mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-11 12:31:30 +01:00
460 lines
15 KiB
C
460 lines
15 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <openssl/cipher.h>
|
|
#include <openssl/nid.h>
|
|
|
|
|
|
#define c2l(c, l) \
|
|
do { \
|
|
(l) = ((uint32_t)(*((c)++))); \
|
|
(l) |= ((uint32_t)(*((c)++))) << 8L; \
|
|
(l) |= ((uint32_t)(*((c)++))) << 16L; \
|
|
(l) |= ((uint32_t)(*((c)++))) << 24L; \
|
|
} while (0)
|
|
|
|
#define c2ln(c, l1, l2, n) \
|
|
do { \
|
|
(c) += (n); \
|
|
(l1) = (l2) = 0; \
|
|
switch (n) { \
|
|
case 8: \
|
|
(l2) = ((uint32_t)(*(--(c)))) << 24L; \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 7: \
|
|
(l2) |= ((uint32_t)(*(--(c)))) << 16L; \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 6: \
|
|
(l2) |= ((uint32_t)(*(--(c)))) << 8L; \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 5: \
|
|
(l2) |= ((uint32_t)(*(--(c)))); \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 4: \
|
|
(l1) = ((uint32_t)(*(--(c)))) << 24L; \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 3: \
|
|
(l1) |= ((uint32_t)(*(--(c)))) << 16L; \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 2: \
|
|
(l1) |= ((uint32_t)(*(--(c)))) << 8L; \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 1: \
|
|
(l1) |= ((uint32_t)(*(--(c)))); \
|
|
} \
|
|
} while (0)
|
|
|
|
#define l2c(l, c) \
|
|
do { \
|
|
*((c)++) = (uint8_t)(((l)) & 0xff); \
|
|
*((c)++) = (uint8_t)(((l) >> 8L) & 0xff); \
|
|
*((c)++) = (uint8_t)(((l) >> 16L) & 0xff); \
|
|
*((c)++) = (uint8_t)(((l) >> 24L) & 0xff); \
|
|
} while (0)
|
|
|
|
#define l2cn(l1, l2, c, n) \
|
|
do { \
|
|
(c) += (n); \
|
|
switch (n) { \
|
|
case 8: \
|
|
*(--(c)) = (uint8_t)(((l2) >> 24L) & 0xff); \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 7: \
|
|
*(--(c)) = (uint8_t)(((l2) >> 16L) & 0xff); \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 6: \
|
|
*(--(c)) = (uint8_t)(((l2) >> 8L) & 0xff); \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 5: \
|
|
*(--(c)) = (uint8_t)(((l2)) & 0xff); \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 4: \
|
|
*(--(c)) = (uint8_t)(((l1) >> 24L) & 0xff); \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 3: \
|
|
*(--(c)) = (uint8_t)(((l1) >> 16L) & 0xff); \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 2: \
|
|
*(--(c)) = (uint8_t)(((l1) >> 8L) & 0xff); \
|
|
OPENSSL_FALLTHROUGH; \
|
|
case 1: \
|
|
*(--(c)) = (uint8_t)(((l1)) & 0xff); \
|
|
} \
|
|
} while (0)
|
|
|
|
typedef struct rc2_key_st { uint16_t data[64]; } RC2_KEY;
|
|
|
|
static void RC2_encrypt(uint32_t *d, RC2_KEY *key) {
|
|
int i, n;
|
|
uint16_t *p0, *p1;
|
|
uint16_t x0, x1, x2, x3, t;
|
|
uint32_t l;
|
|
|
|
l = d[0];
|
|
x0 = (uint16_t)l & 0xffff;
|
|
x1 = (uint16_t)(l >> 16L);
|
|
l = d[1];
|
|
x2 = (uint16_t)l & 0xffff;
|
|
x3 = (uint16_t)(l >> 16L);
|
|
|
|
n = 3;
|
|
i = 5;
|
|
|
|
p0 = p1 = &key->data[0];
|
|
for (;;) {
|
|
t = (x0 + (x1 & ~x3) + (x2 & x3) + *(p0++)) & 0xffff;
|
|
x0 = (t << 1) | (t >> 15);
|
|
t = (x1 + (x2 & ~x0) + (x3 & x0) + *(p0++)) & 0xffff;
|
|
x1 = (t << 2) | (t >> 14);
|
|
t = (x2 + (x3 & ~x1) + (x0 & x1) + *(p0++)) & 0xffff;
|
|
x2 = (t << 3) | (t >> 13);
|
|
t = (x3 + (x0 & ~x2) + (x1 & x2) + *(p0++)) & 0xffff;
|
|
x3 = (t << 5) | (t >> 11);
|
|
|
|
if (--i == 0) {
|
|
if (--n == 0) {
|
|
break;
|
|
}
|
|
i = (n == 2) ? 6 : 5;
|
|
|
|
x0 += p1[x3 & 0x3f];
|
|
x1 += p1[x0 & 0x3f];
|
|
x2 += p1[x1 & 0x3f];
|
|
x3 += p1[x2 & 0x3f];
|
|
}
|
|
}
|
|
|
|
d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L);
|
|
d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L);
|
|
}
|
|
|
|
static void RC2_decrypt(uint32_t *d, RC2_KEY *key) {
|
|
int i, n;
|
|
uint16_t *p0, *p1;
|
|
uint16_t x0, x1, x2, x3, t;
|
|
uint32_t l;
|
|
|
|
l = d[0];
|
|
x0 = (uint16_t)l & 0xffff;
|
|
x1 = (uint16_t)(l >> 16L);
|
|
l = d[1];
|
|
x2 = (uint16_t)l & 0xffff;
|
|
x3 = (uint16_t)(l >> 16L);
|
|
|
|
n = 3;
|
|
i = 5;
|
|
|
|
p0 = &key->data[63];
|
|
p1 = &key->data[0];
|
|
for (;;) {
|
|
t = ((x3 << 11) | (x3 >> 5)) & 0xffff;
|
|
x3 = (t - (x0 & ~x2) - (x1 & x2) - *(p0--)) & 0xffff;
|
|
t = ((x2 << 13) | (x2 >> 3)) & 0xffff;
|
|
x2 = (t - (x3 & ~x1) - (x0 & x1) - *(p0--)) & 0xffff;
|
|
t = ((x1 << 14) | (x1 >> 2)) & 0xffff;
|
|
x1 = (t - (x2 & ~x0) - (x3 & x0) - *(p0--)) & 0xffff;
|
|
t = ((x0 << 15) | (x0 >> 1)) & 0xffff;
|
|
x0 = (t - (x1 & ~x3) - (x2 & x3) - *(p0--)) & 0xffff;
|
|
|
|
if (--i == 0) {
|
|
if (--n == 0) {
|
|
break;
|
|
}
|
|
i = (n == 2) ? 6 : 5;
|
|
|
|
x3 = (x3 - p1[x2 & 0x3f]) & 0xffff;
|
|
x2 = (x2 - p1[x1 & 0x3f]) & 0xffff;
|
|
x1 = (x1 - p1[x0 & 0x3f]) & 0xffff;
|
|
x0 = (x0 - p1[x3 & 0x3f]) & 0xffff;
|
|
}
|
|
}
|
|
|
|
d[0] = (uint32_t)(x0 & 0xffff) | ((uint32_t)(x1 & 0xffff) << 16L);
|
|
d[1] = (uint32_t)(x2 & 0xffff) | ((uint32_t)(x3 & 0xffff) << 16L);
|
|
}
|
|
|
|
static void RC2_cbc_encrypt(const uint8_t *in, uint8_t *out, size_t length,
|
|
RC2_KEY *ks, uint8_t *iv, int encrypt) {
|
|
uint32_t tin0, tin1;
|
|
uint32_t tout0, tout1, xor0, xor1;
|
|
long l = length;
|
|
uint32_t tin[2];
|
|
|
|
if (encrypt) {
|
|
c2l(iv, tout0);
|
|
c2l(iv, tout1);
|
|
iv -= 8;
|
|
for (l -= 8; l >= 0; l -= 8) {
|
|
c2l(in, tin0);
|
|
c2l(in, tin1);
|
|
tin0 ^= tout0;
|
|
tin1 ^= tout1;
|
|
tin[0] = tin0;
|
|
tin[1] = tin1;
|
|
RC2_encrypt(tin, ks);
|
|
tout0 = tin[0];
|
|
l2c(tout0, out);
|
|
tout1 = tin[1];
|
|
l2c(tout1, out);
|
|
}
|
|
if (l != -8) {
|
|
c2ln(in, tin0, tin1, l + 8);
|
|
tin0 ^= tout0;
|
|
tin1 ^= tout1;
|
|
tin[0] = tin0;
|
|
tin[1] = tin1;
|
|
RC2_encrypt(tin, ks);
|
|
tout0 = tin[0];
|
|
l2c(tout0, out);
|
|
tout1 = tin[1];
|
|
l2c(tout1, out);
|
|
}
|
|
l2c(tout0, iv);
|
|
l2c(tout1, iv);
|
|
} else {
|
|
c2l(iv, xor0);
|
|
c2l(iv, xor1);
|
|
iv -= 8;
|
|
for (l -= 8; l >= 0; l -= 8) {
|
|
c2l(in, tin0);
|
|
tin[0] = tin0;
|
|
c2l(in, tin1);
|
|
tin[1] = tin1;
|
|
RC2_decrypt(tin, ks);
|
|
tout0 = tin[0] ^ xor0;
|
|
tout1 = tin[1] ^ xor1;
|
|
l2c(tout0, out);
|
|
l2c(tout1, out);
|
|
xor0 = tin0;
|
|
xor1 = tin1;
|
|
}
|
|
if (l != -8) {
|
|
c2l(in, tin0);
|
|
tin[0] = tin0;
|
|
c2l(in, tin1);
|
|
tin[1] = tin1;
|
|
RC2_decrypt(tin, ks);
|
|
tout0 = tin[0] ^ xor0;
|
|
tout1 = tin[1] ^ xor1;
|
|
l2cn(tout0, tout1, out, l + 8);
|
|
xor0 = tin0;
|
|
xor1 = tin1;
|
|
}
|
|
l2c(xor0, iv);
|
|
l2c(xor1, iv);
|
|
}
|
|
tin[0] = tin[1] = 0;
|
|
}
|
|
|
|
static const uint8_t key_table[256] = {
|
|
0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79,
|
|
0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e,
|
|
0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5,
|
|
0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32,
|
|
0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22,
|
|
0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c,
|
|
0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f,
|
|
0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26,
|
|
0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b,
|
|
0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7,
|
|
0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde,
|
|
0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a,
|
|
0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e,
|
|
0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc,
|
|
0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85,
|
|
0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31,
|
|
0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10,
|
|
0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c,
|
|
0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b,
|
|
0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e,
|
|
0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68,
|
|
0xfe, 0x7f, 0xc1, 0xad,
|
|
};
|
|
|
|
static void RC2_set_key(RC2_KEY *key, int len, const uint8_t *data, int bits) {
|
|
int i, j;
|
|
uint8_t *k;
|
|
uint16_t *ki;
|
|
unsigned int c, d;
|
|
|
|
k = (uint8_t *)&key->data[0];
|
|
*k = 0; // for if there is a zero length key
|
|
|
|
if (len > 128) {
|
|
len = 128;
|
|
}
|
|
if (bits <= 0) {
|
|
bits = 1024;
|
|
}
|
|
if (bits > 1024) {
|
|
bits = 1024;
|
|
}
|
|
|
|
for (i = 0; i < len; i++) {
|
|
k[i] = data[i];
|
|
}
|
|
|
|
// expand table
|
|
d = k[len - 1];
|
|
j = 0;
|
|
for (i = len; i < 128; i++, j++) {
|
|
d = key_table[(k[j] + d) & 0xff];
|
|
k[i] = d;
|
|
}
|
|
|
|
// hmm.... key reduction to 'bits' bits
|
|
|
|
j = (bits + 7) >> 3;
|
|
i = 128 - j;
|
|
c = (0xff >> (-bits & 0x07));
|
|
|
|
d = key_table[k[i] & c];
|
|
k[i] = d;
|
|
while (i--) {
|
|
d = key_table[k[i + j] ^ d];
|
|
k[i] = d;
|
|
}
|
|
|
|
// copy from bytes into uint16_t's
|
|
ki = &(key->data[63]);
|
|
for (i = 127; i >= 0; i -= 2) {
|
|
*(ki--) = ((k[i] << 8) | k[i - 1]) & 0xffff;
|
|
}
|
|
}
|
|
|
|
typedef struct {
|
|
int key_bits; // effective key bits
|
|
RC2_KEY ks; // key schedule
|
|
} EVP_RC2_KEY;
|
|
|
|
static int rc2_init_key(EVP_CIPHER_CTX *ctx, const uint8_t *key,
|
|
const uint8_t *iv, int enc) {
|
|
EVP_RC2_KEY *rc2_key = (EVP_RC2_KEY *)ctx->cipher_data;
|
|
RC2_set_key(&rc2_key->ks, EVP_CIPHER_CTX_key_length(ctx), key,
|
|
rc2_key->key_bits);
|
|
return 1;
|
|
}
|
|
|
|
static int rc2_cbc_cipher(EVP_CIPHER_CTX *ctx, uint8_t *out, const uint8_t *in,
|
|
size_t inl) {
|
|
EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data;
|
|
static const size_t kChunkSize = 0x10000;
|
|
|
|
while (inl >= kChunkSize) {
|
|
RC2_cbc_encrypt(in, out, kChunkSize, &key->ks, ctx->iv, ctx->encrypt);
|
|
inl -= kChunkSize;
|
|
in += kChunkSize;
|
|
out += kChunkSize;
|
|
}
|
|
if (inl) {
|
|
RC2_cbc_encrypt(in, out, inl, &key->ks, ctx->iv, ctx->encrypt);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int rc2_ctrl(EVP_CIPHER_CTX *ctx, int type, int arg, void *ptr) {
|
|
EVP_RC2_KEY *key = (EVP_RC2_KEY *)ctx->cipher_data;
|
|
|
|
switch (type) {
|
|
case EVP_CTRL_INIT:
|
|
key->key_bits = EVP_CIPHER_CTX_key_length(ctx) * 8;
|
|
return 1;
|
|
case EVP_CTRL_SET_RC2_KEY_BITS:
|
|
// Should be overridden by later call to |EVP_CTRL_INIT|, but
|
|
// people call it, so it may as well work.
|
|
key->key_bits = arg;
|
|
return 1;
|
|
|
|
default:
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
static const EVP_CIPHER rc2_40_cbc = {
|
|
NID_rc2_40_cbc,
|
|
8 /* block size */,
|
|
5 /* 40 bit */,
|
|
8 /* iv len */,
|
|
sizeof(EVP_RC2_KEY),
|
|
EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
|
|
NULL /* app_data */,
|
|
rc2_init_key,
|
|
rc2_cbc_cipher,
|
|
NULL,
|
|
rc2_ctrl,
|
|
};
|
|
|
|
const EVP_CIPHER *EVP_rc2_40_cbc(void) {
|
|
return &rc2_40_cbc;
|
|
}
|
|
|
|
static const EVP_CIPHER rc2_cbc = {
|
|
NID_rc2_cbc,
|
|
8 /* block size */,
|
|
16 /* 128 bit */,
|
|
8 /* iv len */,
|
|
sizeof(EVP_RC2_KEY),
|
|
EVP_CIPH_CBC_MODE | EVP_CIPH_VARIABLE_LENGTH | EVP_CIPH_CTRL_INIT,
|
|
NULL /* app_data */,
|
|
rc2_init_key,
|
|
rc2_cbc_cipher,
|
|
NULL,
|
|
rc2_ctrl,
|
|
};
|
|
|
|
const EVP_CIPHER *EVP_rc2_cbc(void) {
|
|
return &rc2_cbc;
|
|
}
|