mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-25 01:25:09 +01:00
272 lines
8.9 KiB
C++
272 lines
8.9 KiB
C++
// Copyright 2017 The Abseil Authors.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// https://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
#ifndef ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
|
|
#define ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
|
|
|
|
#include <cassert>
|
|
#include <cmath>
|
|
#include <istream>
|
|
#include <limits>
|
|
#include <ostream>
|
|
#include <type_traits>
|
|
|
|
#include "absl/random/internal/iostream_state_saver.h"
|
|
#include "absl/random/internal/traits.h"
|
|
#include "absl/random/uniform_real_distribution.h"
|
|
|
|
namespace absl {
|
|
ABSL_NAMESPACE_BEGIN
|
|
|
|
// absl::zipf_distribution produces random integer-values in the range [0, k],
|
|
// distributed according to the unnormalized discrete probability function:
|
|
//
|
|
// P(x) = (v + x) ^ -q
|
|
//
|
|
// The parameter `v` must be greater than 0 and the parameter `q` must be
|
|
// greater than 1. If either of these parameters take invalid values then the
|
|
// behavior is undefined.
|
|
//
|
|
// IntType is the result_type generated by the generator. It must be of integral
|
|
// type; a static_assert ensures this is the case.
|
|
//
|
|
// The implementation is based on W.Hormann, G.Derflinger:
|
|
//
|
|
// "Rejection-Inversion to Generate Variates from Monotone Discrete
|
|
// Distributions"
|
|
//
|
|
// http://eeyore.wu-wien.ac.at/papers/96-04-04.wh-der.ps.gz
|
|
//
|
|
template <typename IntType = int>
|
|
class zipf_distribution {
|
|
public:
|
|
using result_type = IntType;
|
|
|
|
class param_type {
|
|
public:
|
|
using distribution_type = zipf_distribution;
|
|
|
|
// Preconditions: k > 0, v > 0, q > 1
|
|
// The precondidtions are validated when NDEBUG is not defined via
|
|
// a pair of assert() directives.
|
|
// If NDEBUG is defined and either or both of these parameters take invalid
|
|
// values, the behavior of the class is undefined.
|
|
explicit param_type(result_type k = (std::numeric_limits<IntType>::max)(),
|
|
double q = 2.0, double v = 1.0);
|
|
|
|
result_type k() const { return k_; }
|
|
double q() const { return q_; }
|
|
double v() const { return v_; }
|
|
|
|
friend bool operator==(const param_type& a, const param_type& b) {
|
|
return a.k_ == b.k_ && a.q_ == b.q_ && a.v_ == b.v_;
|
|
}
|
|
friend bool operator!=(const param_type& a, const param_type& b) {
|
|
return !(a == b);
|
|
}
|
|
|
|
private:
|
|
friend class zipf_distribution;
|
|
inline double h(double x) const;
|
|
inline double hinv(double x) const;
|
|
inline double compute_s() const;
|
|
inline double pow_negative_q(double x) const;
|
|
|
|
// Parameters here are exactly the same as the parameters of Algorithm ZRI
|
|
// in the paper.
|
|
IntType k_;
|
|
double q_;
|
|
double v_;
|
|
|
|
double one_minus_q_; // 1-q
|
|
double s_;
|
|
double one_minus_q_inv_; // 1 / 1-q
|
|
double hxm_; // h(k + 0.5)
|
|
double hx0_minus_hxm_; // h(x0) - h(k + 0.5)
|
|
|
|
static_assert(random_internal::IsIntegral<IntType>::value,
|
|
"Class-template absl::zipf_distribution<> must be "
|
|
"parameterized using an integral type.");
|
|
};
|
|
|
|
zipf_distribution()
|
|
: zipf_distribution((std::numeric_limits<IntType>::max)()) {}
|
|
|
|
explicit zipf_distribution(result_type k, double q = 2.0, double v = 1.0)
|
|
: param_(k, q, v) {}
|
|
|
|
explicit zipf_distribution(const param_type& p) : param_(p) {}
|
|
|
|
void reset() {}
|
|
|
|
template <typename URBG>
|
|
result_type operator()(URBG& g) { // NOLINT(runtime/references)
|
|
return (*this)(g, param_);
|
|
}
|
|
|
|
template <typename URBG>
|
|
result_type operator()(URBG& g, // NOLINT(runtime/references)
|
|
const param_type& p);
|
|
|
|
result_type k() const { return param_.k(); }
|
|
double q() const { return param_.q(); }
|
|
double v() const { return param_.v(); }
|
|
|
|
param_type param() const { return param_; }
|
|
void param(const param_type& p) { param_ = p; }
|
|
|
|
result_type(min)() const { return 0; }
|
|
result_type(max)() const { return k(); }
|
|
|
|
friend bool operator==(const zipf_distribution& a,
|
|
const zipf_distribution& b) {
|
|
return a.param_ == b.param_;
|
|
}
|
|
friend bool operator!=(const zipf_distribution& a,
|
|
const zipf_distribution& b) {
|
|
return a.param_ != b.param_;
|
|
}
|
|
|
|
private:
|
|
param_type param_;
|
|
};
|
|
|
|
// --------------------------------------------------------------------------
|
|
// Implementation details follow
|
|
// --------------------------------------------------------------------------
|
|
|
|
template <typename IntType>
|
|
zipf_distribution<IntType>::param_type::param_type(
|
|
typename zipf_distribution<IntType>::result_type k, double q, double v)
|
|
: k_(k), q_(q), v_(v), one_minus_q_(1 - q) {
|
|
assert(q > 1);
|
|
assert(v > 0);
|
|
assert(k > 0);
|
|
one_minus_q_inv_ = 1 / one_minus_q_;
|
|
|
|
// Setup for the ZRI algorithm (pg 17 of the paper).
|
|
// Compute: h(i max) => h(k + 0.5)
|
|
constexpr double kMax = 18446744073709549568.0;
|
|
double kd = static_cast<double>(k);
|
|
// TODO(absl-team): Determine if this check is needed, and if so, add a test
|
|
// that fails for k > kMax
|
|
if (kd > kMax) {
|
|
// Ensure that our maximum value is capped to a value which will
|
|
// round-trip back through double.
|
|
kd = kMax;
|
|
}
|
|
hxm_ = h(kd + 0.5);
|
|
|
|
// Compute: h(0)
|
|
const bool use_precomputed = (v == 1.0 && q == 2.0);
|
|
const double h0x5 = use_precomputed ? (-1.0 / 1.5) // exp(-log(1.5))
|
|
: h(0.5);
|
|
const double elogv_q = (v_ == 1.0) ? 1 : pow_negative_q(v_);
|
|
|
|
// h(0) = h(0.5) - exp(log(v) * -q)
|
|
hx0_minus_hxm_ = (h0x5 - elogv_q) - hxm_;
|
|
|
|
// And s
|
|
s_ = use_precomputed ? 0.46153846153846123 : compute_s();
|
|
}
|
|
|
|
template <typename IntType>
|
|
double zipf_distribution<IntType>::param_type::h(double x) const {
|
|
// std::exp(one_minus_q_ * std::log(v_ + x)) * one_minus_q_inv_;
|
|
x += v_;
|
|
return (one_minus_q_ == -1.0)
|
|
? (-1.0 / x) // -exp(-log(x))
|
|
: (std::exp(std::log(x) * one_minus_q_) * one_minus_q_inv_);
|
|
}
|
|
|
|
template <typename IntType>
|
|
double zipf_distribution<IntType>::param_type::hinv(double x) const {
|
|
// std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)) - v_;
|
|
return -v_ + ((one_minus_q_ == -1.0)
|
|
? (-1.0 / x) // exp(-log(-x))
|
|
: std::exp(one_minus_q_inv_ * std::log(one_minus_q_ * x)));
|
|
}
|
|
|
|
template <typename IntType>
|
|
double zipf_distribution<IntType>::param_type::compute_s() const {
|
|
// 1 - hinv(h(1.5) - std::exp(std::log(v_ + 1) * -q_));
|
|
return 1.0 - hinv(h(1.5) - pow_negative_q(v_ + 1.0));
|
|
}
|
|
|
|
template <typename IntType>
|
|
double zipf_distribution<IntType>::param_type::pow_negative_q(double x) const {
|
|
// std::exp(std::log(x) * -q_);
|
|
return q_ == 2.0 ? (1.0 / (x * x)) : std::exp(std::log(x) * -q_);
|
|
}
|
|
|
|
template <typename IntType>
|
|
template <typename URBG>
|
|
typename zipf_distribution<IntType>::result_type
|
|
zipf_distribution<IntType>::operator()(
|
|
URBG& g, const param_type& p) { // NOLINT(runtime/references)
|
|
absl::uniform_real_distribution<double> uniform_double;
|
|
double k;
|
|
for (;;) {
|
|
const double v = uniform_double(g);
|
|
const double u = p.hxm_ + v * p.hx0_minus_hxm_;
|
|
const double x = p.hinv(u);
|
|
k = rint(x); // std::floor(x + 0.5);
|
|
if (k > static_cast<double>(p.k())) continue; // reject k > max_k
|
|
if (k - x <= p.s_) break;
|
|
const double h = p.h(k + 0.5);
|
|
const double r = p.pow_negative_q(p.v_ + k);
|
|
if (u >= h - r) break;
|
|
}
|
|
IntType ki = static_cast<IntType>(k);
|
|
assert(ki <= p.k_);
|
|
return ki;
|
|
}
|
|
|
|
template <typename CharT, typename Traits, typename IntType>
|
|
std::basic_ostream<CharT, Traits>& operator<<(
|
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references)
|
|
const zipf_distribution<IntType>& x) {
|
|
using stream_type =
|
|
typename random_internal::stream_format_type<IntType>::type;
|
|
auto saver = random_internal::make_ostream_state_saver(os);
|
|
os.precision(random_internal::stream_precision_helper<double>::kPrecision);
|
|
os << static_cast<stream_type>(x.k()) << os.fill() << x.q() << os.fill()
|
|
<< x.v();
|
|
return os;
|
|
}
|
|
|
|
template <typename CharT, typename Traits, typename IntType>
|
|
std::basic_istream<CharT, Traits>& operator>>(
|
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references)
|
|
zipf_distribution<IntType>& x) { // NOLINT(runtime/references)
|
|
using result_type = typename zipf_distribution<IntType>::result_type;
|
|
using param_type = typename zipf_distribution<IntType>::param_type;
|
|
using stream_type =
|
|
typename random_internal::stream_format_type<IntType>::type;
|
|
stream_type k;
|
|
double q;
|
|
double v;
|
|
|
|
auto saver = random_internal::make_istream_state_saver(is);
|
|
is >> k >> q >> v;
|
|
if (!is.fail()) {
|
|
x.param(param_type(static_cast<result_type>(k), q, v));
|
|
}
|
|
return is;
|
|
}
|
|
|
|
ABSL_NAMESPACE_END
|
|
} // namespace absl
|
|
|
|
#endif // ABSL_RANDOM_ZIPF_DISTRIBUTION_H_
|