Telegram-Android/TMessagesProj/jni/third_party/usrsctplib/netinet/sctp_process_lock.h
2020-08-14 19:58:22 +03:00

659 lines
25 KiB
C
Executable file

/*-
* SPDX-License-Identifier: BSD-3-Clause
*
* Copyright (c) 2001-2007, by Cisco Systems, Inc. All rights reserved.
* Copyright (c) 2008-2011, by Randall Stewart. All rights reserved.
* Copyright (c) 2008-2011, by Michael Tuexen. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* a) Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* b) Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the distribution.
*
* c) Neither the name of Cisco Systems, Inc. nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
* THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef __sctp_process_lock_h__
#define __sctp_process_lock_h__
/*
* Need to yet define five atomic fuctions or
* their equivalant.
* - atomic_add_int(&foo, val) - add atomically the value
* - atomic_fetchadd_int(&foo, val) - does same as atomic_add_int
* but value it was is returned.
* - atomic_subtract_int(&foo, val) - can be made from atomic_add_int()
*
* - atomic_cmpset_int(&foo, value, newvalue) - Does a set of newvalue
* in foo if and only if
* foo is value. Returns 0
* on success.
*/
#ifdef SCTP_PER_SOCKET_LOCKING
/*
* per socket level locking
*/
#if defined(__Userspace_os_Windows)
/* Lock for INFO stuff */
#define SCTP_INP_INFO_LOCK_INIT()
#define SCTP_INP_INFO_RLOCK()
#define SCTP_INP_INFO_RUNLOCK()
#define SCTP_INP_INFO_WLOCK()
#define SCTP_INP_INFO_WUNLOCK()
#define SCTP_INP_INFO_LOCK_DESTROY()
#define SCTP_IPI_COUNT_INIT()
#define SCTP_IPI_COUNT_DESTROY()
#else
#define SCTP_INP_INFO_LOCK_INIT()
#define SCTP_INP_INFO_RLOCK()
#define SCTP_INP_INFO_RUNLOCK()
#define SCTP_INP_INFO_WLOCK()
#define SCTP_INP_INFO_WUNLOCK()
#define SCTP_INP_INFO_LOCK_DESTROY()
#define SCTP_IPI_COUNT_INIT()
#define SCTP_IPI_COUNT_DESTROY()
#endif
#define SCTP_TCB_SEND_LOCK_INIT(_tcb)
#define SCTP_TCB_SEND_LOCK_DESTROY(_tcb)
#define SCTP_TCB_SEND_LOCK(_tcb)
#define SCTP_TCB_SEND_UNLOCK(_tcb)
/* Lock for INP */
#define SCTP_INP_LOCK_INIT(_inp)
#define SCTP_INP_LOCK_DESTROY(_inp)
#define SCTP_INP_RLOCK(_inp)
#define SCTP_INP_RUNLOCK(_inp)
#define SCTP_INP_WLOCK(_inp)
#define SCTP_INP_WUNLOCK(_inep)
#define SCTP_INP_INCR_REF(_inp)
#define SCTP_INP_DECR_REF(_inp)
#define SCTP_ASOC_CREATE_LOCK_INIT(_inp)
#define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp)
#define SCTP_ASOC_CREATE_LOCK(_inp)
#define SCTP_ASOC_CREATE_UNLOCK(_inp)
#define SCTP_INP_READ_INIT(_inp)
#define SCTP_INP_READ_DESTROY(_inp)
#define SCTP_INP_READ_LOCK(_inp)
#define SCTP_INP_READ_UNLOCK(_inp)
/* Lock for TCB */
#define SCTP_TCB_LOCK_INIT(_tcb)
#define SCTP_TCB_LOCK_DESTROY(_tcb)
#define SCTP_TCB_LOCK(_tcb)
#define SCTP_TCB_TRYLOCK(_tcb) 1
#define SCTP_TCB_UNLOCK(_tcb)
#define SCTP_TCB_UNLOCK_IFOWNED(_tcb)
#define SCTP_TCB_LOCK_ASSERT(_tcb)
#else
/*
* per tcb level locking
*/
#define SCTP_IPI_COUNT_INIT()
#if defined(__Userspace_os_Windows)
#define SCTP_WQ_ADDR_INIT() \
InitializeCriticalSection(&SCTP_BASE_INFO(wq_addr_mtx))
#define SCTP_WQ_ADDR_DESTROY() \
DeleteCriticalSection(&SCTP_BASE_INFO(wq_addr_mtx))
#define SCTP_WQ_ADDR_LOCK() \
EnterCriticalSection(&SCTP_BASE_INFO(wq_addr_mtx))
#define SCTP_WQ_ADDR_UNLOCK() \
LeaveCriticalSection(&SCTP_BASE_INFO(wq_addr_mtx))
#define SCTP_INP_INFO_LOCK_INIT() \
InitializeCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_LOCK_DESTROY() \
DeleteCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_RLOCK() \
EnterCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_TRYLOCK() \
TryEnterCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_WLOCK() \
EnterCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_RUNLOCK() \
LeaveCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_WUNLOCK() \
LeaveCriticalSection(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_IP_PKTLOG_INIT() \
InitializeCriticalSection(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#define SCTP_IP_PKTLOG_DESTROY () \
DeleteCriticalSection(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#define SCTP_IP_PKTLOG_LOCK() \
EnterCriticalSection(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#define SCTP_IP_PKTLOG_UNLOCK() \
LeaveCriticalSection(&SCTP_BASE_INFO(ipi_pktlog_mtx))
/*
* The INP locks we will use for locking an SCTP endpoint, so for example if
* we want to change something at the endpoint level for example random_store
* or cookie secrets we lock the INP level.
*/
#define SCTP_INP_READ_INIT(_inp) \
InitializeCriticalSection(&(_inp)->inp_rdata_mtx)
#define SCTP_INP_READ_DESTROY(_inp) \
DeleteCriticalSection(&(_inp)->inp_rdata_mtx)
#define SCTP_INP_READ_LOCK(_inp) \
EnterCriticalSection(&(_inp)->inp_rdata_mtx)
#define SCTP_INP_READ_UNLOCK(_inp) \
LeaveCriticalSection(&(_inp)->inp_rdata_mtx)
#define SCTP_INP_LOCK_INIT(_inp) \
InitializeCriticalSection(&(_inp)->inp_mtx)
#define SCTP_INP_LOCK_DESTROY(_inp) \
DeleteCriticalSection(&(_inp)->inp_mtx)
#ifdef SCTP_LOCK_LOGGING
#define SCTP_INP_RLOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP); \
EnterCriticalSection(&(_inp)->inp_mtx); \
} while (0)
#define SCTP_INP_WLOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP); \
EnterCriticalSection(&(_inp)->inp_mtx); \
} while (0)
#else
#define SCTP_INP_RLOCK(_inp) \
EnterCriticalSection(&(_inp)->inp_mtx)
#define SCTP_INP_WLOCK(_inp) \
EnterCriticalSection(&(_inp)->inp_mtx)
#endif
#define SCTP_TCB_SEND_LOCK_INIT(_tcb) \
InitializeCriticalSection(&(_tcb)->tcb_send_mtx)
#define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) \
DeleteCriticalSection(&(_tcb)->tcb_send_mtx)
#define SCTP_TCB_SEND_LOCK(_tcb) \
EnterCriticalSection(&(_tcb)->tcb_send_mtx)
#define SCTP_TCB_SEND_UNLOCK(_tcb) \
LeaveCriticalSection(&(_tcb)->tcb_send_mtx)
#define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
#define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)
#define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \
InitializeCriticalSection(&(_inp)->inp_create_mtx)
#define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \
DeleteCriticalSection(&(_inp)->inp_create_mtx)
#ifdef SCTP_LOCK_LOGGING
#define SCTP_ASOC_CREATE_LOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE); \
EnterCriticalSection(&(_inp)->inp_create_mtx); \
} while (0)
#else
#define SCTP_ASOC_CREATE_LOCK(_inp) \
EnterCriticalSection(&(_inp)->inp_create_mtx)
#endif
#define SCTP_INP_RUNLOCK(_inp) \
LeaveCriticalSection(&(_inp)->inp_mtx)
#define SCTP_INP_WUNLOCK(_inp) \
LeaveCriticalSection(&(_inp)->inp_mtx)
#define SCTP_ASOC_CREATE_UNLOCK(_inp) \
LeaveCriticalSection(&(_inp)->inp_create_mtx)
/*
* For the majority of things (once we have found the association) we will
* lock the actual association mutex. This will protect all the assoiciation
* level queues and streams and such. We will need to lock the socket layer
* when we stuff data up into the receiving sb_mb. I.e. we will need to do an
* extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
*/
#define SCTP_TCB_LOCK_INIT(_tcb) \
InitializeCriticalSection(&(_tcb)->tcb_mtx)
#define SCTP_TCB_LOCK_DESTROY(_tcb) \
DeleteCriticalSection(&(_tcb)->tcb_mtx)
#ifdef SCTP_LOCK_LOGGING
#define SCTP_TCB_LOCK(_tcb) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB); \
EnterCriticalSection(&(_tcb)->tcb_mtx); \
} while (0)
#else
#define SCTP_TCB_LOCK(_tcb) \
EnterCriticalSection(&(_tcb)->tcb_mtx)
#endif
#define SCTP_TCB_TRYLOCK(_tcb) ((TryEnterCriticalSection(&(_tcb)->tcb_mtx)))
#define SCTP_TCB_UNLOCK(_tcb) \
LeaveCriticalSection(&(_tcb)->tcb_mtx)
#define SCTP_TCB_LOCK_ASSERT(_tcb)
#else /* all Userspaces except Windows */
#define SCTP_WQ_ADDR_INIT() \
(void)pthread_mutex_init(&SCTP_BASE_INFO(wq_addr_mtx), &SCTP_BASE_VAR(mtx_attr))
#define SCTP_WQ_ADDR_DESTROY() \
(void)pthread_mutex_destroy(&SCTP_BASE_INFO(wq_addr_mtx))
#ifdef INVARIANTS
#define SCTP_WQ_ADDR_LOCK() \
KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(wq_addr_mtx)) == 0, ("%s: wq_addr_mtx already locked", __func__))
#define SCTP_WQ_ADDR_UNLOCK() \
KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(wq_addr_mtx)) == 0, ("%s: wq_addr_mtx not locked", __func__))
#else
#define SCTP_WQ_ADDR_LOCK() \
(void)pthread_mutex_lock(&SCTP_BASE_INFO(wq_addr_mtx))
#define SCTP_WQ_ADDR_UNLOCK() \
(void)pthread_mutex_unlock(&SCTP_BASE_INFO(wq_addr_mtx))
#endif
#define SCTP_INP_INFO_LOCK_INIT() \
(void)pthread_mutex_init(&SCTP_BASE_INFO(ipi_ep_mtx), &SCTP_BASE_VAR(mtx_attr))
#define SCTP_INP_INFO_LOCK_DESTROY() \
(void)pthread_mutex_destroy(&SCTP_BASE_INFO(ipi_ep_mtx))
#ifdef INVARIANTS
#define SCTP_INP_INFO_RLOCK() \
KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_ep_mtx)) == 0, ("%s: ipi_ep_mtx already locked", __func__))
#define SCTP_INP_INFO_WLOCK() \
KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_ep_mtx)) == 0, ("%s: ipi_ep_mtx already locked", __func__))
#define SCTP_INP_INFO_RUNLOCK() \
KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_ep_mtx)) == 0, ("%s: ipi_ep_mtx not locked", __func__))
#define SCTP_INP_INFO_WUNLOCK() \
KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_ep_mtx)) == 0, ("%s: ipi_ep_mtx not locked", __func__))
#else
#define SCTP_INP_INFO_RLOCK() \
(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_WLOCK() \
(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_RUNLOCK() \
(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_ep_mtx))
#define SCTP_INP_INFO_WUNLOCK() \
(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_ep_mtx))
#endif
#define SCTP_INP_INFO_TRYLOCK() \
(!(pthread_mutex_trylock(&SCTP_BASE_INFO(ipi_ep_mtx))))
#define SCTP_IP_PKTLOG_INIT() \
(void)pthread_mutex_init(&SCTP_BASE_INFO(ipi_pktlog_mtx), &SCTP_BASE_VAR(mtx_attr))
#define SCTP_IP_PKTLOG_DESTROY() \
(void)pthread_mutex_destroy(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#ifdef INVARIANTS
#define SCTP_IP_PKTLOG_LOCK() \
KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx)) == 0, ("%s: ipi_pktlog_mtx already locked", __func__))
#define SCTP_IP_PKTLOG_UNLOCK() \
KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx)) == 0, ("%s: ipi_pktlog_mtx not locked", __func__))
#else
#define SCTP_IP_PKTLOG_LOCK() \
(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#define SCTP_IP_PKTLOG_UNLOCK() \
(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_pktlog_mtx))
#endif
/*
* The INP locks we will use for locking an SCTP endpoint, so for example if
* we want to change something at the endpoint level for example random_store
* or cookie secrets we lock the INP level.
*/
#define SCTP_INP_READ_INIT(_inp) \
(void)pthread_mutex_init(&(_inp)->inp_rdata_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_INP_READ_DESTROY(_inp) \
(void)pthread_mutex_destroy(&(_inp)->inp_rdata_mtx)
#ifdef INVARIANTS
#define SCTP_INP_READ_LOCK(_inp) \
KASSERT(pthread_mutex_lock(&(_inp)->inp_rdata_mtx) == 0, ("%s: inp_rdata_mtx already locked", __func__))
#define SCTP_INP_READ_UNLOCK(_inp) \
KASSERT(pthread_mutex_unlock(&(_inp)->inp_rdata_mtx) == 0, ("%s: inp_rdata_mtx not locked", __func__))
#else
#define SCTP_INP_READ_LOCK(_inp) \
(void)pthread_mutex_lock(&(_inp)->inp_rdata_mtx)
#define SCTP_INP_READ_UNLOCK(_inp) \
(void)pthread_mutex_unlock(&(_inp)->inp_rdata_mtx)
#endif
#define SCTP_INP_LOCK_INIT(_inp) \
(void)pthread_mutex_init(&(_inp)->inp_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_INP_LOCK_DESTROY(_inp) \
(void)pthread_mutex_destroy(&(_inp)->inp_mtx)
#ifdef INVARIANTS
#ifdef SCTP_LOCK_LOGGING
#define SCTP_INP_RLOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP); \
KASSERT(pthread_mutex_lock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx already locked", __func__)) \
} while (0)
#define SCTP_INP_WLOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP); \
KASSERT(pthread_mutex_lock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx already locked", __func__))
} while (0)
#else
#define SCTP_INP_RLOCK(_inp) \
KASSERT(pthread_mutex_lock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx already locked", __func__))
#define SCTP_INP_WLOCK(_inp) \
KASSERT(pthread_mutex_lock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx already locked", __func__))
#endif
#define SCTP_INP_RUNLOCK(_inp) \
KASSERT(pthread_mutex_unlock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx not locked", __func__))
#define SCTP_INP_WUNLOCK(_inp) \
KASSERT(pthread_mutex_unlock(&(_inp)->inp_mtx) == 0, ("%s: inp_mtx not locked", __func__))
#else
#ifdef SCTP_LOCK_LOGGING
#define SCTP_INP_RLOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP); \
(void)pthread_mutex_lock(&(_inp)->inp_mtx); \
} while (0)
#define SCTP_INP_WLOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_INP); \
(void)pthread_mutex_lock(&(_inp)->inp_mtx); \
} while (0)
#else
#define SCTP_INP_RLOCK(_inp) \
(void)pthread_mutex_lock(&(_inp)->inp_mtx)
#define SCTP_INP_WLOCK(_inp) \
(void)pthread_mutex_lock(&(_inp)->inp_mtx)
#endif
#define SCTP_INP_RUNLOCK(_inp) \
(void)pthread_mutex_unlock(&(_inp)->inp_mtx)
#define SCTP_INP_WUNLOCK(_inp) \
(void)pthread_mutex_unlock(&(_inp)->inp_mtx)
#endif
#define SCTP_INP_INCR_REF(_inp) atomic_add_int(&((_inp)->refcount), 1)
#define SCTP_INP_DECR_REF(_inp) atomic_add_int(&((_inp)->refcount), -1)
#define SCTP_TCB_SEND_LOCK_INIT(_tcb) \
(void)pthread_mutex_init(&(_tcb)->tcb_send_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_TCB_SEND_LOCK_DESTROY(_tcb) \
(void)pthread_mutex_destroy(&(_tcb)->tcb_send_mtx)
#ifdef INVARIANTS
#define SCTP_TCB_SEND_LOCK(_tcb) \
KASSERT(pthread_mutex_lock(&(_tcb)->tcb_send_mtx) == 0, ("%s: tcb_send_mtx already locked", __func__))
#define SCTP_TCB_SEND_UNLOCK(_tcb) \
KASSERT(pthread_mutex_unlock(&(_tcb)->tcb_send_mtx) == 0, ("%s: tcb_send_mtx not locked", __func__))
#else
#define SCTP_TCB_SEND_LOCK(_tcb) \
(void)pthread_mutex_lock(&(_tcb)->tcb_send_mtx)
#define SCTP_TCB_SEND_UNLOCK(_tcb) \
(void)pthread_mutex_unlock(&(_tcb)->tcb_send_mtx)
#endif
#define SCTP_ASOC_CREATE_LOCK_INIT(_inp) \
(void)pthread_mutex_init(&(_inp)->inp_create_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_ASOC_CREATE_LOCK_DESTROY(_inp) \
(void)pthread_mutex_destroy(&(_inp)->inp_create_mtx)
#ifdef INVARIANTS
#ifdef SCTP_LOCK_LOGGING
#define SCTP_ASOC_CREATE_LOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE); \
KASSERT(pthread_mutex_lock(&(_inp)->inp_create_mtx) == 0, ("%s: inp_create_mtx already locked", __func__)) \
} while (0)
#else
#define SCTP_ASOC_CREATE_LOCK(_inp) \
KASSERT(pthread_mutex_lock(&(_inp)->inp_create_mtx) == 0, ("%s: inp_create_mtx already locked", __func__))
#endif
#define SCTP_ASOC_CREATE_UNLOCK(_inp) \
KASSERT(pthread_mutex_unlock(&(_inp)->inp_create_mtx) == 0, ("%s: inp_create_mtx not locked", __func__))
#else
#ifdef SCTP_LOCK_LOGGING
#define SCTP_ASOC_CREATE_LOCK(_inp) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_inp, NULL, SCTP_LOG_LOCK_CREATE); \
(void)pthread_mutex_lock(&(_inp)->inp_create_mtx); \
} while (0)
#else
#define SCTP_ASOC_CREATE_LOCK(_inp) \
(void)pthread_mutex_lock(&(_inp)->inp_create_mtx)
#endif
#define SCTP_ASOC_CREATE_UNLOCK(_inp) \
(void)pthread_mutex_unlock(&(_inp)->inp_create_mtx)
#endif
/*
* For the majority of things (once we have found the association) we will
* lock the actual association mutex. This will protect all the assoiciation
* level queues and streams and such. We will need to lock the socket layer
* when we stuff data up into the receiving sb_mb. I.e. we will need to do an
* extra SOCKBUF_LOCK(&so->so_rcv) even though the association is locked.
*/
#define SCTP_TCB_LOCK_INIT(_tcb) \
(void)pthread_mutex_init(&(_tcb)->tcb_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_TCB_LOCK_DESTROY(_tcb) \
(void)pthread_mutex_destroy(&(_tcb)->tcb_mtx)
#ifdef INVARIANTS
#ifdef SCTP_LOCK_LOGGING
#define SCTP_TCB_LOCK(_tcb) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB); \
KASSERT(pthread_mutex_lock(&(_tcb)->tcb_mtx) == 0, ("%s: tcb_mtx already locked", __func__)) \
} while (0)
#else
#define SCTP_TCB_LOCK(_tcb) \
KASSERT(pthread_mutex_lock(&(_tcb)->tcb_mtx) == 0, ("%s: tcb_mtx already locked", __func__))
#endif
#define SCTP_TCB_UNLOCK(_tcb) \
KASSERT(pthread_mutex_unlock(&(_tcb)->tcb_mtx) == 0, ("%s: tcb_mtx not locked", __func__))
#else
#ifdef SCTP_LOCK_LOGGING
#define SCTP_TCB_LOCK(_tcb) do { \
if (SCTP_BASE_SYSCTL(sctp_logging_level) & SCTP_LOCK_LOGGING_ENABLE) \
sctp_log_lock(_tcb->sctp_ep, _tcb, SCTP_LOG_LOCK_TCB); \
(void)pthread_mutex_lock(&(_tcb)->tcb_mtx); \
} while (0)
#else
#define SCTP_TCB_LOCK(_tcb) \
(void)pthread_mutex_lock(&(_tcb)->tcb_mtx)
#endif
#define SCTP_TCB_UNLOCK(_tcb) (void)pthread_mutex_unlock(&(_tcb)->tcb_mtx)
#endif
#define SCTP_TCB_LOCK_ASSERT(_tcb) \
KASSERT(pthread_mutex_trylock(&(_tcb)->tcb_mtx) == EBUSY, ("%s: tcb_mtx not locked", __func__))
#define SCTP_TCB_TRYLOCK(_tcb) (!(pthread_mutex_trylock(&(_tcb)->tcb_mtx)))
#endif
#endif /* SCTP_PER_SOCKET_LOCKING */
/*
* common locks
*/
/* copied over to compile */
#define SCTP_INP_LOCK_CONTENDED(_inp) (0) /* Don't know if this is possible */
#define SCTP_INP_READ_CONTENDED(_inp) (0) /* Don't know if this is possible */
#define SCTP_ASOC_CREATE_LOCK_CONTENDED(_inp) (0) /* Don't know if this is possible */
/* socket locks */
#if defined(__Userspace_os_Windows)
#define SOCKBUF_LOCK_ASSERT(_so_buf)
#define SOCKBUF_LOCK(_so_buf) \
EnterCriticalSection(&(_so_buf)->sb_mtx)
#define SOCKBUF_UNLOCK(_so_buf) \
LeaveCriticalSection(&(_so_buf)->sb_mtx)
#define SOCK_LOCK(_so) \
SOCKBUF_LOCK(&(_so)->so_rcv)
#define SOCK_UNLOCK(_so) \
SOCKBUF_UNLOCK(&(_so)->so_rcv)
#else
#define SOCKBUF_LOCK_ASSERT(_so_buf) \
KASSERT(pthread_mutex_trylock(SOCKBUF_MTX(_so_buf)) == EBUSY, ("%s: socket buffer not locked", __func__))
#ifdef INVARIANTS
#define SOCKBUF_LOCK(_so_buf) \
KASSERT(pthread_mutex_lock(SOCKBUF_MTX(_so_buf)) == 0, ("%s: sockbuf_mtx already locked", __func__))
#define SOCKBUF_UNLOCK(_so_buf) \
KASSERT(pthread_mutex_unlock(SOCKBUF_MTX(_so_buf)) == 0, ("%s: sockbuf_mtx not locked", __func__))
#else
#define SOCKBUF_LOCK(_so_buf) \
pthread_mutex_lock(SOCKBUF_MTX(_so_buf))
#define SOCKBUF_UNLOCK(_so_buf) \
pthread_mutex_unlock(SOCKBUF_MTX(_so_buf))
#endif
#define SOCK_LOCK(_so) \
SOCKBUF_LOCK(&(_so)->so_rcv)
#define SOCK_UNLOCK(_so) \
SOCKBUF_UNLOCK(&(_so)->so_rcv)
#endif
#define SCTP_STATLOG_INIT_LOCK()
#define SCTP_STATLOG_LOCK()
#define SCTP_STATLOG_UNLOCK()
#define SCTP_STATLOG_DESTROY()
#if defined(__Userspace_os_Windows)
/* address list locks */
#define SCTP_IPI_ADDR_INIT() \
InitializeCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_DESTROY() \
DeleteCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_RLOCK() \
EnterCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_RUNLOCK() \
LeaveCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_WLOCK() \
EnterCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_WUNLOCK() \
LeaveCriticalSection(&SCTP_BASE_INFO(ipi_addr_mtx))
/* iterator locks */
#define SCTP_ITERATOR_LOCK_INIT() \
InitializeCriticalSection(&sctp_it_ctl.it_mtx)
#define SCTP_ITERATOR_LOCK_DESTROY() \
DeleteCriticalSection(&sctp_it_ctl.it_mtx)
#define SCTP_ITERATOR_LOCK() \
EnterCriticalSection(&sctp_it_ctl.it_mtx)
#define SCTP_ITERATOR_UNLOCK() \
LeaveCriticalSection(&sctp_it_ctl.it_mtx)
#define SCTP_IPI_ITERATOR_WQ_INIT() \
InitializeCriticalSection(&sctp_it_ctl.ipi_iterator_wq_mtx)
#define SCTP_IPI_ITERATOR_WQ_DESTROY() \
DeleteCriticalSection(&sctp_it_ctl.ipi_iterator_wq_mtx)
#define SCTP_IPI_ITERATOR_WQ_LOCK() \
EnterCriticalSection(&sctp_it_ctl.ipi_iterator_wq_mtx)
#define SCTP_IPI_ITERATOR_WQ_UNLOCK() \
LeaveCriticalSection(&sctp_it_ctl.ipi_iterator_wq_mtx)
#else /* end of __Userspace_os_Windows */
/* address list locks */
#define SCTP_IPI_ADDR_INIT() \
(void)pthread_mutex_init(&SCTP_BASE_INFO(ipi_addr_mtx), &SCTP_BASE_VAR(mtx_attr))
#define SCTP_IPI_ADDR_DESTROY() \
(void)pthread_mutex_destroy(&SCTP_BASE_INFO(ipi_addr_mtx))
#ifdef INVARIANTS
#define SCTP_IPI_ADDR_RLOCK() \
KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_addr_mtx)) == 0, ("%s: ipi_addr_mtx already locked", __func__))
#define SCTP_IPI_ADDR_RUNLOCK() \
KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_addr_mtx)) == 0, ("%s: ipi_addr_mtx not locked", __func__))
#define SCTP_IPI_ADDR_WLOCK() \
KASSERT(pthread_mutex_lock(&SCTP_BASE_INFO(ipi_addr_mtx)) == 0, ("%s: ipi_addr_mtx already locked", __func__))
#define SCTP_IPI_ADDR_WUNLOCK() \
KASSERT(pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_addr_mtx)) == 0, ("%s: ipi_addr_mtx not locked", __func__))
#else
#define SCTP_IPI_ADDR_RLOCK() \
(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_RUNLOCK() \
(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_WLOCK() \
(void)pthread_mutex_lock(&SCTP_BASE_INFO(ipi_addr_mtx))
#define SCTP_IPI_ADDR_WUNLOCK() \
(void)pthread_mutex_unlock(&SCTP_BASE_INFO(ipi_addr_mtx))
#endif
/* iterator locks */
#define SCTP_ITERATOR_LOCK_INIT() \
(void)pthread_mutex_init(&sctp_it_ctl.it_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_ITERATOR_LOCK_DESTROY() \
(void)pthread_mutex_destroy(&sctp_it_ctl.it_mtx)
#ifdef INVARIANTS
#define SCTP_ITERATOR_LOCK() \
KASSERT(pthread_mutex_lock(&sctp_it_ctl.it_mtx) == 0, ("%s: it_mtx already locked", __func__))
#define SCTP_ITERATOR_UNLOCK() \
KASSERT(pthread_mutex_unlock(&sctp_it_ctl.it_mtx) == 0, ("%s: it_mtx not locked", __func__))
#else
#define SCTP_ITERATOR_LOCK() \
(void)pthread_mutex_lock(&sctp_it_ctl.it_mtx)
#define SCTP_ITERATOR_UNLOCK() \
(void)pthread_mutex_unlock(&sctp_it_ctl.it_mtx)
#endif
#define SCTP_IPI_ITERATOR_WQ_INIT() \
(void)pthread_mutex_init(&sctp_it_ctl.ipi_iterator_wq_mtx, &SCTP_BASE_VAR(mtx_attr))
#define SCTP_IPI_ITERATOR_WQ_DESTROY() \
(void)pthread_mutex_destroy(&sctp_it_ctl.ipi_iterator_wq_mtx)
#ifdef INVARIANTS
#define SCTP_IPI_ITERATOR_WQ_LOCK() \
KASSERT(pthread_mutex_lock(&sctp_it_ctl.ipi_iterator_wq_mtx) == 0, ("%s: ipi_iterator_wq_mtx already locked", __func__))
#define SCTP_IPI_ITERATOR_WQ_UNLOCK() \
KASSERT(pthread_mutex_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx) == 0, ("%s: ipi_iterator_wq_mtx not locked", __func__))
#else
#define SCTP_IPI_ITERATOR_WQ_LOCK() \
(void)pthread_mutex_lock(&sctp_it_ctl.ipi_iterator_wq_mtx)
#define SCTP_IPI_ITERATOR_WQ_UNLOCK() \
(void)pthread_mutex_unlock(&sctp_it_ctl.ipi_iterator_wq_mtx)
#endif
#endif
#define SCTP_INCR_EP_COUNT() \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_ep), 1)
#define SCTP_DECR_EP_COUNT() \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_ep), 1)
#define SCTP_INCR_ASOC_COUNT() \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_asoc), 1)
#define SCTP_DECR_ASOC_COUNT() \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_asoc), 1)
#define SCTP_INCR_LADDR_COUNT() \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_laddr), 1)
#define SCTP_DECR_LADDR_COUNT() \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_laddr), 1)
#define SCTP_INCR_RADDR_COUNT() \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_raddr), 1)
#define SCTP_DECR_RADDR_COUNT() \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_raddr), 1)
#define SCTP_INCR_CHK_COUNT() \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_chunk), 1)
#define SCTP_DECR_CHK_COUNT() \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_chunk), 1)
#define SCTP_INCR_READQ_COUNT() \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_readq), 1)
#define SCTP_DECR_READQ_COUNT() \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_readq), 1)
#define SCTP_INCR_STRMOQ_COUNT() \
atomic_add_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1)
#define SCTP_DECR_STRMOQ_COUNT() \
atomic_subtract_int(&SCTP_BASE_INFO(ipi_count_strmoq), 1)
#endif