Telegram-Android/TMessagesProj/jni/voip/webrtc/net/dcsctp/timer/timer.h
2022-03-11 19:49:54 +03:00

212 lines
8.2 KiB
C++

/*
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#ifndef NET_DCSCTP_TIMER_TIMER_H_
#define NET_DCSCTP_TIMER_TIMER_H_
#include <stdint.h>
#include <algorithm>
#include <functional>
#include <map>
#include <memory>
#include <string>
#include <utility>
#include "absl/strings/string_view.h"
#include "absl/types/optional.h"
#include "api/task_queue/task_queue_base.h"
#include "net/dcsctp/public/timeout.h"
#include "rtc_base/strong_alias.h"
namespace dcsctp {
using TimerID = webrtc::StrongAlias<class TimerIDTag, uint32_t>;
using TimerGeneration = webrtc::StrongAlias<class TimerGenerationTag, uint32_t>;
enum class TimerBackoffAlgorithm {
// The base duration will be used for any restart.
kFixed,
// An exponential backoff is used for restarts, with a 2x multiplier, meaning
// that every restart will use a duration that is twice as long as the
// previous.
kExponential,
};
struct TimerOptions {
explicit TimerOptions(DurationMs duration)
: TimerOptions(duration, TimerBackoffAlgorithm::kExponential) {}
TimerOptions(DurationMs duration, TimerBackoffAlgorithm backoff_algorithm)
: TimerOptions(duration, backoff_algorithm, absl::nullopt) {}
TimerOptions(DurationMs duration,
TimerBackoffAlgorithm backoff_algorithm,
absl::optional<int> max_restarts)
: TimerOptions(duration, backoff_algorithm, max_restarts, absl::nullopt) {
}
TimerOptions(DurationMs duration,
TimerBackoffAlgorithm backoff_algorithm,
absl::optional<int> max_restarts,
absl::optional<DurationMs> max_backoff_duration)
: TimerOptions(duration,
backoff_algorithm,
max_restarts,
max_backoff_duration,
webrtc::TaskQueueBase::DelayPrecision::kLow) {}
TimerOptions(DurationMs duration,
TimerBackoffAlgorithm backoff_algorithm,
absl::optional<int> max_restarts,
absl::optional<DurationMs> max_backoff_duration,
webrtc::TaskQueueBase::DelayPrecision precision)
: duration(duration),
backoff_algorithm(backoff_algorithm),
max_restarts(max_restarts),
max_backoff_duration(max_backoff_duration),
precision(precision) {}
// The initial timer duration. Can be overridden with `set_duration`.
const DurationMs duration;
// If the duration should be increased (using exponential backoff) when it is
// restarted. If not set, the same duration will be used.
const TimerBackoffAlgorithm backoff_algorithm;
// The maximum number of times that the timer will be automatically restarted,
// or absl::nullopt if there is no limit.
const absl::optional<int> max_restarts;
// The maximum timeout value for exponential backoff.
const absl::optional<DurationMs> max_backoff_duration;
// The precision of the webrtc::TaskQueueBase used for scheduling.
const webrtc::TaskQueueBase::DelayPrecision precision;
};
// A high-level timer (in contrast to the low-level `Timeout` class).
//
// Timers are started and can be stopped or restarted. When a timer expires,
// the provided `on_expired` callback will be triggered. A timer is
// automatically restarted, as long as the number of restarts is below the
// configurable `max_restarts` parameter. The `is_running` property can be
// queried to know if it's still running after having expired.
//
// When a timer is restarted, it will use a configurable `backoff_algorithm` to
// possibly adjust the duration of the next expiry. It is also possible to
// return a new base duration (which is the duration before it's adjusted by the
// backoff algorithm).
class Timer {
public:
// The maximum timer duration - one day.
static constexpr DurationMs kMaxTimerDuration = DurationMs(24 * 3600 * 1000);
// When expired, the timer handler can optionally return a new duration which
// will be set as `duration` and used as base duration when the timer is
// restarted and as input to the backoff algorithm.
using OnExpired = std::function<absl::optional<DurationMs>()>;
// TimerManager will have pointers to these instances, so they must not move.
Timer(const Timer&) = delete;
Timer& operator=(const Timer&) = delete;
~Timer();
// Starts the timer if it's stopped or restarts the timer if it's already
// running. The `expiration_count` will be reset.
void Start();
// Stops the timer. This can also be called when the timer is already stopped.
// The `expiration_count` will be reset.
void Stop();
// Sets the base duration. The actual timer duration may be larger depending
// on the backoff algorithm.
void set_duration(DurationMs duration) {
duration_ = std::min(duration, kMaxTimerDuration);
}
// Retrieves the base duration. The actual timer duration may be larger
// depending on the backoff algorithm.
DurationMs duration() const { return duration_; }
// Returns the number of times the timer has expired.
int expiration_count() const { return expiration_count_; }
// Returns the timer's options.
const TimerOptions& options() const { return options_; }
// Returns the name of the timer.
absl::string_view name() const { return name_; }
// Indicates if this timer is currently running.
bool is_running() const { return is_running_; }
private:
friend class TimerManager;
using UnregisterHandler = std::function<void()>;
Timer(TimerID id,
absl::string_view name,
OnExpired on_expired,
UnregisterHandler unregister,
std::unique_ptr<Timeout> timeout,
const TimerOptions& options);
// Called by TimerManager. Will trigger the callback and increment
// `expiration_count`. The timer will automatically be restarted at the
// duration as decided by the backoff algorithm, unless the
// `TimerOptions::max_restarts` has been reached and then it will be stopped
// and `is_running()` will return false.
void Trigger(TimerGeneration generation);
const TimerID id_;
const std::string name_;
const TimerOptions options_;
const OnExpired on_expired_;
const UnregisterHandler unregister_handler_;
const std::unique_ptr<Timeout> timeout_;
DurationMs duration_;
// Increased on each start, and is matched on Trigger, to avoid races. And by
// race, meaning that a timeout - which may be evaluated/expired on a
// different thread while this thread has stopped that timer already. Note
// that the entire socket is not thread-safe, so `TimerManager::HandleTimeout`
// is never executed concurrently with any timer starting/stopping.
//
// This will wrap around after 4 billion timer restarts, and if it wraps
// around, it would just trigger _this_ timer in advance (but it's hard to
// restart it 4 billion times within its duration).
TimerGeneration generation_ = TimerGeneration(0);
bool is_running_ = false;
// Incremented each time time has expired and reset when stopped or restarted.
int expiration_count_ = 0;
};
// Creates and manages timers.
class TimerManager {
public:
explicit TimerManager(
std::function<std::unique_ptr<Timeout>(
webrtc::TaskQueueBase::DelayPrecision)> create_timeout)
: create_timeout_(std::move(create_timeout)) {}
// Creates a timer with name `name` that will expire (when started) after
// `options.duration` and call `on_expired`. There are more `options` that
// affects the behavior. Note that timers are created initially stopped.
std::unique_ptr<Timer> CreateTimer(absl::string_view name,
Timer::OnExpired on_expired,
const TimerOptions& options);
void HandleTimeout(TimeoutID timeout_id);
private:
const std::function<std::unique_ptr<Timeout>(
webrtc::TaskQueueBase::DelayPrecision)>
create_timeout_;
std::map<TimerID, Timer*> timers_;
TimerID next_id_ = TimerID(0);
};
} // namespace dcsctp
#endif // NET_DCSCTP_TIMER_TIMER_H_