mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-09 11:44:14 +01:00
798 lines
33 KiB
C++
798 lines
33 KiB
C++
/*
|
|
* Copyright (c) 2021 The WebRTC project authors. All Rights Reserved.
|
|
*
|
|
* Use of this source code is governed by a BSD-style license
|
|
* that can be found in the LICENSE file in the root of the source
|
|
* tree. An additional intellectual property rights grant can be found
|
|
* in the file PATENTS. All contributing project authors may
|
|
* be found in the AUTHORS file in the root of the source tree.
|
|
*/
|
|
#include "net/dcsctp/tx/retransmission_queue.h"
|
|
|
|
#include <algorithm>
|
|
#include <cstdint>
|
|
#include <functional>
|
|
#include <iterator>
|
|
#include <map>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
#include "absl/algorithm/container.h"
|
|
#include "absl/strings/string_view.h"
|
|
#include "absl/types/optional.h"
|
|
#include "api/array_view.h"
|
|
#include "net/dcsctp/common/math.h"
|
|
#include "net/dcsctp/common/pair_hash.h"
|
|
#include "net/dcsctp/common/sequence_numbers.h"
|
|
#include "net/dcsctp/common/str_join.h"
|
|
#include "net/dcsctp/packet/chunk/data_chunk.h"
|
|
#include "net/dcsctp/packet/chunk/forward_tsn_chunk.h"
|
|
#include "net/dcsctp/packet/chunk/forward_tsn_common.h"
|
|
#include "net/dcsctp/packet/chunk/idata_chunk.h"
|
|
#include "net/dcsctp/packet/chunk/iforward_tsn_chunk.h"
|
|
#include "net/dcsctp/packet/chunk/sack_chunk.h"
|
|
#include "net/dcsctp/packet/data.h"
|
|
#include "net/dcsctp/public/dcsctp_options.h"
|
|
#include "net/dcsctp/public/types.h"
|
|
#include "net/dcsctp/timer/timer.h"
|
|
#include "net/dcsctp/tx/send_queue.h"
|
|
#include "rtc_base/logging.h"
|
|
#include "rtc_base/strings/string_builder.h"
|
|
|
|
namespace dcsctp {
|
|
namespace {
|
|
|
|
// The number of times a packet must be NACKed before it's retransmitted.
|
|
// See https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
constexpr size_t kNumberOfNacksForRetransmission = 3;
|
|
} // namespace
|
|
|
|
RetransmissionQueue::RetransmissionQueue(
|
|
absl::string_view log_prefix,
|
|
TSN initial_tsn,
|
|
size_t a_rwnd,
|
|
SendQueue& send_queue,
|
|
std::function<void(DurationMs rtt)> on_new_rtt,
|
|
std::function<void()> on_send_queue_empty,
|
|
std::function<void()> on_clear_retransmission_counter,
|
|
Timer& t3_rtx,
|
|
const DcSctpOptions& options,
|
|
bool supports_partial_reliability,
|
|
bool use_message_interleaving)
|
|
: options_(options),
|
|
partial_reliability_(supports_partial_reliability),
|
|
log_prefix_(std::string(log_prefix) + "tx: "),
|
|
data_chunk_header_size_(use_message_interleaving
|
|
? IDataChunk::kHeaderSize
|
|
: DataChunk::kHeaderSize),
|
|
on_new_rtt_(std::move(on_new_rtt)),
|
|
on_send_queue_empty_(std::move(on_send_queue_empty)),
|
|
on_clear_retransmission_counter_(
|
|
std::move(on_clear_retransmission_counter)),
|
|
t3_rtx_(t3_rtx),
|
|
cwnd_(options_.cwnd_mtus_initial * options_.mtu),
|
|
rwnd_(a_rwnd),
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.1
|
|
// "The initial value of ssthresh MAY be arbitrarily high (for
|
|
// example, implementations MAY use the size of the receiver advertised
|
|
// window).""
|
|
ssthresh_(rwnd_),
|
|
next_tsn_(tsn_unwrapper_.Unwrap(initial_tsn)),
|
|
last_cumulative_tsn_ack_(tsn_unwrapper_.Unwrap(TSN(*initial_tsn - 1))),
|
|
send_queue_(send_queue) {}
|
|
|
|
// Returns how large a chunk will be, serialized, carrying the data
|
|
size_t RetransmissionQueue::GetSerializedChunkSize(const Data& data) const {
|
|
return RoundUpTo4(data_chunk_header_size_ + data.size());
|
|
}
|
|
|
|
void RetransmissionQueue::RemoveAcked(UnwrappedTSN cumulative_tsn_ack,
|
|
AckInfo& ack_info) {
|
|
auto first_unacked = outstanding_data_.upper_bound(cumulative_tsn_ack);
|
|
|
|
for (auto it = outstanding_data_.begin(); it != first_unacked; ++it) {
|
|
ack_info.bytes_acked_by_cumulative_tsn_ack += it->second.data().size();
|
|
ack_info.acked_tsns.push_back(it->first.Wrap());
|
|
}
|
|
|
|
outstanding_data_.erase(outstanding_data_.begin(), first_unacked);
|
|
}
|
|
|
|
void RetransmissionQueue::AckGapBlocks(
|
|
UnwrappedTSN cumulative_tsn_ack,
|
|
rtc::ArrayView<const SackChunk::GapAckBlock> gap_ack_blocks,
|
|
AckInfo& ack_info) {
|
|
// Mark all non-gaps as ACKED (but they can't be removed) as (from RFC)
|
|
// "SCTP considers the information carried in the Gap Ack Blocks in the
|
|
// SACK chunk as advisory.". Note that when NR-SACK is supported, this can be
|
|
// handled differently.
|
|
|
|
for (auto& block : gap_ack_blocks) {
|
|
auto start = outstanding_data_.lower_bound(
|
|
UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start));
|
|
auto end = outstanding_data_.upper_bound(
|
|
UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end));
|
|
for (auto iter = start; iter != end; ++iter) {
|
|
if (iter->second.state() != State::kAcked) {
|
|
ack_info.bytes_acked_by_new_gap_ack_blocks +=
|
|
iter->second.data().size();
|
|
iter->second.SetState(State::kAcked);
|
|
ack_info.highest_tsn_acked =
|
|
std::max(ack_info.highest_tsn_acked, iter->first);
|
|
ack_info.acked_tsns.push_back(iter->first.Wrap());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void RetransmissionQueue::NackBetweenAckBlocks(
|
|
UnwrappedTSN cumulative_tsn_ack,
|
|
rtc::ArrayView<const SackChunk::GapAckBlock> gap_ack_blocks,
|
|
AckInfo& ack_info) {
|
|
// Mark everything between the blocks as NACKED/TO_BE_RETRANSMITTED.
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
// "Mark the DATA chunk(s) with three miss indications for retransmission."
|
|
// "For each incoming SACK, miss indications are incremented only for
|
|
// missing TSNs prior to the highest TSN newly acknowledged in the SACK."
|
|
//
|
|
// What this means is that only when there is a increasing stream of data
|
|
// received and there are new packets seen (since last time), packets that are
|
|
// in-flight and between gaps should be nacked. This means that SCTP relies on
|
|
// the T3-RTX-timer to re-send packets otherwise.
|
|
UnwrappedTSN max_tsn_to_nack = ack_info.highest_tsn_acked;
|
|
if (is_in_fast_recovery() && cumulative_tsn_ack > last_cumulative_tsn_ack_) {
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
// "If an endpoint is in Fast Recovery and a SACK arrives that advances
|
|
// the Cumulative TSN Ack Point, the miss indications are incremented for
|
|
// all TSNs reported missing in the SACK."
|
|
max_tsn_to_nack = UnwrappedTSN::AddTo(
|
|
cumulative_tsn_ack,
|
|
gap_ack_blocks.empty() ? 0 : gap_ack_blocks.rbegin()->end);
|
|
}
|
|
|
|
UnwrappedTSN prev_block_last_acked = cumulative_tsn_ack;
|
|
for (auto& block : gap_ack_blocks) {
|
|
UnwrappedTSN cur_block_first_acked =
|
|
UnwrappedTSN::AddTo(cumulative_tsn_ack, block.start);
|
|
for (auto iter = outstanding_data_.upper_bound(prev_block_last_acked);
|
|
iter != outstanding_data_.lower_bound(cur_block_first_acked); ++iter) {
|
|
if (iter->first <= max_tsn_to_nack) {
|
|
iter->second.Nack();
|
|
|
|
if (iter->second.state() == State::kToBeRetransmitted) {
|
|
ack_info.has_packet_loss = true;
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << *iter->first.Wrap()
|
|
<< " marked for retransmission";
|
|
}
|
|
}
|
|
}
|
|
prev_block_last_acked = UnwrappedTSN::AddTo(cumulative_tsn_ack, block.end);
|
|
}
|
|
|
|
// Note that packets are not NACKED which are above the highest gap-ack-block
|
|
// (or above the cumulative ack TSN if no gap-ack-blocks) as only packets
|
|
// up until the highest_tsn_acked (see above) should be considered when
|
|
// NACKing.
|
|
}
|
|
|
|
void RetransmissionQueue::MaybeExitFastRecovery(
|
|
UnwrappedTSN cumulative_tsn_ack) {
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
// "When a SACK acknowledges all TSNs up to and including this [fast
|
|
// recovery] exit point, Fast Recovery is exited."
|
|
if (fast_recovery_exit_tsn_.has_value() &&
|
|
cumulative_tsn_ack >= *fast_recovery_exit_tsn_) {
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_
|
|
<< "exit_point=" << *fast_recovery_exit_tsn_->Wrap()
|
|
<< " reached - exiting fast recovery";
|
|
fast_recovery_exit_tsn_ = absl::nullopt;
|
|
}
|
|
}
|
|
|
|
void RetransmissionQueue::HandleIncreasedCumulativeTsnAck(
|
|
size_t outstanding_bytes,
|
|
size_t total_bytes_acked) {
|
|
// Allow some margin for classifying as fully utilized, due to e.g. that too
|
|
// small packets (less than kMinimumFragmentedPayload) are not sent +
|
|
// overhead.
|
|
bool is_fully_utilized = outstanding_bytes + options_.mtu >= cwnd_;
|
|
size_t old_cwnd = cwnd_;
|
|
if (phase() == CongestionAlgorithmPhase::kSlowStart) {
|
|
if (is_fully_utilized && !is_in_fast_recovery()) {
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.1
|
|
// "Only when these three conditions are met can the cwnd be
|
|
// increased; otherwise, the cwnd MUST not be increased. If these
|
|
// conditions are met, then cwnd MUST be increased by, at most, the
|
|
// lesser of 1) the total size of the previously outstanding DATA
|
|
// chunk(s) acknowledged, and 2) the destination's path MTU."
|
|
if (options_.slow_start_tcp_style) {
|
|
cwnd_ += std::min(total_bytes_acked, cwnd_);
|
|
} else {
|
|
cwnd_ += std::min(total_bytes_acked, options_.mtu);
|
|
}
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "SS increase cwnd=" << cwnd_
|
|
<< " (" << old_cwnd << ")";
|
|
}
|
|
} else if (phase() == CongestionAlgorithmPhase::kCongestionAvoidance) {
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.2
|
|
// "Whenever cwnd is greater than ssthresh, upon each SACK arrival
|
|
// that advances the Cumulative TSN Ack Point, increase
|
|
// partial_bytes_acked by the total number of bytes of all new chunks
|
|
// acknowledged in that SACK including chunks acknowledged by the new
|
|
// Cumulative TSN Ack and by Gap Ack Blocks."
|
|
size_t old_pba = partial_bytes_acked_;
|
|
partial_bytes_acked_ += total_bytes_acked;
|
|
|
|
if (partial_bytes_acked_ >= cwnd_ && is_fully_utilized) {
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.2
|
|
// "When partial_bytes_acked is equal to or greater than cwnd and
|
|
// before the arrival of the SACK the sender had cwnd or more bytes of
|
|
// data outstanding (i.e., before arrival of the SACK, flightsize was
|
|
// greater than or equal to cwnd), increase cwnd by MTU, and reset
|
|
// partial_bytes_acked to (partial_bytes_acked - cwnd)."
|
|
cwnd_ += options_.mtu;
|
|
partial_bytes_acked_ -= cwnd_;
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "CA increase cwnd=" << cwnd_
|
|
<< " (" << old_cwnd << ") ssthresh=" << ssthresh_
|
|
<< ", pba=" << partial_bytes_acked_ << " ("
|
|
<< old_pba << ")";
|
|
} else {
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "CA unchanged cwnd=" << cwnd_
|
|
<< " (" << old_cwnd << ") ssthresh=" << ssthresh_
|
|
<< ", pba=" << partial_bytes_acked_ << " ("
|
|
<< old_pba << ")";
|
|
}
|
|
}
|
|
}
|
|
|
|
void RetransmissionQueue::HandlePacketLoss(UnwrappedTSN highest_tsn_acked) {
|
|
if (!is_in_fast_recovery()) {
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
// "If not in Fast Recovery, adjust the ssthresh and cwnd of the
|
|
// destination address(es) to which the missing DATA chunks were last
|
|
// sent, according to the formula described in Section 7.2.3."
|
|
size_t old_cwnd = cwnd_;
|
|
size_t old_pba = partial_bytes_acked_;
|
|
ssthresh_ = std::max(cwnd_ / 2, options_.cwnd_mtus_min * options_.mtu);
|
|
cwnd_ = ssthresh_;
|
|
partial_bytes_acked_ = 0;
|
|
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_
|
|
<< "packet loss detected (not fast recovery). cwnd="
|
|
<< cwnd_ << " (" << old_cwnd
|
|
<< "), ssthresh=" << ssthresh_
|
|
<< ", pba=" << partial_bytes_acked_ << " (" << old_pba
|
|
<< ")";
|
|
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
// "If not in Fast Recovery, enter Fast Recovery and mark the highest
|
|
// outstanding TSN as the Fast Recovery exit point."
|
|
fast_recovery_exit_tsn_ = outstanding_data_.empty()
|
|
? last_cumulative_tsn_ack_
|
|
: outstanding_data_.rbegin()->first;
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_
|
|
<< "fast recovery initiated with exit_point="
|
|
<< *fast_recovery_exit_tsn_->Wrap();
|
|
} else {
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
// "While in Fast Recovery, the ssthresh and cwnd SHOULD NOT change for
|
|
// any destinations due to a subsequent Fast Recovery event (i.e., one
|
|
// SHOULD NOT reduce the cwnd further due to a subsequent Fast Retransmit)."
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_
|
|
<< "packet loss detected (fast recovery). No changes.";
|
|
}
|
|
}
|
|
|
|
void RetransmissionQueue::UpdateReceiverWindow(uint32_t a_rwnd) {
|
|
rwnd_ = outstanding_bytes_ >= a_rwnd ? 0 : a_rwnd - outstanding_bytes_;
|
|
}
|
|
|
|
void RetransmissionQueue::StartT3RtxTimerIfOutstandingData() {
|
|
// Note: Can't use `outstanding_bytes()` as that one doesn't count chunks to
|
|
// be retransmitted.
|
|
if (outstanding_data_.empty()) {
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.2
|
|
// "Whenever all outstanding data sent to an address have been
|
|
// acknowledged, turn off the T3-rtx timer of that address.
|
|
// Note: Already stopped in `StopT3RtxTimerOnIncreasedCumulativeTsnAck`."
|
|
} else {
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.2
|
|
// "Whenever a SACK is received that acknowledges the DATA chunk
|
|
// with the earliest outstanding TSN for that address, restart the T3-rtx
|
|
// timer for that address with its current RTO (if there is still
|
|
// outstanding data on that address)."
|
|
// "Whenever a SACK is received missing a TSN that was previously
|
|
// acknowledged via a Gap Ack Block, start the T3-rtx for the destination
|
|
// address to which the DATA chunk was originally transmitted if it is not
|
|
// already running."
|
|
if (!t3_rtx_.is_running()) {
|
|
t3_rtx_.Start();
|
|
}
|
|
}
|
|
}
|
|
|
|
bool RetransmissionQueue::IsSackValid(const SackChunk& sack) const {
|
|
// https://tools.ietf.org/html/rfc4960#section-6.2.1
|
|
// "If Cumulative TSN Ack is less than the Cumulative TSN Ack Point,
|
|
// then drop the SACK. Since Cumulative TSN Ack is monotonically increasing,
|
|
// a SACK whose Cumulative TSN Ack is less than the Cumulative TSN Ack Point
|
|
// indicates an out-of- order SACK."
|
|
//
|
|
// Note: Important not to drop SACKs with identical TSN to that previously
|
|
// received, as the gap ack blocks or dup tsn fields may have changed.
|
|
UnwrappedTSN cumulative_tsn_ack =
|
|
tsn_unwrapper_.PeekUnwrap(sack.cumulative_tsn_ack());
|
|
if (cumulative_tsn_ack < last_cumulative_tsn_ack_) {
|
|
// https://tools.ietf.org/html/rfc4960#section-6.2.1
|
|
// "If Cumulative TSN Ack is less than the Cumulative TSN Ack Point,
|
|
// then drop the SACK. Since Cumulative TSN Ack is monotonically
|
|
// increasing, a SACK whose Cumulative TSN Ack is less than the Cumulative
|
|
// TSN Ack Point indicates an out-of- order SACK."
|
|
return false;
|
|
} else if (outstanding_data_.empty() &&
|
|
cumulative_tsn_ack > last_cumulative_tsn_ack_) {
|
|
// No in-flight data and cum-tsn-ack above what was last ACKed - not valid.
|
|
return false;
|
|
} else if (!outstanding_data_.empty() &&
|
|
cumulative_tsn_ack > outstanding_data_.rbegin()->first) {
|
|
// There is in-flight data, but the cum-tsn-ack is beyond that - not valid.
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool RetransmissionQueue::HandleSack(TimeMs now, const SackChunk& sack) {
|
|
if (!IsSackValid(sack)) {
|
|
return false;
|
|
}
|
|
|
|
size_t old_outstanding_bytes = outstanding_bytes_;
|
|
size_t old_rwnd = rwnd_;
|
|
UnwrappedTSN cumulative_tsn_ack =
|
|
tsn_unwrapper_.Unwrap(sack.cumulative_tsn_ack());
|
|
|
|
if (sack.gap_ack_blocks().empty()) {
|
|
UpdateRTT(now, cumulative_tsn_ack);
|
|
}
|
|
|
|
AckInfo ack_info(cumulative_tsn_ack);
|
|
// Erase all items up to cumulative_tsn_ack.
|
|
RemoveAcked(cumulative_tsn_ack, ack_info);
|
|
|
|
// ACK packets reported in the gap ack blocks
|
|
AckGapBlocks(cumulative_tsn_ack, sack.gap_ack_blocks(), ack_info);
|
|
|
|
// NACK and possibly mark for retransmit chunks that weren't acked.
|
|
NackBetweenAckBlocks(cumulative_tsn_ack, sack.gap_ack_blocks(), ack_info);
|
|
|
|
RecalculateOutstandingBytes();
|
|
// Update of outstanding_data_ is now done. Congestion control remains.
|
|
UpdateReceiverWindow(sack.a_rwnd());
|
|
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "Received SACK. Acked TSN: "
|
|
<< StrJoin(ack_info.acked_tsns, ",",
|
|
[](rtc::StringBuilder& sb, TSN tsn) {
|
|
sb << *tsn;
|
|
})
|
|
<< ", cum_tsn_ack=" << *cumulative_tsn_ack.Wrap() << " ("
|
|
<< *last_cumulative_tsn_ack_.Wrap()
|
|
<< "), outstanding_bytes=" << outstanding_bytes_ << " ("
|
|
<< old_outstanding_bytes << "), rwnd=" << rwnd_ << " ("
|
|
<< old_rwnd << ")";
|
|
|
|
MaybeExitFastRecovery(cumulative_tsn_ack);
|
|
|
|
if (cumulative_tsn_ack > last_cumulative_tsn_ack_) {
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.2
|
|
// "Whenever a SACK is received that acknowledges the DATA chunk
|
|
// with the earliest outstanding TSN for that address, restart the T3-rtx
|
|
// timer for that address with its current RTO (if there is still
|
|
// outstanding data on that address)."
|
|
// Note: It may be started again in a bit further down.
|
|
t3_rtx_.Stop();
|
|
|
|
HandleIncreasedCumulativeTsnAck(
|
|
old_outstanding_bytes, ack_info.bytes_acked_by_cumulative_tsn_ack +
|
|
ack_info.bytes_acked_by_new_gap_ack_blocks);
|
|
}
|
|
|
|
if (ack_info.has_packet_loss) {
|
|
is_in_fast_retransmit_ = true;
|
|
HandlePacketLoss(ack_info.highest_tsn_acked);
|
|
}
|
|
|
|
// https://tools.ietf.org/html/rfc4960#section-8.2
|
|
// "When an outstanding TSN is acknowledged [...] the endpoint shall clear
|
|
// the error counter ..."
|
|
if (ack_info.bytes_acked_by_cumulative_tsn_ack > 0 ||
|
|
ack_info.bytes_acked_by_new_gap_ack_blocks > 0) {
|
|
on_clear_retransmission_counter_();
|
|
}
|
|
|
|
last_cumulative_tsn_ack_ = cumulative_tsn_ack;
|
|
StartT3RtxTimerIfOutstandingData();
|
|
return true;
|
|
}
|
|
|
|
void RetransmissionQueue::UpdateRTT(TimeMs now,
|
|
UnwrappedTSN cumulative_tsn_ack) {
|
|
// RTT updating is flawed in SCTP, as explained in e.g. Pedersen J, Griwodz C,
|
|
// Halvorsen P (2006) Considerations of SCTP retransmission delays for thin
|
|
// streams.
|
|
// Due to delayed acknowledgement, the SACK may be sent much later which
|
|
// increases the calculated RTT.
|
|
// TODO(boivie): Consider occasionally sending DATA chunks with I-bit set and
|
|
// use only those packets for measurement.
|
|
|
|
auto it = outstanding_data_.find(cumulative_tsn_ack);
|
|
if (it != outstanding_data_.end()) {
|
|
if (!it->second.has_been_retransmitted()) {
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.1
|
|
// "Karn's algorithm: RTT measurements MUST NOT be made using
|
|
// packets that were retransmitted (and thus for which it is ambiguous
|
|
// whether the reply was for the first instance of the chunk or for a
|
|
// later instance)"
|
|
DurationMs rtt = now - it->second.time_sent();
|
|
on_new_rtt_(rtt);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RetransmissionQueue::RecalculateOutstandingBytes() {
|
|
outstanding_bytes_ = absl::c_accumulate(
|
|
outstanding_data_, 0,
|
|
[&](size_t r, const std::pair<const UnwrappedTSN, TxData>& d) {
|
|
// Packets that have been ACKED or NACKED are not outstanding, as they
|
|
// are received. And packets that are marked for retransmission or
|
|
// abandoned are lost, and not outstanding.
|
|
return r + (d.second.state() == State::kInFlight
|
|
? GetSerializedChunkSize(d.second.data())
|
|
: 0);
|
|
});
|
|
}
|
|
|
|
void RetransmissionQueue::HandleT3RtxTimerExpiry() {
|
|
size_t old_cwnd = cwnd_;
|
|
size_t old_outstanding_bytes = outstanding_bytes_;
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.3
|
|
// "For the destination address for which the timer expires, adjust
|
|
// its ssthresh with rules defined in Section 7.2.3 and set the cwnd <- MTU."
|
|
ssthresh_ = std::max(cwnd_ / 2, 4 * options_.mtu);
|
|
cwnd_ = 1 * options_.mtu;
|
|
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.3
|
|
// "For the destination address for which the timer expires, set RTO
|
|
// <- RTO * 2 ("back off the timer"). The maximum value discussed in rule C7
|
|
// above (RTO.max) may be used to provide an upper bound to this doubling
|
|
// operation."
|
|
|
|
// Already done by the Timer implementation.
|
|
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.3
|
|
// "Determine how many of the earliest (i.e., lowest TSN) outstanding
|
|
// DATA chunks for the address for which the T3-rtx has expired will fit into
|
|
// a single packet"
|
|
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.3
|
|
// "Note: Any DATA chunks that were sent to the address for which the
|
|
// T3-rtx timer expired but did not fit in one MTU (rule E3 above) should be
|
|
// marked for retransmission and sent as soon as cwnd allows (normally, when a
|
|
// SACK arrives)."
|
|
int count = 0;
|
|
for (auto& elem : outstanding_data_) {
|
|
UnwrappedTSN tsn = elem.first;
|
|
TxData& item = elem.second;
|
|
if (item.state() == State::kInFlight || item.state() == State::kNacked) {
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "Chunk " << *tsn.Wrap()
|
|
<< " will be retransmitted due to T3-RTX";
|
|
item.SetState(State::kToBeRetransmitted);
|
|
++count;
|
|
}
|
|
}
|
|
|
|
// Marking some packets as retransmitted changes outstanding bytes.
|
|
RecalculateOutstandingBytes();
|
|
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.3
|
|
// "Start the retransmission timer T3-rtx on the destination address
|
|
// to which the retransmission is sent, if rule R1 above indicates to do so."
|
|
|
|
// Already done by the Timer implementation.
|
|
|
|
RTC_DLOG(LS_INFO) << log_prefix_ << "t3-rtx expired. new cwnd=" << cwnd_
|
|
<< " (" << old_cwnd << "), ssthresh=" << ssthresh_
|
|
<< ", rtx-packets=" << count << ", outstanding_bytes "
|
|
<< outstanding_bytes_ << " (" << old_outstanding_bytes
|
|
<< ")";
|
|
}
|
|
|
|
std::vector<std::pair<TSN, Data>>
|
|
RetransmissionQueue::GetChunksToBeRetransmitted(size_t max_size) {
|
|
std::vector<std::pair<TSN, Data>> result;
|
|
for (auto& elem : outstanding_data_) {
|
|
UnwrappedTSN tsn = elem.first;
|
|
TxData& item = elem.second;
|
|
|
|
size_t serialized_size = GetSerializedChunkSize(item.data());
|
|
if (item.state() == State::kToBeRetransmitted &&
|
|
serialized_size <= max_size) {
|
|
item.Retransmit();
|
|
result.emplace_back(tsn.Wrap(), item.data().Clone());
|
|
max_size -= serialized_size;
|
|
}
|
|
// No point in continuing if the packet is full.
|
|
if (max_size <= data_chunk_header_size_) {
|
|
break;
|
|
}
|
|
}
|
|
// As some chunks may have switched state, that needs to be reflected here.
|
|
if (!result.empty()) {
|
|
RecalculateOutstandingBytes();
|
|
}
|
|
return result;
|
|
}
|
|
|
|
std::vector<std::pair<TSN, Data>> RetransmissionQueue::GetChunksToSend(
|
|
TimeMs now,
|
|
size_t bytes_remaining_in_packet) {
|
|
// Chunks are always padded to even divisible by four.
|
|
RTC_DCHECK(IsDivisibleBy4(bytes_remaining_in_packet));
|
|
|
|
std::vector<std::pair<TSN, Data>> to_be_sent;
|
|
size_t old_outstanding_bytes = outstanding_bytes_;
|
|
size_t old_rwnd = rwnd_;
|
|
if (is_in_fast_retransmit()) {
|
|
// https://tools.ietf.org/html/rfc4960#section-7.2.4
|
|
// "Determine how many of the earliest (i.e., lowest TSN) DATA chunks
|
|
// marked for retransmission will fit into a single packet ... Retransmit
|
|
// those K DATA chunks in a single packet. When a Fast Retransmit is being
|
|
// performed, the sender SHOULD ignore the value of cwnd and SHOULD NOT
|
|
// delay retransmission for this single packet."
|
|
is_in_fast_retransmit_ = false;
|
|
to_be_sent = GetChunksToBeRetransmitted(bytes_remaining_in_packet);
|
|
size_t to_be_sent_bytes = absl::c_accumulate(
|
|
to_be_sent, 0, [&](size_t r, const std::pair<TSN, Data>& d) {
|
|
return r + GetSerializedChunkSize(d.second);
|
|
});
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "fast-retransmit: sending "
|
|
<< to_be_sent.size() << " chunks, " << to_be_sent_bytes
|
|
<< " bytes";
|
|
} else {
|
|
// Normal sending. Calculate the bandwidth budget (how many bytes that is
|
|
// allowed to be sent), and fill that up first with chunks that are
|
|
// scheduled to be retransmitted. If there is still budget, send new chunks
|
|
// (which will have their TSN assigned here.)
|
|
size_t remaining_cwnd_bytes =
|
|
outstanding_bytes_ >= cwnd_ ? 0 : cwnd_ - outstanding_bytes_;
|
|
size_t max_bytes = RoundDownTo4(std::min(
|
|
std::min(bytes_remaining_in_packet, rwnd()), remaining_cwnd_bytes));
|
|
|
|
to_be_sent = GetChunksToBeRetransmitted(max_bytes);
|
|
max_bytes -= absl::c_accumulate(
|
|
to_be_sent, 0, [&](size_t r, const std::pair<TSN, Data>& d) {
|
|
return r + GetSerializedChunkSize(d.second);
|
|
});
|
|
|
|
while (max_bytes > data_chunk_header_size_) {
|
|
RTC_DCHECK(IsDivisibleBy4(max_bytes));
|
|
absl::optional<SendQueue::DataToSend> chunk_opt =
|
|
send_queue_.Produce(now, max_bytes - data_chunk_header_size_);
|
|
if (!chunk_opt.has_value()) {
|
|
on_send_queue_empty_();
|
|
break;
|
|
}
|
|
|
|
UnwrappedTSN tsn = next_tsn_;
|
|
next_tsn_.Increment();
|
|
to_be_sent.emplace_back(tsn.Wrap(), chunk_opt->data.Clone());
|
|
|
|
// All chunks are always padded to be even divisible by 4.
|
|
size_t chunk_size = GetSerializedChunkSize(chunk_opt->data);
|
|
max_bytes -= chunk_size;
|
|
outstanding_bytes_ += chunk_size;
|
|
rwnd_ -= chunk_size;
|
|
outstanding_data_.emplace(
|
|
tsn, RetransmissionQueue::TxData(std::move(chunk_opt->data),
|
|
chunk_opt->max_retransmissions, now,
|
|
chunk_opt->expires_at));
|
|
}
|
|
}
|
|
|
|
if (!to_be_sent.empty()) {
|
|
// https://tools.ietf.org/html/rfc4960#section-6.3.2
|
|
// "Every time a DATA chunk is sent to any address (including a
|
|
// retransmission), if the T3-rtx timer of that address is not running,
|
|
// start it running so that it will expire after the RTO of that address."
|
|
if (!t3_rtx_.is_running()) {
|
|
t3_rtx_.Start();
|
|
}
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "Sending TSN "
|
|
<< StrJoin(to_be_sent, ",",
|
|
[&](rtc::StringBuilder& sb,
|
|
const std::pair<TSN, Data>& c) {
|
|
sb << *c.first;
|
|
})
|
|
<< " - "
|
|
<< absl::c_accumulate(
|
|
to_be_sent, 0,
|
|
[&](size_t r, const std::pair<TSN, Data>& d) {
|
|
return r + GetSerializedChunkSize(d.second);
|
|
})
|
|
<< " bytes. outstanding_bytes=" << outstanding_bytes_
|
|
<< " (" << old_outstanding_bytes << "), cwnd=" << cwnd_
|
|
<< ", rwnd=" << rwnd_ << " (" << old_rwnd << ")";
|
|
}
|
|
return to_be_sent;
|
|
}
|
|
|
|
std::vector<std::pair<TSN, RetransmissionQueue::State>>
|
|
RetransmissionQueue::GetChunkStatesForTesting() const {
|
|
std::vector<std::pair<TSN, RetransmissionQueue::State>> states;
|
|
states.emplace_back(last_cumulative_tsn_ack_.Wrap(), State::kAcked);
|
|
for (const auto& elem : outstanding_data_) {
|
|
states.emplace_back(elem.first.Wrap(), elem.second.state());
|
|
}
|
|
return states;
|
|
}
|
|
|
|
bool RetransmissionQueue::ShouldSendForwardTsn(TimeMs now) {
|
|
if (!partial_reliability_) {
|
|
return false;
|
|
}
|
|
ExpireChunks(now);
|
|
if (!outstanding_data_.empty()) {
|
|
auto it = outstanding_data_.begin();
|
|
return it->first == last_cumulative_tsn_ack_.next_value() &&
|
|
it->second.state() == State::kAbandoned;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void RetransmissionQueue::TxData::Nack() {
|
|
++nack_count_;
|
|
if (nack_count_ >= kNumberOfNacksForRetransmission) {
|
|
state_ = State::kToBeRetransmitted;
|
|
} else {
|
|
state_ = State::kNacked;
|
|
}
|
|
}
|
|
|
|
void RetransmissionQueue::TxData::Retransmit() {
|
|
state_ = State::kInFlight;
|
|
nack_count_ = 0;
|
|
++num_retransmissions_;
|
|
}
|
|
|
|
bool RetransmissionQueue::TxData::has_expired(TimeMs now) const {
|
|
if (state_ != State::kAcked && state_ != State::kAbandoned) {
|
|
if (max_retransmissions_.has_value() &&
|
|
num_retransmissions_ >= *max_retransmissions_) {
|
|
return true;
|
|
} else if (expires_at_.has_value() && *expires_at_ <= now) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void RetransmissionQueue::ExpireChunks(TimeMs now) {
|
|
for (const auto& elem : outstanding_data_) {
|
|
UnwrappedTSN tsn = elem.first;
|
|
const TxData& item = elem.second;
|
|
|
|
// Chunks that are in-flight (possibly lost?), nacked or to be retransmitted
|
|
// can be expired easily. There is always a risk that a message is expired
|
|
// that was already received by the peer, but for which there haven't been
|
|
// a SACK received. But that's acceptable, and handled.
|
|
if (item.has_expired(now)) {
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "Marking chunk " << *tsn.Wrap()
|
|
<< " and message " << *item.data().message_id
|
|
<< " as expired";
|
|
ExpireAllFor(item);
|
|
}
|
|
}
|
|
}
|
|
|
|
void RetransmissionQueue::ExpireAllFor(
|
|
const RetransmissionQueue::TxData& item) {
|
|
// Erase all remaining chunks from the producer, if any.
|
|
send_queue_.Discard(item.data().is_unordered, item.data().stream_id,
|
|
item.data().message_id);
|
|
for (auto& elem : outstanding_data_) {
|
|
UnwrappedTSN tsn = elem.first;
|
|
TxData& other = elem.second;
|
|
|
|
if (other.state() != State::kAbandoned &&
|
|
other.data().stream_id == item.data().stream_id &&
|
|
other.data().is_unordered == item.data().is_unordered &&
|
|
other.data().message_id == item.data().message_id) {
|
|
RTC_DLOG(LS_VERBOSE) << log_prefix_ << "Marking chunk " << *tsn.Wrap()
|
|
<< " as abandoned";
|
|
other.SetState(State::kAbandoned);
|
|
}
|
|
}
|
|
}
|
|
|
|
ForwardTsnChunk RetransmissionQueue::CreateForwardTsn() const {
|
|
std::unordered_map<StreamID, SSN, StreamID::Hasher>
|
|
skipped_per_ordered_stream;
|
|
UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_;
|
|
|
|
for (const auto& elem : outstanding_data_) {
|
|
UnwrappedTSN tsn = elem.first;
|
|
const TxData& item = elem.second;
|
|
|
|
if ((tsn != new_cumulative_ack.next_value()) ||
|
|
item.state() != State::kAbandoned) {
|
|
break;
|
|
}
|
|
new_cumulative_ack = tsn;
|
|
if (!item.data().is_unordered &&
|
|
item.data().ssn > skipped_per_ordered_stream[item.data().stream_id]) {
|
|
skipped_per_ordered_stream[item.data().stream_id] = item.data().ssn;
|
|
}
|
|
}
|
|
|
|
std::vector<ForwardTsnChunk::SkippedStream> skipped_streams;
|
|
skipped_streams.reserve(skipped_per_ordered_stream.size());
|
|
for (const auto& elem : skipped_per_ordered_stream) {
|
|
skipped_streams.emplace_back(elem.first, elem.second);
|
|
}
|
|
return ForwardTsnChunk(new_cumulative_ack.Wrap(), std::move(skipped_streams));
|
|
}
|
|
|
|
IForwardTsnChunk RetransmissionQueue::CreateIForwardTsn() const {
|
|
std::unordered_map<std::pair<IsUnordered, StreamID>, MID, UnorderedStreamHash>
|
|
skipped_per_stream;
|
|
UnwrappedTSN new_cumulative_ack = last_cumulative_tsn_ack_;
|
|
|
|
for (const auto& elem : outstanding_data_) {
|
|
UnwrappedTSN tsn = elem.first;
|
|
const TxData& item = elem.second;
|
|
|
|
if ((tsn != new_cumulative_ack.next_value()) ||
|
|
item.state() != State::kAbandoned) {
|
|
break;
|
|
}
|
|
new_cumulative_ack = tsn;
|
|
std::pair<IsUnordered, StreamID> stream_id =
|
|
std::make_pair(item.data().is_unordered, item.data().stream_id);
|
|
|
|
if (item.data().message_id > skipped_per_stream[stream_id]) {
|
|
skipped_per_stream[stream_id] = item.data().message_id;
|
|
}
|
|
}
|
|
|
|
std::vector<IForwardTsnChunk::SkippedStream> skipped_streams;
|
|
skipped_streams.reserve(skipped_per_stream.size());
|
|
for (const auto& elem : skipped_per_stream) {
|
|
const std::pair<IsUnordered, StreamID>& stream = elem.first;
|
|
MID message_id = elem.second;
|
|
skipped_streams.emplace_back(stream.first, stream.second, message_id);
|
|
}
|
|
|
|
return IForwardTsnChunk(new_cumulative_ack.Wrap(),
|
|
std::move(skipped_streams));
|
|
}
|
|
|
|
void RetransmissionQueue::PrepareResetStreams(
|
|
rtc::ArrayView<const StreamID> streams) {
|
|
// TODO(boivie): These calls are now only affecting the send queue. The
|
|
// packet buffer can also change behavior - for example draining the chunk
|
|
// producer and eagerly assign TSNs so that an "Outgoing SSN Reset Request"
|
|
// can be sent quickly, with a known `sender_last_assigned_tsn`.
|
|
send_queue_.PrepareResetStreams(streams);
|
|
}
|
|
bool RetransmissionQueue::CanResetStreams() const {
|
|
return send_queue_.CanResetStreams();
|
|
}
|
|
void RetransmissionQueue::CommitResetStreams() {
|
|
send_queue_.CommitResetStreams();
|
|
}
|
|
void RetransmissionQueue::RollbackResetStreams() {
|
|
send_queue_.RollbackResetStreams();
|
|
}
|
|
|
|
} // namespace dcsctp
|