mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-07 02:59:51 +01:00
937 lines
46 KiB
C
Executable file
937 lines
46 KiB
C
Executable file
/* libFLAC - Free Lossless Audio Codec library
|
|
* Copyright (C) 2000-2009 Josh Coalson
|
|
* Copyright (C) 2011-2016 Xiph.Org Foundation
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
*
|
|
* - Neither the name of the Xiph.org Foundation nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
|
|
* CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
|
* EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
* PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
|
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
|
|
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
|
|
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
|
|
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
# include <config.h>
|
|
#endif
|
|
|
|
#include "private/cpu.h"
|
|
|
|
#ifndef FLAC__INTEGER_ONLY_LIBRARY
|
|
#ifndef FLAC__NO_ASM
|
|
#if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
|
|
#include "private/lpc.h"
|
|
#ifdef FLAC__SSE2_SUPPORTED
|
|
|
|
#include "FLAC/assert.h"
|
|
#include "FLAC/format.h"
|
|
|
|
#include <emmintrin.h> /* SSE2 */
|
|
|
|
#define RESIDUAL32_RESULT(xmmN) residual[i] = data[i] - (_mm_cvtsi128_si32(xmmN) >> lp_quantization);
|
|
#define DATA32_RESULT(xmmN) data[i] = residual[i] + (_mm_cvtsi128_si32(xmmN) >> lp_quantization);
|
|
|
|
FLAC__SSE_TARGET("sse2")
|
|
void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[])
|
|
{
|
|
int i;
|
|
FLAC__int32 sum;
|
|
const __m128i cnt = _mm_cvtsi32_si128(lp_quantization);
|
|
|
|
FLAC__ASSERT(order > 0);
|
|
FLAC__ASSERT(order <= 32);
|
|
|
|
if(order <= 12) {
|
|
if(order > 8) {
|
|
if(order > 10) {
|
|
if(order == 12) {
|
|
__m128i q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
q3 = _mm_cvtsi32_si128(0xffff & qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0));
|
|
q4 = _mm_cvtsi32_si128(0xffff & qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0));
|
|
q5 = _mm_cvtsi32_si128(0xffff & qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0));
|
|
q6 = _mm_cvtsi32_si128(0xffff & qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0));
|
|
q7 = _mm_cvtsi32_si128(0xffff & qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0));
|
|
q8 = _mm_cvtsi32_si128(0xffff & qlp_coeff[8]); q8 = _mm_shuffle_epi32(q8, _MM_SHUFFLE(0,0,0,0));
|
|
q9 = _mm_cvtsi32_si128(0xffff & qlp_coeff[9]); q9 = _mm_shuffle_epi32(q9, _MM_SHUFFLE(0,0,0,0));
|
|
q10 = _mm_cvtsi32_si128(0xffff & qlp_coeff[10]); q10 = _mm_shuffle_epi32(q10, _MM_SHUFFLE(0,0,0,0));
|
|
q11 = _mm_cvtsi32_si128(0xffff & qlp_coeff[11]); q11 = _mm_shuffle_epi32(q11, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q11, _mm_loadu_si128((const __m128i*)(data+i-12)));
|
|
mull = _mm_madd_epi16(q10, _mm_loadu_si128((const __m128i*)(data+i-11))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q9, _mm_loadu_si128((const __m128i*)(data+i-10))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q8, _mm_loadu_si128((const __m128i*)(data+i-9))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q7, _mm_loadu_si128((const __m128i*)(data+i-8))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
else { /* order == 11 */
|
|
__m128i q0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
q3 = _mm_cvtsi32_si128(0xffff & qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0));
|
|
q4 = _mm_cvtsi32_si128(0xffff & qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0));
|
|
q5 = _mm_cvtsi32_si128(0xffff & qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0));
|
|
q6 = _mm_cvtsi32_si128(0xffff & qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0));
|
|
q7 = _mm_cvtsi32_si128(0xffff & qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0));
|
|
q8 = _mm_cvtsi32_si128(0xffff & qlp_coeff[8]); q8 = _mm_shuffle_epi32(q8, _MM_SHUFFLE(0,0,0,0));
|
|
q9 = _mm_cvtsi32_si128(0xffff & qlp_coeff[9]); q9 = _mm_shuffle_epi32(q9, _MM_SHUFFLE(0,0,0,0));
|
|
q10 = _mm_cvtsi32_si128(0xffff & qlp_coeff[10]); q10 = _mm_shuffle_epi32(q10, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q10, _mm_loadu_si128((const __m128i*)(data+i-11)));
|
|
mull = _mm_madd_epi16(q9, _mm_loadu_si128((const __m128i*)(data+i-10))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q8, _mm_loadu_si128((const __m128i*)(data+i-9))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q7, _mm_loadu_si128((const __m128i*)(data+i-8))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if(order == 10) {
|
|
__m128i q0, q1, q2, q3, q4, q5, q6, q7, q8, q9;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
q3 = _mm_cvtsi32_si128(0xffff & qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0));
|
|
q4 = _mm_cvtsi32_si128(0xffff & qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0));
|
|
q5 = _mm_cvtsi32_si128(0xffff & qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0));
|
|
q6 = _mm_cvtsi32_si128(0xffff & qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0));
|
|
q7 = _mm_cvtsi32_si128(0xffff & qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0));
|
|
q8 = _mm_cvtsi32_si128(0xffff & qlp_coeff[8]); q8 = _mm_shuffle_epi32(q8, _MM_SHUFFLE(0,0,0,0));
|
|
q9 = _mm_cvtsi32_si128(0xffff & qlp_coeff[9]); q9 = _mm_shuffle_epi32(q9, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q9, _mm_loadu_si128((const __m128i*)(data+i-10)));
|
|
mull = _mm_madd_epi16(q8, _mm_loadu_si128((const __m128i*)(data+i-9))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q7, _mm_loadu_si128((const __m128i*)(data+i-8))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
else { /* order == 9 */
|
|
__m128i q0, q1, q2, q3, q4, q5, q6, q7, q8;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
q3 = _mm_cvtsi32_si128(0xffff & qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0));
|
|
q4 = _mm_cvtsi32_si128(0xffff & qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0));
|
|
q5 = _mm_cvtsi32_si128(0xffff & qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0));
|
|
q6 = _mm_cvtsi32_si128(0xffff & qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0));
|
|
q7 = _mm_cvtsi32_si128(0xffff & qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0));
|
|
q8 = _mm_cvtsi32_si128(0xffff & qlp_coeff[8]); q8 = _mm_shuffle_epi32(q8, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q8, _mm_loadu_si128((const __m128i*)(data+i-9)));
|
|
mull = _mm_madd_epi16(q7, _mm_loadu_si128((const __m128i*)(data+i-8))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(order > 4) {
|
|
if(order > 6) {
|
|
if(order == 8) {
|
|
__m128i q0, q1, q2, q3, q4, q5, q6, q7;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
q3 = _mm_cvtsi32_si128(0xffff & qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0));
|
|
q4 = _mm_cvtsi32_si128(0xffff & qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0));
|
|
q5 = _mm_cvtsi32_si128(0xffff & qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0));
|
|
q6 = _mm_cvtsi32_si128(0xffff & qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0));
|
|
q7 = _mm_cvtsi32_si128(0xffff & qlp_coeff[7]); q7 = _mm_shuffle_epi32(q7, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q7, _mm_loadu_si128((const __m128i*)(data+i-8)));
|
|
mull = _mm_madd_epi16(q6, _mm_loadu_si128((const __m128i*)(data+i-7))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
else { /* order == 7 */
|
|
__m128i q0, q1, q2, q3, q4, q5, q6;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
q3 = _mm_cvtsi32_si128(0xffff & qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0));
|
|
q4 = _mm_cvtsi32_si128(0xffff & qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0));
|
|
q5 = _mm_cvtsi32_si128(0xffff & qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0));
|
|
q6 = _mm_cvtsi32_si128(0xffff & qlp_coeff[6]); q6 = _mm_shuffle_epi32(q6, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q6, _mm_loadu_si128((const __m128i*)(data+i-7)));
|
|
mull = _mm_madd_epi16(q5, _mm_loadu_si128((const __m128i*)(data+i-6))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if(order == 6) {
|
|
__m128i q0, q1, q2, q3, q4, q5;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
q3 = _mm_cvtsi32_si128(0xffff & qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0));
|
|
q4 = _mm_cvtsi32_si128(0xffff & qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0));
|
|
q5 = _mm_cvtsi32_si128(0xffff & qlp_coeff[5]); q5 = _mm_shuffle_epi32(q5, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q5, _mm_loadu_si128((const __m128i*)(data+i-6)));
|
|
mull = _mm_madd_epi16(q4, _mm_loadu_si128((const __m128i*)(data+i-5))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
else { /* order == 5 */
|
|
__m128i q0, q1, q2, q3, q4;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
q3 = _mm_cvtsi32_si128(0xffff & qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0));
|
|
q4 = _mm_cvtsi32_si128(0xffff & qlp_coeff[4]); q4 = _mm_shuffle_epi32(q4, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q4, _mm_loadu_si128((const __m128i*)(data+i-5)));
|
|
mull = _mm_madd_epi16(q3, _mm_loadu_si128((const __m128i*)(data+i-4))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if(order > 2) {
|
|
if(order == 4) {
|
|
__m128i q0, q1, q2, q3;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
q3 = _mm_cvtsi32_si128(0xffff & qlp_coeff[3]); q3 = _mm_shuffle_epi32(q3, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q3, _mm_loadu_si128((const __m128i*)(data+i-4)));
|
|
mull = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
else { /* order == 3 */
|
|
__m128i q0, q1, q2;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
q2 = _mm_cvtsi32_si128(0xffff & qlp_coeff[2]); q2 = _mm_shuffle_epi32(q2, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q2, _mm_loadu_si128((const __m128i*)(data+i-3)));
|
|
mull = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2))); summ = _mm_add_epi32(summ, mull);
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
if(order == 2) {
|
|
__m128i q0, q1;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
q1 = _mm_cvtsi32_si128(0xffff & qlp_coeff[1]); q1 = _mm_shuffle_epi32(q1, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ, mull;
|
|
summ = _mm_madd_epi16(q1, _mm_loadu_si128((const __m128i*)(data+i-2)));
|
|
mull = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1))); summ = _mm_add_epi32(summ, mull);
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
else { /* order == 1 */
|
|
__m128i q0;
|
|
q0 = _mm_cvtsi32_si128(0xffff & qlp_coeff[0]); q0 = _mm_shuffle_epi32(q0, _MM_SHUFFLE(0,0,0,0));
|
|
|
|
for(i = 0; i < (int)data_len-3; i+=4) {
|
|
__m128i summ;
|
|
summ = _mm_madd_epi16(q0, _mm_loadu_si128((const __m128i*)(data+i-1)));
|
|
summ = _mm_sra_epi32(summ, cnt);
|
|
_mm_storeu_si128((__m128i*)(residual+i), _mm_sub_epi32(_mm_loadu_si128((const __m128i*)(data+i)), summ));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
for(; i < (int)data_len; i++) {
|
|
sum = 0;
|
|
switch(order) {
|
|
case 12: sum += qlp_coeff[11] * data[i-12]; /* Falls through. */
|
|
case 11: sum += qlp_coeff[10] * data[i-11]; /* Falls through. */
|
|
case 10: sum += qlp_coeff[ 9] * data[i-10]; /* Falls through. */
|
|
case 9: sum += qlp_coeff[ 8] * data[i- 9]; /* Falls through. */
|
|
case 8: sum += qlp_coeff[ 7] * data[i- 8]; /* Falls through. */
|
|
case 7: sum += qlp_coeff[ 6] * data[i- 7]; /* Falls through. */
|
|
case 6: sum += qlp_coeff[ 5] * data[i- 6]; /* Falls through. */
|
|
case 5: sum += qlp_coeff[ 4] * data[i- 5]; /* Falls through. */
|
|
case 4: sum += qlp_coeff[ 3] * data[i- 4]; /* Falls through. */
|
|
case 3: sum += qlp_coeff[ 2] * data[i- 3]; /* Falls through. */
|
|
case 2: sum += qlp_coeff[ 1] * data[i- 2]; /* Falls through. */
|
|
case 1: sum += qlp_coeff[ 0] * data[i- 1];
|
|
}
|
|
residual[i] = data[i] - (sum >> lp_quantization);
|
|
}
|
|
}
|
|
else { /* order > 12 */
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
sum = 0;
|
|
switch(order) {
|
|
case 32: sum += qlp_coeff[31] * data[i-32]; /* Falls through. */
|
|
case 31: sum += qlp_coeff[30] * data[i-31]; /* Falls through. */
|
|
case 30: sum += qlp_coeff[29] * data[i-30]; /* Falls through. */
|
|
case 29: sum += qlp_coeff[28] * data[i-29]; /* Falls through. */
|
|
case 28: sum += qlp_coeff[27] * data[i-28]; /* Falls through. */
|
|
case 27: sum += qlp_coeff[26] * data[i-27]; /* Falls through. */
|
|
case 26: sum += qlp_coeff[25] * data[i-26]; /* Falls through. */
|
|
case 25: sum += qlp_coeff[24] * data[i-25]; /* Falls through. */
|
|
case 24: sum += qlp_coeff[23] * data[i-24]; /* Falls through. */
|
|
case 23: sum += qlp_coeff[22] * data[i-23]; /* Falls through. */
|
|
case 22: sum += qlp_coeff[21] * data[i-22]; /* Falls through. */
|
|
case 21: sum += qlp_coeff[20] * data[i-21]; /* Falls through. */
|
|
case 20: sum += qlp_coeff[19] * data[i-20]; /* Falls through. */
|
|
case 19: sum += qlp_coeff[18] * data[i-19]; /* Falls through. */
|
|
case 18: sum += qlp_coeff[17] * data[i-18]; /* Falls through. */
|
|
case 17: sum += qlp_coeff[16] * data[i-17]; /* Falls through. */
|
|
case 16: sum += qlp_coeff[15] * data[i-16]; /* Falls through. */
|
|
case 15: sum += qlp_coeff[14] * data[i-15]; /* Falls through. */
|
|
case 14: sum += qlp_coeff[13] * data[i-14]; /* Falls through. */
|
|
case 13: sum += qlp_coeff[12] * data[i-13];
|
|
sum += qlp_coeff[11] * data[i-12];
|
|
sum += qlp_coeff[10] * data[i-11];
|
|
sum += qlp_coeff[ 9] * data[i-10];
|
|
sum += qlp_coeff[ 8] * data[i- 9];
|
|
sum += qlp_coeff[ 7] * data[i- 8];
|
|
sum += qlp_coeff[ 6] * data[i- 7];
|
|
sum += qlp_coeff[ 5] * data[i- 6];
|
|
sum += qlp_coeff[ 4] * data[i- 5];
|
|
sum += qlp_coeff[ 3] * data[i- 4];
|
|
sum += qlp_coeff[ 2] * data[i- 3];
|
|
sum += qlp_coeff[ 1] * data[i- 2];
|
|
sum += qlp_coeff[ 0] * data[i- 1];
|
|
}
|
|
residual[i] = data[i] - (sum >> lp_quantization);
|
|
}
|
|
}
|
|
}
|
|
|
|
FLAC__SSE_TARGET("sse2")
|
|
void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[])
|
|
{
|
|
int i;
|
|
|
|
FLAC__ASSERT(order > 0);
|
|
FLAC__ASSERT(order <= 32);
|
|
|
|
if(order <= 12) {
|
|
if(order > 8) { /* order == 9, 10, 11, 12 */
|
|
if(order > 10) { /* order == 11, 12 */
|
|
if(order == 12) {
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0)); // 0 0 q[1] q[0]
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2)); // 0 0 q[3] q[2]
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4)); // 0 0 q[5] q[4]
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6)); // 0 0 q[7] q[6]
|
|
xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8)); // 0 0 q[9] q[8]
|
|
xmm5 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+10)); // 0 0 q[11] q[10]
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0)); // 0 q[1] 0 q[0]
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0)); // 0 q[3] 0 q[2]
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0)); // 0 q[5] 0 q[4]
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0)); // 0 q[7] 0 q[6]
|
|
xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0)); // 0 q[9] 0 q[8]
|
|
xmm5 = _mm_shuffle_epi32(xmm5, _MM_SHUFFLE(3,1,2,0)); // 0 q[11] 0 q[10]
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[11] * data[i-12];
|
|
//sum += qlp_coeff[10] * data[i-11];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-12)); // 0 0 d[i-11] d[i-12]
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1)); // 0 d[i-12] 0 d[i-11]
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm5); /* we use _unsigned_ multiplication and discard high dword of the result values */
|
|
|
|
//sum += qlp_coeff[9] * data[i-10];
|
|
//sum += qlp_coeff[8] * data[i-9];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-10));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm4);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[7] * data[i-8];
|
|
//sum += qlp_coeff[6] * data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * data[i-6];
|
|
//sum += qlp_coeff[4] * data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * data[i-4];
|
|
//sum += qlp_coeff[2] * data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 11 */
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm5, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8));
|
|
xmm5 = _mm_cvtsi32_si128(qlp_coeff[10]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[10] * data[i-11];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-11]);
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm5);
|
|
|
|
//sum += qlp_coeff[9] * data[i-10];
|
|
//sum += qlp_coeff[8] * data[i-9];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-10));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm4);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[7] * data[i-8];
|
|
//sum += qlp_coeff[6] * data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * data[i-6];
|
|
//sum += qlp_coeff[4] * data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * data[i-4];
|
|
//sum += qlp_coeff[2] * data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 9, 10 */
|
|
if(order == 10) {
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
xmm4 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+8));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
xmm4 = _mm_shuffle_epi32(xmm4, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[9] * data[i-10];
|
|
//sum += qlp_coeff[8] * data[i-9];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-10));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm4);
|
|
|
|
//sum += qlp_coeff[7] * data[i-8];
|
|
//sum += qlp_coeff[6] * data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * data[i-6];
|
|
//sum += qlp_coeff[4] * data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * data[i-4];
|
|
//sum += qlp_coeff[2] * data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 9 */
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm4, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
xmm4 = _mm_cvtsi32_si128(qlp_coeff[8]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[8] * data[i-9];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-9]);
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm4);
|
|
|
|
//sum += qlp_coeff[7] * data[i-8];
|
|
//sum += qlp_coeff[6] * data[i-7];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm3);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[5] * data[i-6];
|
|
//sum += qlp_coeff[4] * data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * data[i-4];
|
|
//sum += qlp_coeff[2] * data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else if(order > 4) { /* order == 5, 6, 7, 8 */
|
|
if(order > 6) { /* order == 7, 8 */
|
|
if(order == 8) {
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+6));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
xmm3 = _mm_shuffle_epi32(xmm3, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[7] * data[i-8];
|
|
//sum += qlp_coeff[6] * data[i-7];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-8));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm3);
|
|
|
|
//sum += qlp_coeff[5] * data[i-6];
|
|
//sum += qlp_coeff[4] * data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * data[i-4];
|
|
//sum += qlp_coeff[2] * data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 7 */
|
|
__m128i xmm0, xmm1, xmm2, xmm3, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
xmm3 = _mm_cvtsi32_si128(qlp_coeff[6]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[6] * data[i-7];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-7]);
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm3);
|
|
|
|
//sum += qlp_coeff[5] * data[i-6];
|
|
//sum += qlp_coeff[4] * data[i-5];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm2);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[3] * data[i-4];
|
|
//sum += qlp_coeff[2] * data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 5, 6 */
|
|
if(order == 6) {
|
|
__m128i xmm0, xmm1, xmm2, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+4));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
xmm2 = _mm_shuffle_epi32(xmm2, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[5] * data[i-6];
|
|
//sum += qlp_coeff[4] * data[i-5];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-6));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm2);
|
|
|
|
//sum += qlp_coeff[3] * data[i-4];
|
|
//sum += qlp_coeff[2] * data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 5 */
|
|
__m128i xmm0, xmm1, xmm2, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
xmm2 = _mm_cvtsi32_si128(qlp_coeff[4]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[4] * data[i-5];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-5]);
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm2);
|
|
|
|
//sum += qlp_coeff[3] * data[i-4];
|
|
//sum += qlp_coeff[2] * data[i-3];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm1);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 1, 2, 3, 4 */
|
|
if(order > 2) { /* order == 3, 4 */
|
|
if(order == 4) {
|
|
__m128i xmm0, xmm1, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+2));
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
xmm1 = _mm_shuffle_epi32(xmm1, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[3] * data[i-4];
|
|
//sum += qlp_coeff[2] * data[i-3];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-4));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm1);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 3 */
|
|
__m128i xmm0, xmm1, xmm6, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm1 = _mm_cvtsi32_si128(qlp_coeff[2]);
|
|
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum = qlp_coeff[2] * data[i-3];
|
|
xmm7 = _mm_cvtsi32_si128(data[i-3]);
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm1);
|
|
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm6 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm6 = _mm_shuffle_epi32(xmm6, _MM_SHUFFLE(2,0,3,1));
|
|
xmm6 = _mm_mul_epu32(xmm6, xmm0);
|
|
xmm7 = _mm_add_epi32(xmm7, xmm6);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
}
|
|
else { /* order == 1, 2 */
|
|
if(order == 2) {
|
|
__m128i xmm0, xmm7;
|
|
xmm0 = _mm_loadl_epi64((const __m128i*)(qlp_coeff+0));
|
|
xmm0 = _mm_shuffle_epi32(xmm0, _MM_SHUFFLE(3,1,2,0));
|
|
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
//sum = 0;
|
|
//sum += qlp_coeff[1] * data[i-2];
|
|
//sum += qlp_coeff[0] * data[i-1];
|
|
xmm7 = _mm_loadl_epi64((const __m128i*)(data+i-2));
|
|
xmm7 = _mm_shuffle_epi32(xmm7, _MM_SHUFFLE(2,0,3,1));
|
|
xmm7 = _mm_mul_epu32(xmm7, xmm0);
|
|
|
|
xmm7 = _mm_add_epi32(xmm7, _mm_srli_si128(xmm7, 8));
|
|
RESIDUAL32_RESULT(xmm7);
|
|
}
|
|
}
|
|
else { /* order == 1 */
|
|
for(i = 0; i < (int)data_len; i++)
|
|
residual[i] = data[i] - ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else { /* order > 12 */
|
|
FLAC__int32 sum;
|
|
for(i = 0; i < (int)data_len; i++) {
|
|
sum = 0;
|
|
switch(order) {
|
|
case 32: sum += qlp_coeff[31] * data[i-32]; /* Falls through. */
|
|
case 31: sum += qlp_coeff[30] * data[i-31]; /* Falls through. */
|
|
case 30: sum += qlp_coeff[29] * data[i-30]; /* Falls through. */
|
|
case 29: sum += qlp_coeff[28] * data[i-29]; /* Falls through. */
|
|
case 28: sum += qlp_coeff[27] * data[i-28]; /* Falls through. */
|
|
case 27: sum += qlp_coeff[26] * data[i-27]; /* Falls through. */
|
|
case 26: sum += qlp_coeff[25] * data[i-26]; /* Falls through. */
|
|
case 25: sum += qlp_coeff[24] * data[i-25]; /* Falls through. */
|
|
case 24: sum += qlp_coeff[23] * data[i-24]; /* Falls through. */
|
|
case 23: sum += qlp_coeff[22] * data[i-23]; /* Falls through. */
|
|
case 22: sum += qlp_coeff[21] * data[i-22]; /* Falls through. */
|
|
case 21: sum += qlp_coeff[20] * data[i-21]; /* Falls through. */
|
|
case 20: sum += qlp_coeff[19] * data[i-20]; /* Falls through. */
|
|
case 19: sum += qlp_coeff[18] * data[i-19]; /* Falls through. */
|
|
case 18: sum += qlp_coeff[17] * data[i-18]; /* Falls through. */
|
|
case 17: sum += qlp_coeff[16] * data[i-17]; /* Falls through. */
|
|
case 16: sum += qlp_coeff[15] * data[i-16]; /* Falls through. */
|
|
case 15: sum += qlp_coeff[14] * data[i-15]; /* Falls through. */
|
|
case 14: sum += qlp_coeff[13] * data[i-14]; /* Falls through. */
|
|
case 13: sum += qlp_coeff[12] * data[i-13];
|
|
sum += qlp_coeff[11] * data[i-12];
|
|
sum += qlp_coeff[10] * data[i-11];
|
|
sum += qlp_coeff[ 9] * data[i-10];
|
|
sum += qlp_coeff[ 8] * data[i- 9];
|
|
sum += qlp_coeff[ 7] * data[i- 8];
|
|
sum += qlp_coeff[ 6] * data[i- 7];
|
|
sum += qlp_coeff[ 5] * data[i- 6];
|
|
sum += qlp_coeff[ 4] * data[i- 5];
|
|
sum += qlp_coeff[ 3] * data[i- 4];
|
|
sum += qlp_coeff[ 2] * data[i- 3];
|
|
sum += qlp_coeff[ 1] * data[i- 2];
|
|
sum += qlp_coeff[ 0] * data[i- 1];
|
|
}
|
|
residual[i] = data[i] - (sum >> lp_quantization);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif /* FLAC__SSE2_SUPPORTED */
|
|
#endif /* (FLAC__CPU_IA32 || FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN */
|
|
#endif /* FLAC__NO_ASM */
|
|
#endif /* FLAC__INTEGER_ONLY_LIBRARY */
|