mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-24 09:16:11 +01:00
307 lines
9 KiB
C++
307 lines
9 KiB
C++
/*
|
|
* Copyright (c) 2013 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
|
|
#include "system_wrappers/include/clock.h"
|
|
|
|
#include "system_wrappers/include/field_trial.h"
|
|
|
|
#if defined(WEBRTC_WIN)
|
|
|
|
// Windows needs to be included before mmsystem.h
|
|
#include "rtc_base/win32.h"
|
|
|
|
#include <mmsystem.h>
|
|
|
|
|
|
#elif defined(WEBRTC_POSIX)
|
|
|
|
#include <sys/time.h>
|
|
#include <time.h>
|
|
|
|
#endif // defined(WEBRTC_POSIX)
|
|
|
|
#include "rtc_base/synchronization/mutex.h"
|
|
#include "rtc_base/time_utils.h"
|
|
|
|
namespace webrtc {
|
|
namespace {
|
|
|
|
int64_t NtpOffsetUsCalledOnce() {
|
|
constexpr int64_t kNtpJan1970Sec = 2208988800;
|
|
int64_t clock_time = rtc::TimeMicros();
|
|
int64_t utc_time = rtc::TimeUTCMicros();
|
|
return utc_time - clock_time + kNtpJan1970Sec * rtc::kNumMicrosecsPerSec;
|
|
}
|
|
|
|
NtpTime TimeMicrosToNtp(int64_t time_us) {
|
|
static int64_t ntp_offset_us = NtpOffsetUsCalledOnce();
|
|
|
|
int64_t time_ntp_us = time_us + ntp_offset_us;
|
|
RTC_DCHECK_GE(time_ntp_us, 0); // Time before year 1900 is unsupported.
|
|
|
|
// Convert seconds to uint32 through uint64 for a well-defined cast.
|
|
// A wrap around, which will happen in 2036, is expected for NTP time.
|
|
uint32_t ntp_seconds =
|
|
static_cast<uint64_t>(time_ntp_us / rtc::kNumMicrosecsPerSec);
|
|
|
|
// Scale fractions of the second to NTP resolution.
|
|
constexpr int64_t kNtpFractionsInSecond = 1LL << 32;
|
|
int64_t us_fractions = time_ntp_us % rtc::kNumMicrosecsPerSec;
|
|
uint32_t ntp_fractions =
|
|
us_fractions * kNtpFractionsInSecond / rtc::kNumMicrosecsPerSec;
|
|
|
|
return NtpTime(ntp_seconds, ntp_fractions);
|
|
}
|
|
|
|
void GetSecondsAndFraction(const timeval& time,
|
|
uint32_t* seconds,
|
|
double* fraction) {
|
|
*seconds = time.tv_sec + kNtpJan1970;
|
|
*fraction = time.tv_usec / 1e6;
|
|
|
|
while (*fraction >= 1) {
|
|
--*fraction;
|
|
++*seconds;
|
|
}
|
|
while (*fraction < 0) {
|
|
++*fraction;
|
|
--*seconds;
|
|
}
|
|
}
|
|
|
|
} // namespace
|
|
|
|
class RealTimeClock : public Clock {
|
|
public:
|
|
RealTimeClock()
|
|
: use_system_independent_ntp_time_(!field_trial::IsEnabled(
|
|
"WebRTC-SystemIndependentNtpTimeKillSwitch")) {}
|
|
|
|
Timestamp CurrentTime() override {
|
|
return Timestamp::Micros(rtc::TimeMicros());
|
|
}
|
|
|
|
NtpTime CurrentNtpTime() override {
|
|
return use_system_independent_ntp_time_ ? TimeMicrosToNtp(rtc::TimeMicros())
|
|
: SystemDependentNtpTime();
|
|
}
|
|
|
|
NtpTime ConvertTimestampToNtpTime(Timestamp timestamp) override {
|
|
// This method does not check `use_system_independent_ntp_time_` because
|
|
// all callers never used the old behavior of `CurrentNtpTime`.
|
|
return TimeMicrosToNtp(timestamp.us());
|
|
}
|
|
|
|
protected:
|
|
virtual timeval CurrentTimeVal() = 0;
|
|
|
|
private:
|
|
NtpTime SystemDependentNtpTime() {
|
|
uint32_t seconds;
|
|
double fraction;
|
|
GetSecondsAndFraction(CurrentTimeVal(), &seconds, &fraction);
|
|
|
|
return NtpTime(seconds, static_cast<uint32_t>(
|
|
fraction * kMagicNtpFractionalUnit + 0.5));
|
|
}
|
|
|
|
bool use_system_independent_ntp_time_;
|
|
};
|
|
|
|
#if defined(WINUWP)
|
|
class WinUwpRealTimeClock final : public RealTimeClock {
|
|
public:
|
|
WinUwpRealTimeClock() = default;
|
|
~WinUwpRealTimeClock() override {}
|
|
|
|
protected:
|
|
timeval CurrentTimeVal() override {
|
|
// The rtc::WinUwpSystemTimeNanos() method is already time offset from a
|
|
// base epoch value and might as be synchronized against an NTP time server
|
|
// as an added bonus.
|
|
auto nanos = rtc::WinUwpSystemTimeNanos();
|
|
|
|
struct timeval tv;
|
|
|
|
tv.tv_sec = rtc::dchecked_cast<long>(nanos / 1000000000);
|
|
tv.tv_usec = rtc::dchecked_cast<long>(nanos / 1000);
|
|
|
|
return tv;
|
|
}
|
|
};
|
|
|
|
#elif defined(WEBRTC_WIN)
|
|
// TODO(pbos): Consider modifying the implementation to synchronize itself
|
|
// against system time (update ref_point_) periodically to
|
|
// prevent clock drift.
|
|
class WindowsRealTimeClock : public RealTimeClock {
|
|
public:
|
|
WindowsRealTimeClock()
|
|
: last_time_ms_(0),
|
|
num_timer_wraps_(0),
|
|
ref_point_(GetSystemReferencePoint()) {}
|
|
|
|
~WindowsRealTimeClock() override {}
|
|
|
|
protected:
|
|
struct ReferencePoint {
|
|
FILETIME file_time;
|
|
LARGE_INTEGER counter_ms;
|
|
};
|
|
|
|
timeval CurrentTimeVal() override {
|
|
const uint64_t FILETIME_1970 = 0x019db1ded53e8000;
|
|
|
|
FILETIME StartTime;
|
|
uint64_t Time;
|
|
struct timeval tv;
|
|
|
|
// We can't use query performance counter since they can change depending on
|
|
// speed stepping.
|
|
GetTime(&StartTime);
|
|
|
|
Time = (((uint64_t)StartTime.dwHighDateTime) << 32) +
|
|
(uint64_t)StartTime.dwLowDateTime;
|
|
|
|
// Convert the hecto-nano second time to tv format.
|
|
Time -= FILETIME_1970;
|
|
|
|
tv.tv_sec = (uint32_t)(Time / (uint64_t)10000000);
|
|
tv.tv_usec = (uint32_t)((Time % (uint64_t)10000000) / 10);
|
|
return tv;
|
|
}
|
|
|
|
void GetTime(FILETIME* current_time) {
|
|
DWORD t;
|
|
LARGE_INTEGER elapsed_ms;
|
|
{
|
|
MutexLock lock(&mutex_);
|
|
// time MUST be fetched inside the critical section to avoid non-monotonic
|
|
// last_time_ms_ values that'll register as incorrect wraparounds due to
|
|
// concurrent calls to GetTime.
|
|
t = timeGetTime();
|
|
if (t < last_time_ms_)
|
|
num_timer_wraps_++;
|
|
last_time_ms_ = t;
|
|
elapsed_ms.HighPart = num_timer_wraps_;
|
|
}
|
|
elapsed_ms.LowPart = t;
|
|
elapsed_ms.QuadPart = elapsed_ms.QuadPart - ref_point_.counter_ms.QuadPart;
|
|
|
|
// Translate to 100-nanoseconds intervals (FILETIME resolution)
|
|
// and add to reference FILETIME to get current FILETIME.
|
|
ULARGE_INTEGER filetime_ref_as_ul;
|
|
filetime_ref_as_ul.HighPart = ref_point_.file_time.dwHighDateTime;
|
|
filetime_ref_as_ul.LowPart = ref_point_.file_time.dwLowDateTime;
|
|
filetime_ref_as_ul.QuadPart +=
|
|
static_cast<ULONGLONG>((elapsed_ms.QuadPart) * 1000 * 10);
|
|
|
|
// Copy to result
|
|
current_time->dwHighDateTime = filetime_ref_as_ul.HighPart;
|
|
current_time->dwLowDateTime = filetime_ref_as_ul.LowPart;
|
|
}
|
|
|
|
static ReferencePoint GetSystemReferencePoint() {
|
|
ReferencePoint ref = {};
|
|
FILETIME ft0 = {};
|
|
FILETIME ft1 = {};
|
|
// Spin waiting for a change in system time. As soon as this change happens,
|
|
// get the matching call for timeGetTime() as soon as possible. This is
|
|
// assumed to be the most accurate offset that we can get between
|
|
// timeGetTime() and system time.
|
|
|
|
// Set timer accuracy to 1 ms.
|
|
timeBeginPeriod(1);
|
|
GetSystemTimeAsFileTime(&ft0);
|
|
do {
|
|
GetSystemTimeAsFileTime(&ft1);
|
|
|
|
ref.counter_ms.QuadPart = timeGetTime();
|
|
Sleep(0);
|
|
} while ((ft0.dwHighDateTime == ft1.dwHighDateTime) &&
|
|
(ft0.dwLowDateTime == ft1.dwLowDateTime));
|
|
ref.file_time = ft1;
|
|
timeEndPeriod(1);
|
|
return ref;
|
|
}
|
|
|
|
Mutex mutex_;
|
|
DWORD last_time_ms_;
|
|
LONG num_timer_wraps_;
|
|
const ReferencePoint ref_point_;
|
|
};
|
|
|
|
#elif defined(WEBRTC_POSIX)
|
|
class UnixRealTimeClock : public RealTimeClock {
|
|
public:
|
|
UnixRealTimeClock() {}
|
|
|
|
~UnixRealTimeClock() override {}
|
|
|
|
protected:
|
|
timeval CurrentTimeVal() override {
|
|
struct timeval tv;
|
|
gettimeofday(&tv, nullptr);
|
|
return tv;
|
|
}
|
|
};
|
|
#endif // defined(WEBRTC_POSIX)
|
|
|
|
Clock* Clock::GetRealTimeClock() {
|
|
#if defined(WINUWP)
|
|
static Clock* const clock = new WinUwpRealTimeClock();
|
|
#elif defined(WEBRTC_WIN)
|
|
static Clock* const clock = new WindowsRealTimeClock();
|
|
#elif defined(WEBRTC_POSIX)
|
|
static Clock* const clock = new UnixRealTimeClock();
|
|
#else
|
|
static Clock* const clock = nullptr;
|
|
#endif
|
|
return clock;
|
|
}
|
|
|
|
SimulatedClock::SimulatedClock(int64_t initial_time_us)
|
|
: time_us_(initial_time_us) {}
|
|
|
|
SimulatedClock::SimulatedClock(Timestamp initial_time)
|
|
: SimulatedClock(initial_time.us()) {}
|
|
|
|
SimulatedClock::~SimulatedClock() {}
|
|
|
|
Timestamp SimulatedClock::CurrentTime() {
|
|
return Timestamp::Micros(time_us_.load(std::memory_order_relaxed));
|
|
}
|
|
|
|
NtpTime SimulatedClock::ConvertTimestampToNtpTime(Timestamp timestamp) {
|
|
int64_t now_us = timestamp.us();
|
|
uint32_t seconds = (now_us / 1'000'000) + kNtpJan1970;
|
|
uint32_t fractions = static_cast<uint32_t>(
|
|
(now_us % 1'000'000) * kMagicNtpFractionalUnit / 1'000'000);
|
|
return NtpTime(seconds, fractions);
|
|
}
|
|
|
|
void SimulatedClock::AdvanceTimeMilliseconds(int64_t milliseconds) {
|
|
AdvanceTime(TimeDelta::Millis(milliseconds));
|
|
}
|
|
|
|
void SimulatedClock::AdvanceTimeMicroseconds(int64_t microseconds) {
|
|
AdvanceTime(TimeDelta::Micros(microseconds));
|
|
}
|
|
|
|
// TODO(bugs.webrtc.org(12102): It's desirable to let a single thread own
|
|
// advancement of the clock. We could then replace this read-modify-write
|
|
// operation with just a thread checker. But currently, that breaks a couple of
|
|
// tests, in particular, RepeatingTaskTest.ClockIntegration and
|
|
// CallStatsTest.LastProcessedRtt.
|
|
void SimulatedClock::AdvanceTime(TimeDelta delta) {
|
|
time_us_.fetch_add(delta.us(), std::memory_order_relaxed);
|
|
}
|
|
|
|
} // namespace webrtc
|