mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-07 02:59:51 +01:00
970 lines
24 KiB
C
970 lines
24 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*
|
|
* The DSS routines are based on patches supplied by
|
|
* Steven Schoch <schoch@sheba.arc.nasa.gov>. */
|
|
|
|
#include <openssl/dsa.h>
|
|
|
|
#include <string.h>
|
|
|
|
#include <openssl/bn.h>
|
|
#include <openssl/dh.h>
|
|
#include <openssl/digest.h>
|
|
#include <openssl/engine.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/ex_data.h>
|
|
#include <openssl/mem.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/sha.h>
|
|
#include <openssl/thread.h>
|
|
|
|
#include "../fipsmodule/bn/internal.h"
|
|
#include "../internal.h"
|
|
|
|
|
|
#define OPENSSL_DSA_MAX_MODULUS_BITS 10000
|
|
|
|
// Primality test according to FIPS PUB 186[-1], Appendix 2.1: 50 rounds of
|
|
// Rabin-Miller
|
|
#define DSS_prime_checks 50
|
|
|
|
static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx_in, BIGNUM **out_kinv,
|
|
BIGNUM **out_r);
|
|
|
|
static CRYPTO_EX_DATA_CLASS g_ex_data_class = CRYPTO_EX_DATA_CLASS_INIT;
|
|
|
|
DSA *DSA_new(void) {
|
|
DSA *dsa = OPENSSL_malloc(sizeof(DSA));
|
|
if (dsa == NULL) {
|
|
OPENSSL_PUT_ERROR(DSA, ERR_R_MALLOC_FAILURE);
|
|
return NULL;
|
|
}
|
|
|
|
OPENSSL_memset(dsa, 0, sizeof(DSA));
|
|
|
|
dsa->references = 1;
|
|
|
|
CRYPTO_MUTEX_init(&dsa->method_mont_lock);
|
|
CRYPTO_new_ex_data(&dsa->ex_data);
|
|
|
|
return dsa;
|
|
}
|
|
|
|
void DSA_free(DSA *dsa) {
|
|
if (dsa == NULL) {
|
|
return;
|
|
}
|
|
|
|
if (!CRYPTO_refcount_dec_and_test_zero(&dsa->references)) {
|
|
return;
|
|
}
|
|
|
|
CRYPTO_free_ex_data(&g_ex_data_class, dsa, &dsa->ex_data);
|
|
|
|
BN_clear_free(dsa->p);
|
|
BN_clear_free(dsa->q);
|
|
BN_clear_free(dsa->g);
|
|
BN_clear_free(dsa->pub_key);
|
|
BN_clear_free(dsa->priv_key);
|
|
BN_MONT_CTX_free(dsa->method_mont_p);
|
|
BN_MONT_CTX_free(dsa->method_mont_q);
|
|
CRYPTO_MUTEX_cleanup(&dsa->method_mont_lock);
|
|
OPENSSL_free(dsa);
|
|
}
|
|
|
|
int DSA_up_ref(DSA *dsa) {
|
|
CRYPTO_refcount_inc(&dsa->references);
|
|
return 1;
|
|
}
|
|
|
|
void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key,
|
|
const BIGNUM **out_priv_key) {
|
|
if (out_pub_key != NULL) {
|
|
*out_pub_key = dsa->pub_key;
|
|
}
|
|
if (out_priv_key != NULL) {
|
|
*out_priv_key = dsa->priv_key;
|
|
}
|
|
}
|
|
|
|
void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p, const BIGNUM **out_q,
|
|
const BIGNUM **out_g) {
|
|
if (out_p != NULL) {
|
|
*out_p = dsa->p;
|
|
}
|
|
if (out_q != NULL) {
|
|
*out_q = dsa->q;
|
|
}
|
|
if (out_g != NULL) {
|
|
*out_g = dsa->g;
|
|
}
|
|
}
|
|
|
|
int DSA_set0_key(DSA *dsa, BIGNUM *pub_key, BIGNUM *priv_key) {
|
|
if (dsa->pub_key == NULL && pub_key == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
if (pub_key != NULL) {
|
|
BN_free(dsa->pub_key);
|
|
dsa->pub_key = pub_key;
|
|
}
|
|
if (priv_key != NULL) {
|
|
BN_free(dsa->priv_key);
|
|
dsa->priv_key = priv_key;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int DSA_set0_pqg(DSA *dsa, BIGNUM *p, BIGNUM *q, BIGNUM *g) {
|
|
if ((dsa->p == NULL && p == NULL) ||
|
|
(dsa->q == NULL && q == NULL) ||
|
|
(dsa->g == NULL && g == NULL)) {
|
|
return 0;
|
|
}
|
|
|
|
if (p != NULL) {
|
|
BN_free(dsa->p);
|
|
dsa->p = p;
|
|
}
|
|
if (q != NULL) {
|
|
BN_free(dsa->q);
|
|
dsa->q = q;
|
|
}
|
|
if (g != NULL) {
|
|
BN_free(dsa->g);
|
|
dsa->g = g;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
int DSA_generate_parameters_ex(DSA *dsa, unsigned bits, const uint8_t *seed_in,
|
|
size_t seed_len, int *out_counter,
|
|
unsigned long *out_h, BN_GENCB *cb) {
|
|
int ok = 0;
|
|
unsigned char seed[SHA256_DIGEST_LENGTH];
|
|
unsigned char md[SHA256_DIGEST_LENGTH];
|
|
unsigned char buf[SHA256_DIGEST_LENGTH], buf2[SHA256_DIGEST_LENGTH];
|
|
BIGNUM *r0, *W, *X, *c, *test;
|
|
BIGNUM *g = NULL, *q = NULL, *p = NULL;
|
|
BN_MONT_CTX *mont = NULL;
|
|
int k, n = 0, m = 0;
|
|
unsigned i;
|
|
int counter = 0;
|
|
int r = 0;
|
|
BN_CTX *ctx = NULL;
|
|
unsigned int h = 2;
|
|
unsigned qsize;
|
|
const EVP_MD *evpmd;
|
|
|
|
evpmd = (bits >= 2048) ? EVP_sha256() : EVP_sha1();
|
|
qsize = EVP_MD_size(evpmd);
|
|
|
|
if (bits < 512) {
|
|
bits = 512;
|
|
}
|
|
|
|
bits = (bits + 63) / 64 * 64;
|
|
|
|
if (seed_in != NULL) {
|
|
if (seed_len < (size_t)qsize) {
|
|
return 0;
|
|
}
|
|
if (seed_len > (size_t)qsize) {
|
|
// Only consume as much seed as is expected.
|
|
seed_len = qsize;
|
|
}
|
|
OPENSSL_memcpy(seed, seed_in, seed_len);
|
|
}
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
BN_CTX_start(ctx);
|
|
|
|
r0 = BN_CTX_get(ctx);
|
|
g = BN_CTX_get(ctx);
|
|
W = BN_CTX_get(ctx);
|
|
q = BN_CTX_get(ctx);
|
|
X = BN_CTX_get(ctx);
|
|
c = BN_CTX_get(ctx);
|
|
p = BN_CTX_get(ctx);
|
|
test = BN_CTX_get(ctx);
|
|
|
|
if (test == NULL || !BN_lshift(test, BN_value_one(), bits - 1)) {
|
|
goto err;
|
|
}
|
|
|
|
for (;;) {
|
|
// Find q.
|
|
for (;;) {
|
|
// step 1
|
|
if (!BN_GENCB_call(cb, 0, m++)) {
|
|
goto err;
|
|
}
|
|
|
|
int use_random_seed = (seed_in == NULL);
|
|
if (use_random_seed) {
|
|
if (!RAND_bytes(seed, qsize)) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
// If we come back through, use random seed next time.
|
|
seed_in = NULL;
|
|
}
|
|
OPENSSL_memcpy(buf, seed, qsize);
|
|
OPENSSL_memcpy(buf2, seed, qsize);
|
|
// precompute "SEED + 1" for step 7:
|
|
for (i = qsize - 1; i < qsize; i--) {
|
|
buf[i]++;
|
|
if (buf[i] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
// step 2
|
|
if (!EVP_Digest(seed, qsize, md, NULL, evpmd, NULL) ||
|
|
!EVP_Digest(buf, qsize, buf2, NULL, evpmd, NULL)) {
|
|
goto err;
|
|
}
|
|
for (i = 0; i < qsize; i++) {
|
|
md[i] ^= buf2[i];
|
|
}
|
|
|
|
// step 3
|
|
md[0] |= 0x80;
|
|
md[qsize - 1] |= 0x01;
|
|
if (!BN_bin2bn(md, qsize, q)) {
|
|
goto err;
|
|
}
|
|
|
|
// step 4
|
|
r = BN_is_prime_fasttest_ex(q, DSS_prime_checks, ctx, use_random_seed, cb);
|
|
if (r > 0) {
|
|
break;
|
|
}
|
|
if (r != 0) {
|
|
goto err;
|
|
}
|
|
|
|
// do a callback call
|
|
// step 5
|
|
}
|
|
|
|
if (!BN_GENCB_call(cb, 2, 0) || !BN_GENCB_call(cb, 3, 0)) {
|
|
goto err;
|
|
}
|
|
|
|
// step 6
|
|
counter = 0;
|
|
// "offset = 2"
|
|
|
|
n = (bits - 1) / 160;
|
|
|
|
for (;;) {
|
|
if ((counter != 0) && !BN_GENCB_call(cb, 0, counter)) {
|
|
goto err;
|
|
}
|
|
|
|
// step 7
|
|
BN_zero(W);
|
|
// now 'buf' contains "SEED + offset - 1"
|
|
for (k = 0; k <= n; k++) {
|
|
// obtain "SEED + offset + k" by incrementing:
|
|
for (i = qsize - 1; i < qsize; i--) {
|
|
buf[i]++;
|
|
if (buf[i] != 0) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!EVP_Digest(buf, qsize, md, NULL, evpmd, NULL)) {
|
|
goto err;
|
|
}
|
|
|
|
// step 8
|
|
if (!BN_bin2bn(md, qsize, r0) ||
|
|
!BN_lshift(r0, r0, (qsize << 3) * k) ||
|
|
!BN_add(W, W, r0)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
// more of step 8
|
|
if (!BN_mask_bits(W, bits - 1) ||
|
|
!BN_copy(X, W) ||
|
|
!BN_add(X, X, test)) {
|
|
goto err;
|
|
}
|
|
|
|
// step 9
|
|
if (!BN_lshift1(r0, q) ||
|
|
!BN_mod(c, X, r0, ctx) ||
|
|
!BN_sub(r0, c, BN_value_one()) ||
|
|
!BN_sub(p, X, r0)) {
|
|
goto err;
|
|
}
|
|
|
|
// step 10
|
|
if (BN_cmp(p, test) >= 0) {
|
|
// step 11
|
|
r = BN_is_prime_fasttest_ex(p, DSS_prime_checks, ctx, 1, cb);
|
|
if (r > 0) {
|
|
goto end; // found it
|
|
}
|
|
if (r != 0) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
// step 13
|
|
counter++;
|
|
// "offset = offset + n + 1"
|
|
|
|
// step 14
|
|
if (counter >= 4096) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
end:
|
|
if (!BN_GENCB_call(cb, 2, 1)) {
|
|
goto err;
|
|
}
|
|
|
|
// We now need to generate g
|
|
// Set r0=(p-1)/q
|
|
if (!BN_sub(test, p, BN_value_one()) ||
|
|
!BN_div(r0, NULL, test, q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
mont = BN_MONT_CTX_new_for_modulus(p, ctx);
|
|
if (mont == NULL ||
|
|
!BN_set_word(test, h)) {
|
|
goto err;
|
|
}
|
|
|
|
for (;;) {
|
|
// g=test^r0%p
|
|
if (!BN_mod_exp_mont(g, test, r0, p, ctx, mont)) {
|
|
goto err;
|
|
}
|
|
if (!BN_is_one(g)) {
|
|
break;
|
|
}
|
|
if (!BN_add(test, test, BN_value_one())) {
|
|
goto err;
|
|
}
|
|
h++;
|
|
}
|
|
|
|
if (!BN_GENCB_call(cb, 3, 1)) {
|
|
goto err;
|
|
}
|
|
|
|
ok = 1;
|
|
|
|
err:
|
|
if (ok) {
|
|
BN_free(dsa->p);
|
|
BN_free(dsa->q);
|
|
BN_free(dsa->g);
|
|
dsa->p = BN_dup(p);
|
|
dsa->q = BN_dup(q);
|
|
dsa->g = BN_dup(g);
|
|
if (dsa->p == NULL || dsa->q == NULL || dsa->g == NULL) {
|
|
ok = 0;
|
|
goto err;
|
|
}
|
|
if (out_counter != NULL) {
|
|
*out_counter = counter;
|
|
}
|
|
if (out_h != NULL) {
|
|
*out_h = h;
|
|
}
|
|
}
|
|
|
|
if (ctx) {
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
}
|
|
|
|
BN_MONT_CTX_free(mont);
|
|
|
|
return ok;
|
|
}
|
|
|
|
DSA *DSAparams_dup(const DSA *dsa) {
|
|
DSA *ret = DSA_new();
|
|
if (ret == NULL) {
|
|
return NULL;
|
|
}
|
|
ret->p = BN_dup(dsa->p);
|
|
ret->q = BN_dup(dsa->q);
|
|
ret->g = BN_dup(dsa->g);
|
|
if (ret->p == NULL || ret->q == NULL || ret->g == NULL) {
|
|
DSA_free(ret);
|
|
return NULL;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int DSA_generate_key(DSA *dsa) {
|
|
int ok = 0;
|
|
BN_CTX *ctx = NULL;
|
|
BIGNUM *pub_key = NULL, *priv_key = NULL;
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
priv_key = dsa->priv_key;
|
|
if (priv_key == NULL) {
|
|
priv_key = BN_new();
|
|
if (priv_key == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!BN_rand_range_ex(priv_key, 1, dsa->q)) {
|
|
goto err;
|
|
}
|
|
|
|
pub_key = dsa->pub_key;
|
|
if (pub_key == NULL) {
|
|
pub_key = BN_new();
|
|
if (pub_key == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!BN_MONT_CTX_set_locked(&dsa->method_mont_p, &dsa->method_mont_lock,
|
|
dsa->p, ctx) ||
|
|
!BN_mod_exp_mont_consttime(pub_key, dsa->g, priv_key, dsa->p, ctx,
|
|
dsa->method_mont_p)) {
|
|
goto err;
|
|
}
|
|
|
|
dsa->priv_key = priv_key;
|
|
dsa->pub_key = pub_key;
|
|
ok = 1;
|
|
|
|
err:
|
|
if (dsa->pub_key == NULL) {
|
|
BN_free(pub_key);
|
|
}
|
|
if (dsa->priv_key == NULL) {
|
|
BN_free(priv_key);
|
|
}
|
|
BN_CTX_free(ctx);
|
|
|
|
return ok;
|
|
}
|
|
|
|
DSA_SIG *DSA_SIG_new(void) {
|
|
DSA_SIG *sig;
|
|
sig = OPENSSL_malloc(sizeof(DSA_SIG));
|
|
if (!sig) {
|
|
return NULL;
|
|
}
|
|
sig->r = NULL;
|
|
sig->s = NULL;
|
|
return sig;
|
|
}
|
|
|
|
void DSA_SIG_free(DSA_SIG *sig) {
|
|
if (!sig) {
|
|
return;
|
|
}
|
|
|
|
BN_free(sig->r);
|
|
BN_free(sig->s);
|
|
OPENSSL_free(sig);
|
|
}
|
|
|
|
// mod_mul_consttime sets |r| to |a| * |b| modulo |mont->N|, treating |a| and
|
|
// |b| as secret. This function internally uses Montgomery reduction, but
|
|
// neither inputs nor outputs are in Montgomery form.
|
|
static int mod_mul_consttime(BIGNUM *r, const BIGNUM *a, const BIGNUM *b,
|
|
const BN_MONT_CTX *mont, BN_CTX *ctx) {
|
|
BN_CTX_start(ctx);
|
|
BIGNUM *tmp = BN_CTX_get(ctx);
|
|
// |BN_mod_mul_montgomery| removes a factor of R, so we cancel it with a
|
|
// single |BN_to_montgomery| which adds one factor of R.
|
|
int ok = tmp != NULL &&
|
|
BN_to_montgomery(tmp, a, mont, ctx) &&
|
|
BN_mod_mul_montgomery(r, tmp, b, mont, ctx);
|
|
BN_CTX_end(ctx);
|
|
return ok;
|
|
}
|
|
|
|
DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len, const DSA *dsa) {
|
|
if (!dsa->p || !dsa->q || !dsa->g) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
|
|
return NULL;
|
|
}
|
|
|
|
// Reject invalid parameters. In particular, the algorithm will infinite loop
|
|
// if |g| is zero.
|
|
if (BN_is_zero(dsa->p) || BN_is_zero(dsa->q) || BN_is_zero(dsa->g)) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_INVALID_PARAMETERS);
|
|
return NULL;
|
|
}
|
|
|
|
// We only support DSA keys that are a multiple of 8 bits. (This is a weaker
|
|
// check than the one in |DSA_do_check_signature|, which only allows 160-,
|
|
// 224-, and 256-bit keys.
|
|
if (BN_num_bits(dsa->q) % 8 != 0) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_Q_VALUE);
|
|
return NULL;
|
|
}
|
|
|
|
BIGNUM *kinv = NULL, *r = NULL, *s = NULL;
|
|
BIGNUM m;
|
|
BIGNUM xr;
|
|
BN_CTX *ctx = NULL;
|
|
DSA_SIG *ret = NULL;
|
|
|
|
BN_init(&m);
|
|
BN_init(&xr);
|
|
s = BN_new();
|
|
if (s == NULL) {
|
|
goto err;
|
|
}
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
redo:
|
|
if (!dsa_sign_setup(dsa, ctx, &kinv, &r)) {
|
|
goto err;
|
|
}
|
|
|
|
if (digest_len > BN_num_bytes(dsa->q)) {
|
|
// If the digest length is greater than the size of |dsa->q| use the
|
|
// BN_num_bits(dsa->q) leftmost bits of the digest, see FIPS 186-3, 4.2.
|
|
// Note the above check that |dsa->q| is a multiple of 8 bits.
|
|
digest_len = BN_num_bytes(dsa->q);
|
|
}
|
|
|
|
if (BN_bin2bn(digest, digest_len, &m) == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
// |m| is bounded by 2^(num_bits(q)), which is slightly looser than q. This
|
|
// violates |bn_mod_add_consttime| and |mod_mul_consttime|'s preconditions.
|
|
// (The underlying algorithms could accept looser bounds, but we reduce for
|
|
// simplicity.)
|
|
size_t q_width = bn_minimal_width(dsa->q);
|
|
if (!bn_resize_words(&m, q_width) ||
|
|
!bn_resize_words(&xr, q_width)) {
|
|
goto err;
|
|
}
|
|
bn_reduce_once_in_place(m.d, 0 /* no carry word */, dsa->q->d,
|
|
xr.d /* scratch space */, q_width);
|
|
|
|
// Compute s = inv(k) (m + xr) mod q. Note |dsa->method_mont_q| is
|
|
// initialized by |dsa_sign_setup|.
|
|
if (!mod_mul_consttime(&xr, dsa->priv_key, r, dsa->method_mont_q, ctx) ||
|
|
!bn_mod_add_consttime(s, &xr, &m, dsa->q, ctx) ||
|
|
!mod_mul_consttime(s, s, kinv, dsa->method_mont_q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
// Redo if r or s is zero as required by FIPS 186-3: this is
|
|
// very unlikely.
|
|
if (BN_is_zero(r) || BN_is_zero(s)) {
|
|
goto redo;
|
|
}
|
|
ret = DSA_SIG_new();
|
|
if (ret == NULL) {
|
|
goto err;
|
|
}
|
|
ret->r = r;
|
|
ret->s = s;
|
|
|
|
err:
|
|
if (ret == NULL) {
|
|
OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
|
|
BN_free(r);
|
|
BN_free(s);
|
|
}
|
|
BN_CTX_free(ctx);
|
|
BN_clear_free(&m);
|
|
BN_clear_free(&xr);
|
|
BN_clear_free(kinv);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int DSA_do_verify(const uint8_t *digest, size_t digest_len, DSA_SIG *sig,
|
|
const DSA *dsa) {
|
|
int valid;
|
|
if (!DSA_do_check_signature(&valid, digest, digest_len, sig, dsa)) {
|
|
return -1;
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
int DSA_do_check_signature(int *out_valid, const uint8_t *digest,
|
|
size_t digest_len, DSA_SIG *sig, const DSA *dsa) {
|
|
BN_CTX *ctx;
|
|
BIGNUM u1, u2, t1;
|
|
int ret = 0;
|
|
unsigned i;
|
|
|
|
*out_valid = 0;
|
|
|
|
if (!dsa->p || !dsa->q || !dsa->g) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
|
|
return 0;
|
|
}
|
|
|
|
i = BN_num_bits(dsa->q);
|
|
// FIPS 186-3 allows only different sizes for q.
|
|
if (i != 160 && i != 224 && i != 256) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_BAD_Q_VALUE);
|
|
return 0;
|
|
}
|
|
|
|
if (BN_num_bits(dsa->p) > OPENSSL_DSA_MAX_MODULUS_BITS) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_MODULUS_TOO_LARGE);
|
|
return 0;
|
|
}
|
|
|
|
BN_init(&u1);
|
|
BN_init(&u2);
|
|
BN_init(&t1);
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
if (BN_is_zero(sig->r) || BN_is_negative(sig->r) ||
|
|
BN_ucmp(sig->r, dsa->q) >= 0) {
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
if (BN_is_zero(sig->s) || BN_is_negative(sig->s) ||
|
|
BN_ucmp(sig->s, dsa->q) >= 0) {
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
|
|
// Calculate W = inv(S) mod Q
|
|
// save W in u2
|
|
if (BN_mod_inverse(&u2, sig->s, dsa->q, ctx) == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
// save M in u1
|
|
if (digest_len > (i >> 3)) {
|
|
// if the digest length is greater than the size of q use the
|
|
// BN_num_bits(dsa->q) leftmost bits of the digest, see
|
|
// fips 186-3, 4.2
|
|
digest_len = (i >> 3);
|
|
}
|
|
|
|
if (BN_bin2bn(digest, digest_len, &u1) == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
// u1 = M * w mod q
|
|
if (!BN_mod_mul(&u1, &u1, &u2, dsa->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
// u2 = r * w mod q
|
|
if (!BN_mod_mul(&u2, sig->r, &u2, dsa->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
|
|
(CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
|
|
ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_mod_exp2_mont(&t1, dsa->g, &u1, dsa->pub_key, &u2, dsa->p, ctx,
|
|
dsa->method_mont_p)) {
|
|
goto err;
|
|
}
|
|
|
|
// BN_copy(&u1,&t1);
|
|
// let u1 = u1 mod q
|
|
if (!BN_mod(&u1, &t1, dsa->q, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
// V is now in u1. If the signature is correct, it will be
|
|
// equal to R.
|
|
*out_valid = BN_ucmp(&u1, sig->r) == 0;
|
|
ret = 1;
|
|
|
|
err:
|
|
if (ret != 1) {
|
|
OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
|
|
}
|
|
BN_CTX_free(ctx);
|
|
BN_free(&u1);
|
|
BN_free(&u2);
|
|
BN_free(&t1);
|
|
|
|
return ret;
|
|
}
|
|
|
|
int DSA_sign(int type, const uint8_t *digest, size_t digest_len,
|
|
uint8_t *out_sig, unsigned int *out_siglen, const DSA *dsa) {
|
|
DSA_SIG *s;
|
|
|
|
s = DSA_do_sign(digest, digest_len, dsa);
|
|
if (s == NULL) {
|
|
*out_siglen = 0;
|
|
return 0;
|
|
}
|
|
|
|
*out_siglen = i2d_DSA_SIG(s, &out_sig);
|
|
DSA_SIG_free(s);
|
|
return 1;
|
|
}
|
|
|
|
int DSA_verify(int type, const uint8_t *digest, size_t digest_len,
|
|
const uint8_t *sig, size_t sig_len, const DSA *dsa) {
|
|
int valid;
|
|
if (!DSA_check_signature(&valid, digest, digest_len, sig, sig_len, dsa)) {
|
|
return -1;
|
|
}
|
|
return valid;
|
|
}
|
|
|
|
int DSA_check_signature(int *out_valid, const uint8_t *digest,
|
|
size_t digest_len, const uint8_t *sig, size_t sig_len,
|
|
const DSA *dsa) {
|
|
DSA_SIG *s = NULL;
|
|
int ret = 0;
|
|
uint8_t *der = NULL;
|
|
|
|
s = DSA_SIG_new();
|
|
if (s == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
const uint8_t *sigp = sig;
|
|
if (d2i_DSA_SIG(&s, &sigp, sig_len) == NULL || sigp != sig + sig_len) {
|
|
goto err;
|
|
}
|
|
|
|
// Ensure that the signature uses DER and doesn't have trailing garbage.
|
|
int der_len = i2d_DSA_SIG(s, &der);
|
|
if (der_len < 0 || (size_t)der_len != sig_len ||
|
|
OPENSSL_memcmp(sig, der, sig_len)) {
|
|
goto err;
|
|
}
|
|
|
|
ret = DSA_do_check_signature(out_valid, digest, digest_len, s, dsa);
|
|
|
|
err:
|
|
OPENSSL_free(der);
|
|
DSA_SIG_free(s);
|
|
return ret;
|
|
}
|
|
|
|
// der_len_len returns the number of bytes needed to represent a length of |len|
|
|
// in DER.
|
|
static size_t der_len_len(size_t len) {
|
|
if (len < 0x80) {
|
|
return 1;
|
|
}
|
|
size_t ret = 1;
|
|
while (len > 0) {
|
|
ret++;
|
|
len >>= 8;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
int DSA_size(const DSA *dsa) {
|
|
size_t order_len = BN_num_bytes(dsa->q);
|
|
// Compute the maximum length of an |order_len| byte integer. Defensively
|
|
// assume that the leading 0x00 is included.
|
|
size_t integer_len = 1 /* tag */ + der_len_len(order_len + 1) + 1 + order_len;
|
|
if (integer_len < order_len) {
|
|
return 0;
|
|
}
|
|
// A DSA signature is two INTEGERs.
|
|
size_t value_len = 2 * integer_len;
|
|
if (value_len < integer_len) {
|
|
return 0;
|
|
}
|
|
// Add the header.
|
|
size_t ret = 1 /* tag */ + der_len_len(value_len) + value_len;
|
|
if (ret < value_len) {
|
|
return 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static int dsa_sign_setup(const DSA *dsa, BN_CTX *ctx, BIGNUM **out_kinv,
|
|
BIGNUM **out_r) {
|
|
if (!dsa->p || !dsa->q || !dsa->g) {
|
|
OPENSSL_PUT_ERROR(DSA, DSA_R_MISSING_PARAMETERS);
|
|
return 0;
|
|
}
|
|
|
|
int ret = 0;
|
|
BIGNUM k;
|
|
BN_init(&k);
|
|
BIGNUM *r = BN_new();
|
|
BIGNUM *kinv = BN_new();
|
|
if (r == NULL || kinv == NULL ||
|
|
// Get random k
|
|
!BN_rand_range_ex(&k, 1, dsa->q) ||
|
|
!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_p,
|
|
(CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->p,
|
|
ctx) ||
|
|
!BN_MONT_CTX_set_locked((BN_MONT_CTX **)&dsa->method_mont_q,
|
|
(CRYPTO_MUTEX *)&dsa->method_mont_lock, dsa->q,
|
|
ctx) ||
|
|
// Compute r = (g^k mod p) mod q
|
|
!BN_mod_exp_mont_consttime(r, dsa->g, &k, dsa->p, ctx,
|
|
dsa->method_mont_p) ||
|
|
// Note |BN_mod| below is not constant-time and may leak information about
|
|
// |r|. |dsa->p| may be significantly larger than |dsa->q|, so this is not
|
|
// easily performed in constant-time with Montgomery reduction.
|
|
//
|
|
// However, |r| at this point is g^k (mod p). It is almost the value of
|
|
// |r| revealed in the signature anyway (g^k (mod p) (mod q)), going from
|
|
// it to |k| would require computing a discrete log.
|
|
!BN_mod(r, r, dsa->q, ctx) ||
|
|
// Compute part of 's = inv(k) (m + xr) mod q' using Fermat's Little
|
|
// Theorem.
|
|
!bn_mod_inverse_prime(kinv, &k, dsa->q, ctx, dsa->method_mont_q)) {
|
|
OPENSSL_PUT_ERROR(DSA, ERR_R_BN_LIB);
|
|
goto err;
|
|
}
|
|
|
|
BN_clear_free(*out_kinv);
|
|
*out_kinv = kinv;
|
|
kinv = NULL;
|
|
|
|
BN_clear_free(*out_r);
|
|
*out_r = r;
|
|
r = NULL;
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_clear_free(&k);
|
|
BN_clear_free(r);
|
|
BN_clear_free(kinv);
|
|
return ret;
|
|
}
|
|
|
|
int DSA_get_ex_new_index(long argl, void *argp, CRYPTO_EX_unused *unused,
|
|
CRYPTO_EX_dup *dup_unused, CRYPTO_EX_free *free_func) {
|
|
int index;
|
|
if (!CRYPTO_get_ex_new_index(&g_ex_data_class, &index, argl, argp,
|
|
free_func)) {
|
|
return -1;
|
|
}
|
|
return index;
|
|
}
|
|
|
|
int DSA_set_ex_data(DSA *dsa, int idx, void *arg) {
|
|
return CRYPTO_set_ex_data(&dsa->ex_data, idx, arg);
|
|
}
|
|
|
|
void *DSA_get_ex_data(const DSA *dsa, int idx) {
|
|
return CRYPTO_get_ex_data(&dsa->ex_data, idx);
|
|
}
|
|
|
|
DH *DSA_dup_DH(const DSA *dsa) {
|
|
if (dsa == NULL) {
|
|
return NULL;
|
|
}
|
|
|
|
DH *ret = DH_new();
|
|
if (ret == NULL) {
|
|
goto err;
|
|
}
|
|
if (dsa->q != NULL) {
|
|
ret->priv_length = BN_num_bits(dsa->q);
|
|
if ((ret->q = BN_dup(dsa->q)) == NULL) {
|
|
goto err;
|
|
}
|
|
}
|
|
if ((dsa->p != NULL && (ret->p = BN_dup(dsa->p)) == NULL) ||
|
|
(dsa->g != NULL && (ret->g = BN_dup(dsa->g)) == NULL) ||
|
|
(dsa->pub_key != NULL && (ret->pub_key = BN_dup(dsa->pub_key)) == NULL) ||
|
|
(dsa->priv_key != NULL &&
|
|
(ret->priv_key = BN_dup(dsa->priv_key)) == NULL)) {
|
|
goto err;
|
|
}
|
|
|
|
return ret;
|
|
|
|
err:
|
|
DH_free(ret);
|
|
return NULL;
|
|
}
|