Telegram-Android/TMessagesProj/jni/voip/webrtc/modules/pacing/paced_sender.cc
2020-09-30 16:48:47 +03:00

207 lines
6.2 KiB
C++

/*
* Copyright (c) 2012 The WebRTC project authors. All Rights Reserved.
*
* Use of this source code is governed by a BSD-style license
* that can be found in the LICENSE file in the root of the source
* tree. An additional intellectual property rights grant can be found
* in the file PATENTS. All contributing project authors may
* be found in the AUTHORS file in the root of the source tree.
*/
#include "modules/pacing/paced_sender.h"
#include <algorithm>
#include <utility>
#include <vector>
#include "absl/memory/memory.h"
#include "absl/strings/match.h"
#include "api/rtc_event_log/rtc_event_log.h"
#include "modules/utility/include/process_thread.h"
#include "rtc_base/checks.h"
#include "rtc_base/location.h"
#include "rtc_base/logging.h"
#include "rtc_base/time_utils.h"
#include "rtc_base/trace_event.h"
#include "system_wrappers/include/clock.h"
namespace webrtc {
const int64_t PacedSender::kMaxQueueLengthMs = 2000;
const float PacedSender::kDefaultPaceMultiplier = 2.5f;
PacedSender::PacedSender(Clock* clock,
PacketRouter* packet_router,
RtcEventLog* event_log,
const WebRtcKeyValueConfig* field_trials,
ProcessThread* process_thread)
: process_mode_(
(field_trials != nullptr &&
absl::StartsWith(field_trials->Lookup("WebRTC-Pacer-DynamicProcess"),
"Enabled"))
? PacingController::ProcessMode::kDynamic
: PacingController::ProcessMode::kPeriodic),
pacing_controller_(clock,
packet_router,
event_log,
field_trials,
process_mode_),
clock_(clock),
process_thread_(process_thread) {
if (process_thread_)
process_thread_->RegisterModule(&module_proxy_, RTC_FROM_HERE);
}
PacedSender::~PacedSender() {
if (process_thread_) {
process_thread_->DeRegisterModule(&module_proxy_);
}
}
void PacedSender::CreateProbeCluster(DataRate bitrate, int cluster_id) {
rtc::CritScope cs(&critsect_);
return pacing_controller_.CreateProbeCluster(bitrate, cluster_id);
}
void PacedSender::Pause() {
{
rtc::CritScope cs(&critsect_);
pacing_controller_.Pause();
}
// Tell the process thread to call our TimeUntilNextProcess() method to get
// a new (longer) estimate for when to call Process().
if (process_thread_) {
process_thread_->WakeUp(&module_proxy_);
}
}
void PacedSender::Resume() {
{
rtc::CritScope cs(&critsect_);
pacing_controller_.Resume();
}
// Tell the process thread to call our TimeUntilNextProcess() method to
// refresh the estimate for when to call Process().
if (process_thread_) {
process_thread_->WakeUp(&module_proxy_);
}
}
void PacedSender::SetCongestionWindow(DataSize congestion_window_size) {
{
rtc::CritScope cs(&critsect_);
pacing_controller_.SetCongestionWindow(congestion_window_size);
}
MaybeWakupProcessThread();
}
void PacedSender::UpdateOutstandingData(DataSize outstanding_data) {
{
rtc::CritScope cs(&critsect_);
pacing_controller_.UpdateOutstandingData(outstanding_data);
}
MaybeWakupProcessThread();
}
void PacedSender::SetPacingRates(DataRate pacing_rate, DataRate padding_rate) {
{
rtc::CritScope cs(&critsect_);
pacing_controller_.SetPacingRates(pacing_rate, padding_rate);
}
MaybeWakupProcessThread();
}
void PacedSender::EnqueuePackets(
std::vector<std::unique_ptr<RtpPacketToSend>> packets) {
{
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("webrtc"),
"PacedSender::EnqueuePackets");
rtc::CritScope cs(&critsect_);
for (auto& packet : packets) {
TRACE_EVENT2(TRACE_DISABLED_BY_DEFAULT("webrtc"),
"PacedSender::EnqueuePackets::Loop", "sequence_number",
packet->SequenceNumber(), "rtp_timestamp",
packet->Timestamp());
pacing_controller_.EnqueuePacket(std::move(packet));
}
}
MaybeWakupProcessThread();
}
void PacedSender::SetAccountForAudioPackets(bool account_for_audio) {
rtc::CritScope cs(&critsect_);
pacing_controller_.SetAccountForAudioPackets(account_for_audio);
}
void PacedSender::SetIncludeOverhead() {
rtc::CritScope cs(&critsect_);
pacing_controller_.SetIncludeOverhead();
}
void PacedSender::SetTransportOverhead(DataSize overhead_per_packet) {
rtc::CritScope cs(&critsect_);
pacing_controller_.SetTransportOverhead(overhead_per_packet);
}
TimeDelta PacedSender::ExpectedQueueTime() const {
rtc::CritScope cs(&critsect_);
return pacing_controller_.ExpectedQueueTime();
}
DataSize PacedSender::QueueSizeData() const {
rtc::CritScope cs(&critsect_);
return pacing_controller_.QueueSizeData();
}
absl::optional<Timestamp> PacedSender::FirstSentPacketTime() const {
rtc::CritScope cs(&critsect_);
return pacing_controller_.FirstSentPacketTime();
}
TimeDelta PacedSender::OldestPacketWaitTime() const {
rtc::CritScope cs(&critsect_);
return pacing_controller_.OldestPacketWaitTime();
}
int64_t PacedSender::TimeUntilNextProcess() {
rtc::CritScope cs(&critsect_);
Timestamp next_send_time = pacing_controller_.NextSendTime();
TimeDelta sleep_time =
std::max(TimeDelta::Zero(), next_send_time - clock_->CurrentTime());
if (process_mode_ == PacingController::ProcessMode::kDynamic) {
return std::max(sleep_time, PacingController::kMinSleepTime).ms();
}
return sleep_time.ms();
}
void PacedSender::Process() {
rtc::CritScope cs(&critsect_);
pacing_controller_.ProcessPackets();
}
void PacedSender::ProcessThreadAttached(ProcessThread* process_thread) {
RTC_LOG(LS_INFO) << "ProcessThreadAttached 0x" << process_thread;
RTC_DCHECK(!process_thread || process_thread == process_thread_);
}
void PacedSender::MaybeWakupProcessThread() {
// Tell the process thread to call our TimeUntilNextProcess() method to get
// a new time for when to call Process().
if (process_thread_ &&
process_mode_ == PacingController::ProcessMode::kDynamic) {
process_thread_->WakeUp(&module_proxy_);
}
}
void PacedSender::SetQueueTimeLimit(TimeDelta limit) {
{
rtc::CritScope cs(&critsect_);
pacing_controller_.SetQueueTimeLimit(limit);
}
MaybeWakupProcessThread();
}
} // namespace webrtc