps(sum2, _mm_mul_ps(d, d2));
sum1 = _mm_add_ps(sum1, _mm_mul_ps(d, d1));
sum0 = _mm_add_ps(sum0, _mm_mul_ps(d, d0));
}
}
_mm_storeu_ps(autoc, sum0);
_mm_storeu_ps(autoc+4, sum1);
_mm_storeu_ps(autoc+8, sum2);
_mm_storeu_ps(autoc+12,sum3);
}
/* old routines: faster on older Intel CPUs (up to Core 2) */
FLAC__SSE_TARGET("sse")
void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_4_old(const FLAC__real data[], uint32_t data_len, uint32_t lag, FLAC__real autoc[])
{
__m128 xmm0, xmm2, xmm5;
(void) lag;
FLAC__ASSERT(lag > 0);
FLAC__ASSERT(lag <= 4);
FLAC__ASSERT(lag <= data_len);
FLAC__ASSERT(data_len > 0);
xmm5 = _mm_setzero_ps();
xmm0 = _mm_load_ss(data++);
xmm2 = xmm0;
xmm0 = _mm_shuffle_ps(xmm0, xmm0, 0);
xmm0 = _mm_mul_ps(xmm0, xmm2);
xmm5 = _mm_add_ps(xmm5, xmm0);
data_len--;
while(data_len)
{
xmm0 = _mm_load1_ps(data++);
xmm2 = _mm_shuffle_ps(xmm2, xmm2, _MM_SHUFFLE(2,1,0,3));
xmm2 = _mm_move_ss(xmm2, xmm0);
xmm0 = _mm_mul_ps(xmm0, xmm2);
xmm5 = _mm_add_ps(xmm5, xmm0);
data_len--;
}
_mm_storeu_ps(autoc, xmm5);
}
FLAC__SSE_TARGET("sse")
void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_8_old(const FLAC__real data[], uint32_t data_len, uint32_t lag, FLAC__real autoc[])
{
__m128 xmm0, xmm1, xmm2, xmm3, xmm5, xmm6;
(void) lag;
FLAC__ASSERT(lag > 0);
FLAC__ASSERT(lag <= 8);
FLAC__ASSERT(lag <= data_len);
FLAC__ASSERT(data_len > 0);
xmm5 = _mm_setzero_ps();
xmm6 = _mm_setzero_ps();
xmm0 = _mm_load_ss(data++);
xmm2 = xmm0;
xmm0 = _mm_shuffle_ps(xmm0, xmm0, 0);
xmm3 = _mm_setzero_ps();
xmm0 = _mm_mul_ps(xmm0, xmm2);
xmm5 = _mm_add_ps(xmm5, xmm0);
data_len--;
while(data_len)
{
xmm0 = _mm_load1_ps(data++);
xmm2 = _mm_shuffle_ps(xmm2, xmm2, _MM_SHUFFLE(2,1,0,3));
xmm3 = _mm_shuffle_ps(xmm3, xmm3, _MM_SHUFFLE(2,1,0,3));
xmm3 = _mm_move_ss(xmm3, xmm2);
xmm2 = _mm_move_ss(xmm2, xmm0);
xmm1 = xmm0;
xmm1 = _mm_mul_ps(xmm1, xmm3);
xmm0 = _mm_mul_ps(xmm0, xmm2);
xmm6 = _mm_add_ps(xmm6, xmm1);
xmm5 = _mm_add_ps(xmm5, xmm0);
data_len--;
}
_mm_storeu_ps(autoc, xmm5);
_mm_storeu_ps(autoc+4, xmm6);
}
FLAC__SSE_TARGET("sse")
void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_12_old(const FLAC__real data[], uint32_t data_len, uint32_t lag, FLAC__real autoc[])
{
__m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
(void) lag;
FLAC__ASSERT(lag > 0);
FLAC__ASSERT(lag <= 12);
FLAC__ASSERT(lag <= data_len);
FLAC__ASSERT(data_len > 0);
xmm5 = _mm_setzero_ps();
xmm6 = _mm_setzero_ps();
xmm7 = _mm_setzero_ps();
xmm0 = _mm_load_ss(data++);
xmm2 = xmm0;
xmm0 = _mm_shuffle_ps(xmm0, xmm0, 0);
xmm3 = _mm_setzero_ps();
xmm4 = _mm_setzero_ps();
xmm0 = _mm_mul_ps(xmm0, xmm2);
xmm5 = _mm_add_ps(xmm5, xmm0);
data_len--;
while(data_len)
{
xmm0 = _mm_load1_ps(data++);
xmm2 = _mm_shuffle_ps(xmm2, xmm2, _MM_SHUFFLE(2,1,0,3));
xmm3 = _mm_shuffle_ps(xmm3, xmm3, _MM_SHUFFLE(2,1,0,3));
xmm4 = _mm_shuffle_ps(xmm4, xmm4, _MM_SHUFFLE(2,1,0,3));
xmm4 = _mm_move_ss(xmm4, xmm3);
xmm3 = _mm_move_ss(xmm3, xmm2);
xmm2 = _mm_move_ss(xmm2, xmm0);
xmm1 = xmm0;
xmm1 = _mm_mul_ps(xmm1, xmm2);
xmm5 = _mm_add_ps(xmm5, xmm1);
xmm1 = xmm0;
xmm1 = _mm_mul_ps(xmm1, xmm3);
xmm6 = _mm_add_ps(xmm6, xmm1);
xmm0 = _mm_mul_ps(xmm0, xmm4);
xmm7 = _mm_add_ps(xmm7, xmm0);
data_len--;
}
_mm_storeu_ps(autoc, xmm5);
_mm_storeu_ps(autoc+4, xmm6);
_mm_storeu_ps(autoc+8, xmm7);
}
FLAC__SSE_TARGET("sse")
void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_16_old(const FLAC__real data[], uint32_t data_len, uint32_t lag, FLAC__real autoc[])
{
__m128 xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7, xmm8, xmm9;
(void) lag;
FLAC__ASSERT(lag > 0);
FLAC__ASSERT(lag <= 16);
FLAC__ASSERT(lag <= data_len);
FLAC__ASSERT(data_len > 0);
xmm6 = _mm_setzero_ps();
xmm7 = _mm_setzero_ps();
xmm8 = _mm_setzero_ps();
xmm9 = _mm_setzero_ps();
xmm0 = _mm_load_ss(data++);
xmm2 = xmm0;
xmm0 = _mm_shuffle_ps(xmm0, xmm0, 0);
xmm3 = _mm_setzero_ps();
xmm4 = _mm_setzero_ps();
xmm5 = _mm_setzero_ps();
xmm0 = _mm_mul_ps(xmm0, xmm2);
xmm6 = _mm_add_ps(xmm6, xmm0);
data_len--;
while(data_len)
{
xmm0 = _mm_load1_ps(data++);
/* shift xmm5:xmm4:xmm3:xmm2 left by one float */
xmm5 = _mm_shuffle_ps(xmm5, xmm5, _MM_SHUFFLE(2,1,0,3));
xmm4 = _mm_shuffle_ps(xmm4, xmm4, _MM_SHUFFLE(2,1,0,3));
xmm3 = _mm_shuffle_ps(xmm3, xmm3, _MM_SHUFFLE(2,1,0,3));
xmm2 = _mm_shuffle_ps(xmm2, xmm2, _MM_SHUFFLE(2,1,0,3));
xmm5 = _mm_move_ss(xmm5, xmm4);
xmm4 = _mm_move_ss(xmm4, xmm3);
xmm3 = _mm_move_ss(xmm3, xmm2);
xmm2 = _mm_move_ss(xmm2, xmm0);
/* xmm9|xmm8|xmm7|xmm6 += xmm0|xmm0|xmm0|xmm0 * xmm5|xmm4|xmm3|xmm2 */
xmm1 = xmm0;
xmm1 = _mm_mul_ps(xmm1, xmm5);
xmm9 = _mm_add_ps(xmm9, xmm1);
xmm1 = xmm0;
xmm1 = _mm_mul_ps(xmm1, xmm4);
xmm8 = _mm_add_ps(xmm8, xmm1);
xmm1 = xmm0;
xmm1 = _mm_mul_ps(xmm1, xmm3);
xmm7 = _mm_add_ps(xmm7, xmm1);
xmm0 = _mm_mul_ps(xmm0, xmm2);
xmm6 = _mm_add_ps(xmm6, xmm0);
data_len--;
}
_mm_storeu_ps(autoc, xmm6);
_mm_storeu_ps(autoc+4, xmm7);
_mm_storeu_ps(autoc+8, xmm8);
_mm_storeu_ps(autoc+12,xmm9);
}
#endif /* FLAC__SSE_SUPPORTED */
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
#endif /* FLAC__NO_ASM */
#endif /* FLAC__INTEGER_ONLY_LIBRARY */