mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-09 11:44:14 +01:00
479 lines
17 KiB
C++
479 lines
17 KiB
C++
/*
|
|
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
#include "net/dcsctp/tx/outstanding_data.h"
|
|
|
|
#include <algorithm>
|
|
#include <set>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "net/dcsctp/common/math.h"
|
|
#include "net/dcsctp/common/sequence_numbers.h"
|
|
#include "net/dcsctp/public/types.h"
|
|
#include "rtc_base/logging.h"
|
|
|
|
namespace dcsctp {
|
|
|
|
// The number of times a packet must be NACKed before it's retransmitted.
|
|
// See https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
constexpr uint8_t kNumberOfNacksForRetransmission = 3;
|
|
|
|
// Returns how large a chunk will be, serialized, carrying the data
|
|
size_t OutstandingData::GetSerializedChunkSize(const Data& data) const {
|
|
return RoundUpTo4(data_chunk_header_size_ + data.size());
|
|
}
|
|
|
|
void OutstandingData::Item::Ack() {
|
|
ack_state_ = AckState::kAcked;
|
|
should_be_retransmitted_ = false;
|
|
}
|
|
|
|
OutstandingData::Item::NackAction OutstandingData::Item::Nack(
|
|
bool retransmit_now) {
|
|
ack_state_ = AckState::kNacked;
|
|
++nack_count_;
|
|
if ((retransmit_now || nack_count_ >= kNumberOfNacksForRetransmission) &&
|
|
!is_abandoned_) {
|
|
// Nacked enough times - it's considered lost.
|
|
if (num_retransmissions_ < *max_retransmissions_) {
|
|
should_be_retransmitted_ = true;
|
|
return NackAction::kRetransmit;
|
|
}
|
|
Abandon();
|
|
return NackAction::kAbandon;
|
|
}
|
|
return NackAction::kNothing;
|
|
}
|
|
|
|
void OutstandingData::Item::Retransmit() {
|
|
ack_state_ = AckState::kUnacked;
|
|
should_be_retransmitted_ = false;
|
|
|
|
nack_count_ = 0;
|
|
++num_retransmissions_;
|
|
}
|
|
|
|
void OutstandingData::Item::Abandon() {
|
|
is_abandoned_ = true;
|
|
should_be_retransmitted_ = false;
|
|
}
|
|
|
|
bool OutstandingData::Item::has_expired(TimeMs now) const {
|
|
return expires_at_ <= now;
|
|
}
|
|
|
|
bool OutstandingData::IsConsistent() const {
|
|
size_t actual_outstanding_bytes = 0;
|
|
size_t actual_outstanding_items = 0;
|
|
|
|
std::set<UnwrappedTSN> actual_to_be_retransmitted;
|
|
for (const auto& [tsn, item] : outstanding_data_) {
|
|
if (item.is_outstanding()) {
|
|
actual_outstanding_bytes += GetSerializedChunkSize(item.data());
|
|
++actual_outstanding_items;
|
|
}
|
|
|
|
if (item.should_be_retransmitted()) {
|
|
actual_to_be_retransmitted.insert(tsn);
|
|
}
|
|
}
|
|
|
|
if (outstanding_data_.empty() &&
|
|
next_tsn_ != last_cumulative_tsn_ack_.next_value()) {
|
|
return false;
|
|
}
|
|
|
|
return actual_outstanding_bytes == outstanding_bytes_ &&
|
|
actual_outstanding_items == outstanding_items_ &&
|
|
actual_to_be_retransmitted == to_be_retransmitted_;
|
|
}
|
|
|
|
void OutstandingData::AckChunk(AckInfo& ack_info,
|
|
std::map<UnwrappedTSN, Item>::iterator iter) {
|
|
if (!iter->second.is_acked()) {
|
|
size_t serialized_size = GetSerializedChunkSize(iter->second.data());
|
|
ack_info.bytes_acked += serialized_size;
|
|
if (iter->second.is_outstanding()) {
|
|
outstanding_bytes_ -= serialized_size;
|
|
--outstanding_items_;
|
|
}
|
|
if (iter->second.should_be_retransmitted()) {
|
|
to_be_retransmitted_.erase(iter->first);
|
|
}
|
|
iter->second.Ack();
|
|
ack_info.highest_tsn_acked =
|
|
std::max(ack_info.highest_tsn_acked, iter->first);
|
|
}
|
|
}
|
|
|
|
OutstandingData::AckInfo OutstandingData::HandleSack(
|
|
UnwrappedTSN cumulative_tsn_ack,
|
|
rtc::ArrayView<const SackChunk::GapAckBlock> gap_ack_blocks,
|
|
bool is_in_fast_retransmit) {
|
|
OutstandingData::AckInfo ack_info(cumulative_tsn_ack);
|
|
// Erase all items up to cumulative_tsn_ack.
|
|
RemoveAcked(cumulative_tsn_ack, ack_info);
|
|
|
|
// ACK packets reported in the gap ack blocks
|
|
AckGapBlocks(cumulative_tsn_ack, gap_ack_blocks, ack_info);
|
|
|
|
// NACK and possibly mark for retransmit chunks that weren't acked.
|
|
NackBetweenAckBlocks(cumulative_tsn_ack, gap_ack_blocks,
|
|
is_in_fast_retransmit, ack_info);
|
|
|
|
RTC_DCHECK(IsConsistent());
|
|
return ack_info;
|
|
}
|
|
|
|
void OutstandingData::RemoveAcked(UnwrappedTSN cumulative_tsn_ack,
|
|
AckInfo& ack_info) {
|
|
auto first_unacked = outstanding_data_.upper_bound(cumulative_tsn_ack);
|
|
|
|
for (auto iter = outstanding_data_.begin(); iter != first_unacked; ++iter) {
|
|
AckChunk(ack_info, iter);
|
|
}
|
|
|
|
outstanding_data_.erase(outstanding_data_.begin(), first_unacked);
|
|
last_cumulative_tsn_ack_ = cumulative_tsn_ack;
|
|
}
|
|
|
|
void OutstandingData::AckGapBlocks(
|
|
UnwrappedTSN cumulative_tsn_ack,
|
|
rtc::ArrayView<const SackChunk::GapAckBlock> gap_ack_blocks,
|
|
AckInfo& ack_info) {
|
|
// Mark all non-gaps as ACKED (but they can't be removed) as (from RFC)
|
|
// "SCTP considers the information carried in the Gap Ack Blocks in the
|
|
// SACK chunk as advisory.". Note that when NR-SACK is supported, this can be
|
|
// handled differently.
|
|
|
|
for (auto& block : gap_ack_blocks) {
|
|
auto start = outstanding_data_.lower_bound(
|
|
UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start));
|
|
auto end = outstanding_data_.upper_bound(
|
|
UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end));
|
|
for (auto iter = start; iter != end; ++iter) {
|
|
AckChunk(ack_info, iter);
|
|
}
|
|
}
|
|
}
|
|
|
|
void OutstandingData::NackBetweenAckBlocks(
|
|
UnwrappedTSN cumulative_tsn_ack,
|
|
rtc::ArrayView<const SackChunk::GapAckBlock> gap_ack_blocks,
|
|
bool is_in_fast_recovery,
|
|
OutstandingData::AckInfo& ack_info) {
|
|
// Mark everything between the blocks as NACKED/TO_BE_RETRANSMITTED.
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
// "Mark the DATA chunk(s) with three miss indications for retransmission."
|
|
// "For each incoming SACK, miss indications are incremented only for
|
|
// missing TSNs prior to the highest TSN newly acknowledged in the SACK."
|
|
//
|
|
// What this means is that only when there is a increasing stream of data
|
|
// received and there are new packets seen (since last time), packets that are
|
|
// in-flight and between gaps should be nacked. This means that SCTP relies on
|
|
// the T3-RTX-timer to re-send packets otherwise.
|
|
UnwrappedTSN max_tsn_to_nack = ack_info.highest_tsn_acked;
|
|
if (is_in_fast_recovery && cumulative_tsn_ack > last_cumulative_tsn_ack_) {
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
// "If an endpoint is in Fast Recovery and a SACK arrives that advances
|
|
// the Cumulative TSN Ack Point, the miss indications are incremented for
|
|
// all TSNs reported missing in the SACK."
|
|
max_tsn_to_nack = UnwrappedTSN::AddTo(
|
|
cumulative_tsn_ack,
|
|
gap_ack_blocks.empty() ? 0 : gap_ack_blocks.rbegin()->end);
|
|
}
|
|
|
|
UnwrappedTSN prev_block_last_acked = cumulative_tsn_ack;
|
|
for (auto& block : gap_ack_blocks) {
|
|
UnwrappedTSN cur_block_first_acked =
|
|
UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start);
|
|
for (auto iter = outstanding_data_.upper_bound(prev_block_last_acked);
|
|
iter != outstanding_data_.lower_bound(cur_block_first_acked); ++iter) {
|
|
if (iter->first <= max_tsn_to_nack) {
|
|
ack_info.has_packet_loss =
|
|
NackItem(iter->first, iter->second, /*retransmit_now=*/false);
|
|
}
|
|
}
|
|
prev_block_last_acked = UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end);
|
|
}
|
|
|
|
// Note that packets are not NACKED which are above the highest gap-ack-block
|
|
// (or above the cumulative ack TSN if no gap-ack-blocks) as only packets
|
|
// up until the highest_tsn_acked (see above) should be considered when
|
|
// NACKing.
|
|
}
|
|
|
|
bool OutstandingData::NackItem(UnwrappedTSN tsn,
|
|
Item& item,
|
|
bool retransmit_now) {
|
|
if (item.is_outstanding()) {
|
|
outstanding_bytes_ -= GetSerializedChunkSize(item.data());
|
|
--outstanding_items_;
|
|
}
|
|
|
|
switch (item.Nack(retransmit_now)) {
|
|
case Item::NackAction::kNothing:
|
|
return false;
|
|
case Item::NackAction::kRetransmit:
|
|
to_be_retransmitted_.insert(tsn);
|
|
RTC_DLOG(LS_VERBOSE) << *tsn.Wrap() << " marked for retransmission";
|
|
break;
|
|
case Item::NackAction::kAbandon:
|
|
AbandonAllFor(item);
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void OutstandingData::AbandonAllFor(const Item& item) {
|
|
// Erase all remaining chunks from the producer, if any.
|
|
if (discard_from_send_queue_(item.data().is_unordered, item.data().stream_id,
|
|
item.data().message_id)) {
|
|
// There were remaining chunks to be produced for this message. Since the
|
|
// receiver may have already received all chunks (up till now) for this
|
|
// message, we can't just FORWARD-TSN to the last fragment in this
|
|
// (abandoned) message and start sending a new message, as the receiver will
|
|
// then see a new message before the end of the previous one was seen (or
|
|
// skipped over). So create a new fragment, representing the end, that the
|
|
// received will never see as it is abandoned immediately and used as cum
|
|
// TSN in the sent FORWARD-TSN.
|
|
UnwrappedTSN tsn = next_tsn_;
|
|
next_tsn_.Increment();
|
|
Data message_end(item.data().stream_id, item.data().ssn,
|
|
item.data().message_id, item.data().fsn, item.data().ppid,
|
|
std::vector<uint8_t>(), Data::IsBeginning(false),
|
|
Data::IsEnd(true), item.data().is_unordered);
|
|
Item& added_item =
|
|
outstanding_data_
|
|
.emplace(tsn,
|
|
Item(std::move(message_end), MaxRetransmits::NoLimit(),
|
|
TimeMs(0), TimeMs::InfiniteFuture()))
|
|
.first->second;
|
|
// The added chunk shouldn't be included in `outstanding_bytes`, so set it
|
|
// as acked.
|
|
added_item.Ack();
|
|
RTC_DLOG(LS_VERBOSE) << "Adding unsent end placeholder for message at tsn="
|
|
<< *tsn.Wrap();
|
|
}
|
|
|
|
for (auto& [tsn, other] : outstanding_data_) {
|
|
if (!other.is_abandoned() &&
|
|
other.data().stream_id == item.data().stream_id &&
|
|
other.data().is_unordered == item.data().is_unordered &&
|
|
other.data().message_id == item.data().message_id) {
|
|
RTC_DLOG(LS_VERBOSE) << "Marking chunk " << *tsn.Wrap()
|
|
<< " as abandoned";
|
|
if (other.should_be_retransmitted()) {
|
|
to_be_retransmitted_.erase(tsn);
|
|
}
|
|
other.Abandon();
|
|
}
|
|
}
|
|
}
|
|
|
|
std::vector<std::pair<TSN, Data>> OutstandingData::GetChunksToBeRetransmitted(
|
|
size_t max_size) {
|
|
std::vector<std::pair<TSN, Data>> result;
|
|
|
|
for (auto it = to_be_retransmitted_.begin();
|
|
it != to_be_retransmitted_.end();) {
|
|
UnwrappedTSN tsn = *it;
|
|
auto elem = outstanding_data_.find(tsn);
|
|
RTC_DCHECK(elem != outstanding_data_.end());
|
|
Item& item = elem->second;
|
|
RTC_DCHECK(item.should_be_retransmitted());
|
|
RTC_DCHECK(!item.is_outstanding());
|
|
RTC_DCHECK(!item.is_abandoned());
|
|
RTC_DCHECK(!item.is_acked());
|
|
|
|
size_t serialized_size = GetSerializedChunkSize(item.data());
|
|
if (serialized_size <= max_size) {
|
|
item.Retransmit();
|
|
result.emplace_back(tsn.Wrap(), item.data().Clone());
|
|
max_size -= serialized_size;
|
|
outstanding_bytes_ += serialized_size;
|
|
++outstanding_items_;
|
|
it = to_be_retransmitted_.erase(it);
|
|
} else {
|
|
++it;
|
|
}
|
|
// No point in continuing if the packet is full.
|
|
if (max_size <= data_chunk_header_size_) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
RTC_DCHECK(IsConsistent());
|
|
return result;
|
|
}
|
|
|
|
void OutstandingData::ExpireOutstandingChunks(TimeMs now) {
|
|
for (const auto& [tsn, item] : outstanding_data_) {
|
|
// Chunks that are nacked can be expired. Care should be taken not to expire
|
|
// unacked (in-flight) chunks as they might have been received, but the SACK
|
|
// is either delayed or in-flight and may be received later.
|
|
if (item.is_abandoned()) {
|
|
// Already abandoned.
|
|
} else if (item.is_nacked() && item.has_expired(now)) {
|
|
RTC_DLOG(LS_VERBOSE) << "Marking nacked chunk " << *tsn.Wrap()
|
|
<< " and message " << *item.data().message_id
|
|
<< " as expired";
|
|
AbandonAllFor(item);
|
|
} else {
|
|
// A non-expired chunk. No need to iterate any further.
|
|
break;
|
|
}
|
|
}
|
|
RTC_DCHECK(IsConsistent());
|
|
}
|
|
|
|
UnwrappedTSN OutstandingData::highest_outstanding_tsn() const {
|
|
return outstanding_data_.empty() ? last_cumulative_tsn_ack_
|
|
: outstanding_data_.rbegin()->first;
|
|
}
|
|
|
|
absl::optional<UnwrappedTSN> OutstandingData::Insert(
|
|
const Data& data,
|
|
MaxRetransmits max_retransmissions,
|
|
TimeMs time_sent,
|
|
TimeMs expires_at) {
|
|
UnwrappedTSN tsn = next_tsn_;
|
|
next_tsn_.Increment();
|
|
|
|
// All chunks are always padded to be even divisible by 4.
|
|
size_t chunk_size = GetSerializedChunkSize(data);
|
|
outstanding_bytes_ += chunk_size;
|
|
++outstanding_items_;
|
|
auto it = outstanding_data_
|
|
.emplace(tsn, Item(data.Clone(), max_retransmissions, time_sent,
|
|
expires_at))
|
|
.first;
|
|
|
|
if (it->second.has_expired(time_sent)) {
|
|
// No need to send it - it was expired when it was in the send
|
|
// queue.
|
|
RTC_DLOG(LS_VERBOSE) << "Marking freshly produced chunk "
|
|
<< *it->first.Wrap() << " and message "
|
|
<< *it->second.data().message_id << " as expired";
|
|
AbandonAllFor(it->second);
|
|
RTC_DCHECK(IsConsistent());
|
|
return absl::nullopt;
|
|
}
|
|
|
|
RTC_DCHECK(IsConsistent());
|
|
return tsn;
|
|
}
|
|
|
|
void OutstandingData::NackAll() {
|
|
for (auto& [tsn, item] : outstanding_data_) {
|
|
if (!item.is_acked()) {
|
|
NackItem(tsn, item, /*retransmit_now=*/true);
|
|
}
|
|
}
|
|
RTC_DCHECK(IsConsistent());
|
|
}
|
|
|
|
absl::optional<DurationMs> OutstandingData::MeasureRTT(TimeMs now,
|
|
UnwrappedTSN tsn) const {
|
|
auto it = outstanding_data_.find(tsn);
|
|
if (it != outstanding_data_.end() && !it->second.has_been_retransmitted()) {
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.1
|
|
// "Karn's algorithm: RTT measurements MUST NOT be made using
|
|
// packets that were retransmitted (and thus for which it is ambiguous
|
|
// whether the reply was for the first instance of the chunk or for a
|
|
// later instance)"
|
|
return now - it->second.time_sent();
|
|
}
|
|
return absl::nullopt;
|
|
}
|
|
|
|
std::vector<std::pair<TSN, OutstandingData::State>>
|
|
OutstandingData::GetChunkStatesForTesting() const {
|
|
std::vector<std::pair<TSN, State>> states;
|
|
states.emplace_back(last_cumulative_tsn_ack_.Wrap(), State::kAcked);
|
|
for (const auto& [tsn, item] : outstanding_data_) {
|
|
State state;
|
|
if (item.is_abandoned()) {
|
|
state = State::kAbandoned;
|
|
} else if (item.should_be_retransmitted()) {
|
|
state = State::kToBeRetransmitted;
|
|
} else if (item.is_acked()) {
|
|
state = State::kAcked;
|
|
} else if (item.is_outstanding()) {
|
|
state = State::kInFlight;
|
|
} else {
|
|
state = State::kNacked;
|
|
}
|
|
|
|
states.emplace_back(tsn.Wrap(), state);
|
|
}
|
|
return states;
|
|
}
|
|
|
|
bool OutstandingData::ShouldSendForwardTsn() const {
|
|
if (!outstanding_data_.empty()) {
|
|
auto it = outstanding_data_.begin();
|
|
return it->first == last_cumulative_tsn_ack_.next_value() &&
|
|
it->second.is_abandoned();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
ForwardTsnChunk OutstandingData::CreateForwardTsn() const {
|
|
std::map<StreamID, SSN> skipped_per_ordered_stream;
|
|
UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_;
|
|
|
|
for (const auto& [tsn, item] : outstanding_data_) {
|
|
if ((tsn != new_cumulative_ack.next_value()) || !item.is_abandoned()) {
|
|
break;
|
|
}
|
|
new_cumulative_ack = tsn;
|
|
if (!item.data().is_unordered &&
|
|
item.data().ssn > skipped_per_ordered_stream[item.data().stream_id]) {
|
|
skipped_per_ordered_stream[item.data().stream_id] = item.data().ssn;
|
|
}
|
|
}
|
|
|
|
std::vector<ForwardTsnChunk::SkippedStream> skipped_streams;
|
|
skipped_streams.reserve(skipped_per_ordered_stream.size());
|
|
for (const auto& [stream_id, ssn] : skipped_per_ordered_stream) {
|
|
skipped_streams.emplace_back(stream_id, ssn);
|
|
}
|
|
return ForwardTsnChunk(new_cumulative_ack.Wrap(), std::move(skipped_streams));
|
|
}
|
|
|
|
IForwardTsnChunk OutstandingData::CreateIForwardTsn() const {
|
|
std::map<std::pair<IsUnordered, StreamID>, MID> skipped_per_stream;
|
|
UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_;
|
|
|
|
for (const auto& [tsn, item] : outstanding_data_) {
|
|
if ((tsn != new_cumulative_ack.next_value()) || !item.is_abandoned()) {
|
|
break;
|
|
}
|
|
new_cumulative_ack = tsn;
|
|
std::pair<IsUnordered, StreamID> stream_id =
|
|
std::make_pair(item.data().is_unordered, item.data().stream_id);
|
|
|
|
if (item.data().message_id > skipped_per_stream[stream_id]) {
|
|
skipped_per_stream[stream_id] = item.data().message_id;
|
|
}
|
|
}
|
|
|
|
std::vector<IForwardTsnChunk::SkippedStream> skipped_streams;
|
|
skipped_streams.reserve(skipped_per_stream.size());
|
|
for (const auto& [stream, message_id] : skipped_per_stream) {
|
|
skipped_streams.emplace_back(stream.first, stream.second, message_id);
|
|
}
|
|
|
|
return IForwardTsnChunk(new_cumulative_ack.Wrap(),
|
|
std::move(skipped_streams));
|
|
}
|
|
|
|
} // namespace dcsctp
|