mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-23 08:46:45 +01:00
1288 lines
36 KiB
C
1288 lines
36 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2005 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
#include <openssl/bn.h>
|
|
|
|
#include <assert.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/cpu.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "internal.h"
|
|
#include "rsaz_exp.h"
|
|
|
|
|
|
int BN_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, BN_CTX *ctx) {
|
|
int i, bits, ret = 0;
|
|
BIGNUM *v, *rr;
|
|
|
|
BN_CTX_start(ctx);
|
|
if (r == a || r == p) {
|
|
rr = BN_CTX_get(ctx);
|
|
} else {
|
|
rr = r;
|
|
}
|
|
|
|
v = BN_CTX_get(ctx);
|
|
if (rr == NULL || v == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
if (BN_copy(v, a) == NULL) {
|
|
goto err;
|
|
}
|
|
bits = BN_num_bits(p);
|
|
|
|
if (BN_is_odd(p)) {
|
|
if (BN_copy(rr, a) == NULL) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
if (!BN_one(rr)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
for (i = 1; i < bits; i++) {
|
|
if (!BN_sqr(v, v, ctx)) {
|
|
goto err;
|
|
}
|
|
if (BN_is_bit_set(p, i)) {
|
|
if (!BN_mul(rr, rr, v, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (r != rr && !BN_copy(r, rr)) {
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
typedef struct bn_recp_ctx_st {
|
|
BIGNUM N; // the divisor
|
|
BIGNUM Nr; // the reciprocal
|
|
int num_bits;
|
|
int shift;
|
|
int flags;
|
|
} BN_RECP_CTX;
|
|
|
|
static void BN_RECP_CTX_init(BN_RECP_CTX *recp) {
|
|
BN_init(&recp->N);
|
|
BN_init(&recp->Nr);
|
|
recp->num_bits = 0;
|
|
recp->shift = 0;
|
|
recp->flags = 0;
|
|
}
|
|
|
|
static void BN_RECP_CTX_free(BN_RECP_CTX *recp) {
|
|
if (recp == NULL) {
|
|
return;
|
|
}
|
|
|
|
BN_free(&recp->N);
|
|
BN_free(&recp->Nr);
|
|
}
|
|
|
|
static int BN_RECP_CTX_set(BN_RECP_CTX *recp, const BIGNUM *d, BN_CTX *ctx) {
|
|
if (!BN_copy(&(recp->N), d)) {
|
|
return 0;
|
|
}
|
|
BN_zero(&recp->Nr);
|
|
recp->num_bits = BN_num_bits(d);
|
|
recp->shift = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
// len is the expected size of the result We actually calculate with an extra
|
|
// word of precision, so we can do faster division if the remainder is not
|
|
// required.
|
|
// r := 2^len / m
|
|
static int BN_reciprocal(BIGNUM *r, const BIGNUM *m, int len, BN_CTX *ctx) {
|
|
int ret = -1;
|
|
BIGNUM *t;
|
|
|
|
BN_CTX_start(ctx);
|
|
t = BN_CTX_get(ctx);
|
|
if (t == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_set_bit(t, len)) {
|
|
goto err;
|
|
}
|
|
|
|
if (!BN_div(r, NULL, t, m, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
ret = len;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int BN_div_recp(BIGNUM *dv, BIGNUM *rem, const BIGNUM *m,
|
|
BN_RECP_CTX *recp, BN_CTX *ctx) {
|
|
int i, j, ret = 0;
|
|
BIGNUM *a, *b, *d, *r;
|
|
|
|
BN_CTX_start(ctx);
|
|
a = BN_CTX_get(ctx);
|
|
b = BN_CTX_get(ctx);
|
|
if (dv != NULL) {
|
|
d = dv;
|
|
} else {
|
|
d = BN_CTX_get(ctx);
|
|
}
|
|
|
|
if (rem != NULL) {
|
|
r = rem;
|
|
} else {
|
|
r = BN_CTX_get(ctx);
|
|
}
|
|
|
|
if (a == NULL || b == NULL || d == NULL || r == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
if (BN_ucmp(m, &recp->N) < 0) {
|
|
BN_zero(d);
|
|
if (!BN_copy(r, m)) {
|
|
goto err;
|
|
}
|
|
BN_CTX_end(ctx);
|
|
return 1;
|
|
}
|
|
|
|
// We want the remainder
|
|
// Given input of ABCDEF / ab
|
|
// we need multiply ABCDEF by 3 digests of the reciprocal of ab
|
|
|
|
// i := max(BN_num_bits(m), 2*BN_num_bits(N))
|
|
i = BN_num_bits(m);
|
|
j = recp->num_bits << 1;
|
|
if (j > i) {
|
|
i = j;
|
|
}
|
|
|
|
// Nr := round(2^i / N)
|
|
if (i != recp->shift) {
|
|
recp->shift =
|
|
BN_reciprocal(&(recp->Nr), &(recp->N), i,
|
|
ctx); // BN_reciprocal returns i, or -1 for an error
|
|
}
|
|
|
|
if (recp->shift == -1) {
|
|
goto err;
|
|
}
|
|
|
|
// d := |round(round(m / 2^BN_num_bits(N)) * recp->Nr / 2^(i -
|
|
// BN_num_bits(N)))|
|
|
// = |round(round(m / 2^BN_num_bits(N)) * round(2^i / N) / 2^(i -
|
|
// BN_num_bits(N)))|
|
|
// <= |(m / 2^BN_num_bits(N)) * (2^i / N) * (2^BN_num_bits(N) / 2^i)|
|
|
// = |m/N|
|
|
if (!BN_rshift(a, m, recp->num_bits)) {
|
|
goto err;
|
|
}
|
|
if (!BN_mul(b, a, &(recp->Nr), ctx)) {
|
|
goto err;
|
|
}
|
|
if (!BN_rshift(d, b, i - recp->num_bits)) {
|
|
goto err;
|
|
}
|
|
d->neg = 0;
|
|
|
|
if (!BN_mul(b, &(recp->N), d, ctx)) {
|
|
goto err;
|
|
}
|
|
if (!BN_usub(r, m, b)) {
|
|
goto err;
|
|
}
|
|
r->neg = 0;
|
|
|
|
j = 0;
|
|
while (BN_ucmp(r, &(recp->N)) >= 0) {
|
|
if (j++ > 2) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_BAD_RECIPROCAL);
|
|
goto err;
|
|
}
|
|
if (!BN_usub(r, r, &(recp->N))) {
|
|
goto err;
|
|
}
|
|
if (!BN_add_word(d, 1)) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
r->neg = BN_is_zero(r) ? 0 : m->neg;
|
|
d->neg = m->neg ^ recp->N.neg;
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
static int BN_mod_mul_reciprocal(BIGNUM *r, const BIGNUM *x, const BIGNUM *y,
|
|
BN_RECP_CTX *recp, BN_CTX *ctx) {
|
|
int ret = 0;
|
|
BIGNUM *a;
|
|
const BIGNUM *ca;
|
|
|
|
BN_CTX_start(ctx);
|
|
a = BN_CTX_get(ctx);
|
|
if (a == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
if (y != NULL) {
|
|
if (x == y) {
|
|
if (!BN_sqr(a, x, ctx)) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
if (!BN_mul(a, x, y, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
ca = a;
|
|
} else {
|
|
ca = x; // Just do the mod
|
|
}
|
|
|
|
ret = BN_div_recp(NULL, r, ca, recp, ctx);
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
// BN_window_bits_for_exponent_size returns sliding window size for mod_exp with
|
|
// a |b| bit exponent.
|
|
//
|
|
// For window size 'w' (w >= 2) and a random 'b' bits exponent, the number of
|
|
// multiplications is a constant plus on average
|
|
//
|
|
// 2^(w-1) + (b-w)/(w+1);
|
|
//
|
|
// here 2^(w-1) is for precomputing the table (we actually need entries only
|
|
// for windows that have the lowest bit set), and (b-w)/(w+1) is an
|
|
// approximation for the expected number of w-bit windows, not counting the
|
|
// first one.
|
|
//
|
|
// Thus we should use
|
|
//
|
|
// w >= 6 if b > 671
|
|
// w = 5 if 671 > b > 239
|
|
// w = 4 if 239 > b > 79
|
|
// w = 3 if 79 > b > 23
|
|
// w <= 2 if 23 > b
|
|
//
|
|
// (with draws in between). Very small exponents are often selected
|
|
// with low Hamming weight, so we use w = 1 for b <= 23.
|
|
static int BN_window_bits_for_exponent_size(int b) {
|
|
if (b > 671) {
|
|
return 6;
|
|
}
|
|
if (b > 239) {
|
|
return 5;
|
|
}
|
|
if (b > 79) {
|
|
return 4;
|
|
}
|
|
if (b > 23) {
|
|
return 3;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
// TABLE_SIZE is the maximum precomputation table size for *variable* sliding
|
|
// windows. This must be 2^(max_window - 1), where max_window is the largest
|
|
// value returned from |BN_window_bits_for_exponent_size|.
|
|
#define TABLE_SIZE 32
|
|
|
|
// TABLE_BITS_SMALL is the smallest value returned from
|
|
// |BN_window_bits_for_exponent_size| when |b| is at most |BN_BITS2| *
|
|
// |BN_SMALL_MAX_WORDS| words.
|
|
#define TABLE_BITS_SMALL 5
|
|
|
|
// TABLE_SIZE_SMALL is the same as |TABLE_SIZE|, but when |b| is at most
|
|
// |BN_BITS2| * |BN_SMALL_MAX_WORDS|.
|
|
#define TABLE_SIZE_SMALL (1 << (TABLE_BITS_SMALL - 1))
|
|
|
|
static int mod_exp_recp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx) {
|
|
int i, j, ret = 0, wstart, window;
|
|
int start = 1;
|
|
BIGNUM *aa;
|
|
// Table of variables obtained from 'ctx'
|
|
BIGNUM *val[TABLE_SIZE];
|
|
BN_RECP_CTX recp;
|
|
|
|
// This function is only called on even moduli.
|
|
assert(!BN_is_odd(m));
|
|
|
|
int bits = BN_num_bits(p);
|
|
if (bits == 0) {
|
|
return BN_one(r);
|
|
}
|
|
|
|
BN_CTX_start(ctx);
|
|
aa = BN_CTX_get(ctx);
|
|
val[0] = BN_CTX_get(ctx);
|
|
if (!aa || !val[0]) {
|
|
goto err;
|
|
}
|
|
|
|
BN_RECP_CTX_init(&recp);
|
|
if (m->neg) {
|
|
// ignore sign of 'm'
|
|
if (!BN_copy(aa, m)) {
|
|
goto err;
|
|
}
|
|
aa->neg = 0;
|
|
if (BN_RECP_CTX_set(&recp, aa, ctx) <= 0) {
|
|
goto err;
|
|
}
|
|
} else {
|
|
if (BN_RECP_CTX_set(&recp, m, ctx) <= 0) {
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (!BN_nnmod(val[0], a, m, ctx)) {
|
|
goto err; // 1
|
|
}
|
|
if (BN_is_zero(val[0])) {
|
|
BN_zero(r);
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
|
|
window = BN_window_bits_for_exponent_size(bits);
|
|
if (window > 1) {
|
|
if (!BN_mod_mul_reciprocal(aa, val[0], val[0], &recp, ctx)) {
|
|
goto err; // 2
|
|
}
|
|
j = 1 << (window - 1);
|
|
for (i = 1; i < j; i++) {
|
|
if (((val[i] = BN_CTX_get(ctx)) == NULL) ||
|
|
!BN_mod_mul_reciprocal(val[i], val[i - 1], aa, &recp, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
start = 1; // This is used to avoid multiplication etc
|
|
// when there is only the value '1' in the
|
|
// buffer.
|
|
wstart = bits - 1; // The top bit of the window
|
|
|
|
if (!BN_one(r)) {
|
|
goto err;
|
|
}
|
|
|
|
for (;;) {
|
|
int wvalue; // The 'value' of the window
|
|
int wend; // The bottom bit of the window
|
|
|
|
if (!BN_is_bit_set(p, wstart)) {
|
|
if (!start) {
|
|
if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
if (wstart == 0) {
|
|
break;
|
|
}
|
|
wstart--;
|
|
continue;
|
|
}
|
|
|
|
// We now have wstart on a 'set' bit, we now need to work out
|
|
// how bit a window to do. To do this we need to scan
|
|
// forward until the last set bit before the end of the
|
|
// window
|
|
wvalue = 1;
|
|
wend = 0;
|
|
for (i = 1; i < window; i++) {
|
|
if (wstart - i < 0) {
|
|
break;
|
|
}
|
|
if (BN_is_bit_set(p, wstart - i)) {
|
|
wvalue <<= (i - wend);
|
|
wvalue |= 1;
|
|
wend = i;
|
|
}
|
|
}
|
|
|
|
// wend is the size of the current window
|
|
j = wend + 1;
|
|
// add the 'bytes above'
|
|
if (!start) {
|
|
for (i = 0; i < j; i++) {
|
|
if (!BN_mod_mul_reciprocal(r, r, r, &recp, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
// wvalue will be an odd number < 2^window
|
|
if (!BN_mod_mul_reciprocal(r, r, val[wvalue >> 1], &recp, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
// move the 'window' down further
|
|
wstart -= wend + 1;
|
|
start = 0;
|
|
if (wstart < 0) {
|
|
break;
|
|
}
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_CTX_end(ctx);
|
|
BN_RECP_CTX_free(&recp);
|
|
return ret;
|
|
}
|
|
|
|
int BN_mod_exp(BIGNUM *r, const BIGNUM *a, const BIGNUM *p, const BIGNUM *m,
|
|
BN_CTX *ctx) {
|
|
if (m->neg) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
|
|
return 0;
|
|
}
|
|
if (a->neg || BN_ucmp(a, m) >= 0) {
|
|
if (!BN_nnmod(r, a, m, ctx)) {
|
|
return 0;
|
|
}
|
|
a = r;
|
|
}
|
|
|
|
if (BN_is_odd(m)) {
|
|
return BN_mod_exp_mont(r, a, p, m, ctx, NULL);
|
|
}
|
|
|
|
return mod_exp_recp(r, a, p, m, ctx);
|
|
}
|
|
|
|
int BN_mod_exp_mont(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx, const BN_MONT_CTX *mont) {
|
|
if (!BN_is_odd(m)) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
|
|
return 0;
|
|
}
|
|
if (m->neg) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
|
|
return 0;
|
|
}
|
|
if (a->neg || BN_ucmp(a, m) >= 0) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
|
|
return 0;
|
|
}
|
|
|
|
int bits = BN_num_bits(p);
|
|
if (bits == 0) {
|
|
// x**0 mod 1 is still zero.
|
|
if (BN_abs_is_word(m, 1)) {
|
|
BN_zero(rr);
|
|
return 1;
|
|
}
|
|
return BN_one(rr);
|
|
}
|
|
|
|
int ret = 0;
|
|
BIGNUM *val[TABLE_SIZE];
|
|
BN_MONT_CTX *new_mont = NULL;
|
|
|
|
BN_CTX_start(ctx);
|
|
BIGNUM *r = BN_CTX_get(ctx);
|
|
val[0] = BN_CTX_get(ctx);
|
|
if (r == NULL || val[0] == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
// Allocate a montgomery context if it was not supplied by the caller.
|
|
if (mont == NULL) {
|
|
new_mont = BN_MONT_CTX_new_consttime(m, ctx);
|
|
if (new_mont == NULL) {
|
|
goto err;
|
|
}
|
|
mont = new_mont;
|
|
}
|
|
|
|
// We exponentiate by looking at sliding windows of the exponent and
|
|
// precomputing powers of |a|. Windows may be shifted so they always end on a
|
|
// set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1)
|
|
// for i = 0 to 2^(window-1), all in Montgomery form.
|
|
int window = BN_window_bits_for_exponent_size(bits);
|
|
if (!BN_to_montgomery(val[0], a, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
if (window > 1) {
|
|
BIGNUM *d = BN_CTX_get(ctx);
|
|
if (d == NULL ||
|
|
!BN_mod_mul_montgomery(d, val[0], val[0], mont, ctx)) {
|
|
goto err;
|
|
}
|
|
for (int i = 1; i < 1 << (window - 1); i++) {
|
|
val[i] = BN_CTX_get(ctx);
|
|
if (val[i] == NULL ||
|
|
!BN_mod_mul_montgomery(val[i], val[i - 1], d, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
// |p| is non-zero, so at least one window is non-zero. To save some
|
|
// multiplications, defer initializing |r| until then.
|
|
int r_is_one = 1;
|
|
int wstart = bits - 1; // The top bit of the window.
|
|
for (;;) {
|
|
if (!BN_is_bit_set(p, wstart)) {
|
|
if (!r_is_one && !BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
if (wstart == 0) {
|
|
break;
|
|
}
|
|
wstart--;
|
|
continue;
|
|
}
|
|
|
|
// We now have wstart on a set bit. Find the largest window we can use.
|
|
int wvalue = 1;
|
|
int wsize = 0;
|
|
for (int i = 1; i < window && i <= wstart; i++) {
|
|
if (BN_is_bit_set(p, wstart - i)) {
|
|
wvalue <<= (i - wsize);
|
|
wvalue |= 1;
|
|
wsize = i;
|
|
}
|
|
}
|
|
|
|
// Shift |r| to the end of the window.
|
|
if (!r_is_one) {
|
|
for (int i = 0; i < wsize + 1; i++) {
|
|
if (!BN_mod_mul_montgomery(r, r, r, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(wvalue & 1);
|
|
assert(wvalue < (1 << window));
|
|
if (r_is_one) {
|
|
if (!BN_copy(r, val[wvalue >> 1])) {
|
|
goto err;
|
|
}
|
|
} else if (!BN_mod_mul_montgomery(r, r, val[wvalue >> 1], mont, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
r_is_one = 0;
|
|
if (wstart == wsize) {
|
|
break;
|
|
}
|
|
wstart -= wsize + 1;
|
|
}
|
|
|
|
// |p| is non-zero, so |r_is_one| must be cleared at some point.
|
|
assert(!r_is_one);
|
|
|
|
if (!BN_from_montgomery(rr, r, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_MONT_CTX_free(new_mont);
|
|
BN_CTX_end(ctx);
|
|
return ret;
|
|
}
|
|
|
|
void bn_mod_exp_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
|
|
const BN_ULONG *p, size_t num_p,
|
|
const BN_MONT_CTX *mont) {
|
|
if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) {
|
|
abort();
|
|
}
|
|
assert(BN_is_odd(&mont->N));
|
|
|
|
// Count the number of bits in |p|. Note this function treats |p| as public.
|
|
while (num_p != 0 && p[num_p - 1] == 0) {
|
|
num_p--;
|
|
}
|
|
if (num_p == 0) {
|
|
bn_from_montgomery_small(r, mont->RR.d, num, mont);
|
|
return;
|
|
}
|
|
unsigned bits = BN_num_bits_word(p[num_p - 1]) + (num_p - 1) * BN_BITS2;
|
|
assert(bits != 0);
|
|
|
|
// We exponentiate by looking at sliding windows of the exponent and
|
|
// precomputing powers of |a|. Windows may be shifted so they always end on a
|
|
// set bit, so only precompute odd powers. We compute val[i] = a^(2*i + 1) for
|
|
// i = 0 to 2^(window-1), all in Montgomery form.
|
|
unsigned window = BN_window_bits_for_exponent_size(bits);
|
|
if (window > TABLE_BITS_SMALL) {
|
|
window = TABLE_BITS_SMALL; // Tolerate excessively large |p|.
|
|
}
|
|
BN_ULONG val[TABLE_SIZE_SMALL][BN_SMALL_MAX_WORDS];
|
|
OPENSSL_memcpy(val[0], a, num * sizeof(BN_ULONG));
|
|
if (window > 1) {
|
|
BN_ULONG d[BN_SMALL_MAX_WORDS];
|
|
bn_mod_mul_montgomery_small(d, val[0], val[0], num, mont);
|
|
for (unsigned i = 1; i < 1u << (window - 1); i++) {
|
|
bn_mod_mul_montgomery_small(val[i], val[i - 1], d, num, mont);
|
|
}
|
|
}
|
|
|
|
// |p| is non-zero, so at least one window is non-zero. To save some
|
|
// multiplications, defer initializing |r| until then.
|
|
int r_is_one = 1;
|
|
unsigned wstart = bits - 1; // The top bit of the window.
|
|
for (;;) {
|
|
if (!bn_is_bit_set_words(p, num_p, wstart)) {
|
|
if (!r_is_one) {
|
|
bn_mod_mul_montgomery_small(r, r, r, num, mont);
|
|
}
|
|
if (wstart == 0) {
|
|
break;
|
|
}
|
|
wstart--;
|
|
continue;
|
|
}
|
|
|
|
// We now have wstart on a set bit. Find the largest window we can use.
|
|
unsigned wvalue = 1;
|
|
unsigned wsize = 0;
|
|
for (unsigned i = 1; i < window && i <= wstart; i++) {
|
|
if (bn_is_bit_set_words(p, num_p, wstart - i)) {
|
|
wvalue <<= (i - wsize);
|
|
wvalue |= 1;
|
|
wsize = i;
|
|
}
|
|
}
|
|
|
|
// Shift |r| to the end of the window.
|
|
if (!r_is_one) {
|
|
for (unsigned i = 0; i < wsize + 1; i++) {
|
|
bn_mod_mul_montgomery_small(r, r, r, num, mont);
|
|
}
|
|
}
|
|
|
|
assert(wvalue & 1);
|
|
assert(wvalue < (1u << window));
|
|
if (r_is_one) {
|
|
OPENSSL_memcpy(r, val[wvalue >> 1], num * sizeof(BN_ULONG));
|
|
} else {
|
|
bn_mod_mul_montgomery_small(r, r, val[wvalue >> 1], num, mont);
|
|
}
|
|
r_is_one = 0;
|
|
if (wstart == wsize) {
|
|
break;
|
|
}
|
|
wstart -= wsize + 1;
|
|
}
|
|
|
|
// |p| is non-zero, so |r_is_one| must be cleared at some point.
|
|
assert(!r_is_one);
|
|
OPENSSL_cleanse(val, sizeof(val));
|
|
}
|
|
|
|
void bn_mod_inverse_prime_mont_small(BN_ULONG *r, const BN_ULONG *a, size_t num,
|
|
const BN_MONT_CTX *mont) {
|
|
if (num != (size_t)mont->N.width || num > BN_SMALL_MAX_WORDS) {
|
|
abort();
|
|
}
|
|
|
|
// Per Fermat's Little Theorem, a^-1 = a^(p-2) (mod p) for p prime.
|
|
BN_ULONG p_minus_two[BN_SMALL_MAX_WORDS];
|
|
const BN_ULONG *p = mont->N.d;
|
|
OPENSSL_memcpy(p_minus_two, p, num * sizeof(BN_ULONG));
|
|
if (p_minus_two[0] >= 2) {
|
|
p_minus_two[0] -= 2;
|
|
} else {
|
|
p_minus_two[0] -= 2;
|
|
for (size_t i = 1; i < num; i++) {
|
|
if (p_minus_two[i]-- != 0) {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
bn_mod_exp_mont_small(r, a, num, p_minus_two, num, mont);
|
|
}
|
|
|
|
static void copy_to_prebuf(const BIGNUM *b, int top, BN_ULONG *table, int idx,
|
|
int window) {
|
|
int ret = bn_copy_words(table + idx * top, top, b);
|
|
assert(ret); // |b| is guaranteed to fit.
|
|
(void)ret;
|
|
}
|
|
|
|
static int copy_from_prebuf(BIGNUM *b, int top, const BN_ULONG *table, int idx,
|
|
int window) {
|
|
if (!bn_wexpand(b, top)) {
|
|
return 0;
|
|
}
|
|
|
|
OPENSSL_memset(b->d, 0, sizeof(BN_ULONG) * top);
|
|
const int width = 1 << window;
|
|
for (int i = 0; i < width; i++, table += top) {
|
|
BN_ULONG mask = constant_time_eq_int(i, idx);
|
|
for (int j = 0; j < top; j++) {
|
|
b->d[j] |= table[j] & mask;
|
|
}
|
|
}
|
|
|
|
b->width = top;
|
|
return 1;
|
|
}
|
|
|
|
#define MOD_EXP_CTIME_MIN_CACHE_LINE_MASK \
|
|
(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - 1)
|
|
|
|
// Window sizes optimized for fixed window size modular exponentiation
|
|
// algorithm (BN_mod_exp_mont_consttime).
|
|
//
|
|
// To achieve the security goals of BN_mode_exp_mont_consttime, the maximum
|
|
// size of the window must not exceed
|
|
// log_2(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH).
|
|
//
|
|
// Window size thresholds are defined for cache line sizes of 32 and 64, cache
|
|
// line sizes where log_2(32)=5 and log_2(64)=6 respectively. A window size of
|
|
// 7 should only be used on processors that have a 128 byte or greater cache
|
|
// line size.
|
|
#if MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 64
|
|
|
|
#define BN_window_bits_for_ctime_exponent_size(b) \
|
|
((b) > 937 ? 6 : (b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
|
|
#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (6)
|
|
|
|
#elif MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH == 32
|
|
|
|
#define BN_window_bits_for_ctime_exponent_size(b) \
|
|
((b) > 306 ? 5 : (b) > 89 ? 4 : (b) > 22 ? 3 : 1)
|
|
#define BN_MAX_WINDOW_BITS_FOR_CTIME_EXPONENT_SIZE (5)
|
|
|
|
#endif
|
|
|
|
// Given a pointer value, compute the next address that is a cache line
|
|
// multiple.
|
|
#define MOD_EXP_CTIME_ALIGN(x_) \
|
|
((unsigned char *)(x_) + \
|
|
(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH - \
|
|
(((size_t)(x_)) & (MOD_EXP_CTIME_MIN_CACHE_LINE_MASK))))
|
|
|
|
// This variant of |BN_mod_exp_mont| uses fixed windows and fixed memory access
|
|
// patterns to protect secret exponents (cf. the hyper-threading timing attacks
|
|
// pointed out by Colin Percival,
|
|
// http://www.daemonology.net/hyperthreading-considered-harmful/)
|
|
int BN_mod_exp_mont_consttime(BIGNUM *rr, const BIGNUM *a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx,
|
|
const BN_MONT_CTX *mont) {
|
|
int i, ret = 0, window, wvalue;
|
|
BN_MONT_CTX *new_mont = NULL;
|
|
|
|
int numPowers;
|
|
unsigned char *powerbufFree = NULL;
|
|
int powerbufLen = 0;
|
|
BN_ULONG *powerbuf = NULL;
|
|
BIGNUM tmp, am;
|
|
|
|
if (!BN_is_odd(m)) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_CALLED_WITH_EVEN_MODULUS);
|
|
return 0;
|
|
}
|
|
if (m->neg) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_NEGATIVE_NUMBER);
|
|
return 0;
|
|
}
|
|
if (a->neg || BN_ucmp(a, m) >= 0) {
|
|
OPENSSL_PUT_ERROR(BN, BN_R_INPUT_NOT_REDUCED);
|
|
return 0;
|
|
}
|
|
|
|
// Use all bits stored in |p|, rather than |BN_num_bits|, so we do not leak
|
|
// whether the top bits are zero.
|
|
int max_bits = p->width * BN_BITS2;
|
|
int bits = max_bits;
|
|
if (bits == 0) {
|
|
// x**0 mod 1 is still zero.
|
|
if (BN_abs_is_word(m, 1)) {
|
|
BN_zero(rr);
|
|
return 1;
|
|
}
|
|
return BN_one(rr);
|
|
}
|
|
|
|
// Allocate a montgomery context if it was not supplied by the caller.
|
|
if (mont == NULL) {
|
|
new_mont = BN_MONT_CTX_new_consttime(m, ctx);
|
|
if (new_mont == NULL) {
|
|
goto err;
|
|
}
|
|
mont = new_mont;
|
|
}
|
|
|
|
// Use the width in |mont->N|, rather than the copy in |m|. The assembly
|
|
// implementation assumes it can use |top| to size R.
|
|
int top = mont->N.width;
|
|
|
|
#if defined(OPENSSL_BN_ASM_MONT5) || defined(RSAZ_ENABLED)
|
|
// Share one large stack-allocated buffer between the RSAZ and non-RSAZ code
|
|
// paths. If we were to use separate static buffers for each then there is
|
|
// some chance that both large buffers would be allocated on the stack,
|
|
// causing the stack space requirement to be truly huge (~10KB).
|
|
alignas(MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH) BN_ULONG
|
|
storage[MOD_EXP_CTIME_STORAGE_LEN];
|
|
#endif
|
|
#if defined(RSAZ_ENABLED)
|
|
// If the size of the operands allow it, perform the optimized RSAZ
|
|
// exponentiation. For further information see crypto/fipsmodule/bn/rsaz_exp.c
|
|
// and accompanying assembly modules.
|
|
if (a->width == 16 && p->width == 16 && BN_num_bits(m) == 1024 &&
|
|
rsaz_avx2_preferred()) {
|
|
if (!bn_wexpand(rr, 16)) {
|
|
goto err;
|
|
}
|
|
RSAZ_1024_mod_exp_avx2(rr->d, a->d, p->d, m->d, mont->RR.d, mont->n0[0],
|
|
storage);
|
|
rr->width = 16;
|
|
rr->neg = 0;
|
|
ret = 1;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
// Get the window size to use with size of p.
|
|
window = BN_window_bits_for_ctime_exponent_size(bits);
|
|
#if defined(OPENSSL_BN_ASM_MONT5)
|
|
if (window >= 5) {
|
|
window = 5; // ~5% improvement for RSA2048 sign, and even for RSA4096
|
|
// reserve space for mont->N.d[] copy
|
|
powerbufLen += top * sizeof(mont->N.d[0]);
|
|
}
|
|
#endif
|
|
|
|
// Allocate a buffer large enough to hold all of the pre-computed
|
|
// powers of am, am itself and tmp.
|
|
numPowers = 1 << window;
|
|
powerbufLen +=
|
|
sizeof(m->d[0]) *
|
|
(top * numPowers + ((2 * top) > numPowers ? (2 * top) : numPowers));
|
|
|
|
#if defined(OPENSSL_BN_ASM_MONT5)
|
|
if ((size_t)powerbufLen <= sizeof(storage)) {
|
|
powerbuf = storage;
|
|
}
|
|
// |storage| is more than large enough to handle 1024-bit inputs.
|
|
assert(powerbuf != NULL || top * BN_BITS2 > 1024);
|
|
#endif
|
|
if (powerbuf == NULL) {
|
|
powerbufFree =
|
|
OPENSSL_malloc(powerbufLen + MOD_EXP_CTIME_MIN_CACHE_LINE_WIDTH);
|
|
if (powerbufFree == NULL) {
|
|
goto err;
|
|
}
|
|
powerbuf = (BN_ULONG *)MOD_EXP_CTIME_ALIGN(powerbufFree);
|
|
}
|
|
OPENSSL_memset(powerbuf, 0, powerbufLen);
|
|
|
|
// lay down tmp and am right after powers table
|
|
tmp.d = powerbuf + top * numPowers;
|
|
am.d = tmp.d + top;
|
|
tmp.width = am.width = 0;
|
|
tmp.dmax = am.dmax = top;
|
|
tmp.neg = am.neg = 0;
|
|
tmp.flags = am.flags = BN_FLG_STATIC_DATA;
|
|
|
|
if (!bn_one_to_montgomery(&tmp, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
// prepare a^1 in Montgomery domain
|
|
assert(!a->neg);
|
|
assert(BN_ucmp(a, m) < 0);
|
|
if (!BN_to_montgomery(&am, a, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
#if defined(OPENSSL_BN_ASM_MONT5)
|
|
// This optimization uses ideas from http://eprint.iacr.org/2011/239,
|
|
// specifically optimization of cache-timing attack countermeasures
|
|
// and pre-computation optimization.
|
|
|
|
// Dedicated window==4 case improves 512-bit RSA sign by ~15%, but as
|
|
// 512-bit RSA is hardly relevant, we omit it to spare size...
|
|
if (window == 5 && top > 1) {
|
|
const BN_ULONG *n0 = mont->n0;
|
|
BN_ULONG *np;
|
|
|
|
// BN_to_montgomery can contaminate words above .top
|
|
// [in BN_DEBUG[_DEBUG] build]...
|
|
for (i = am.width; i < top; i++) {
|
|
am.d[i] = 0;
|
|
}
|
|
for (i = tmp.width; i < top; i++) {
|
|
tmp.d[i] = 0;
|
|
}
|
|
|
|
// copy mont->N.d[] to improve cache locality
|
|
for (np = am.d + top, i = 0; i < top; i++) {
|
|
np[i] = mont->N.d[i];
|
|
}
|
|
|
|
bn_scatter5(tmp.d, top, powerbuf, 0);
|
|
bn_scatter5(am.d, am.width, powerbuf, 1);
|
|
bn_mul_mont(tmp.d, am.d, am.d, np, n0, top);
|
|
bn_scatter5(tmp.d, top, powerbuf, 2);
|
|
|
|
// same as above, but uses squaring for 1/2 of operations
|
|
for (i = 4; i < 32; i *= 2) {
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
|
bn_scatter5(tmp.d, top, powerbuf, i);
|
|
}
|
|
for (i = 3; i < 8; i += 2) {
|
|
int j;
|
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
|
|
bn_scatter5(tmp.d, top, powerbuf, i);
|
|
for (j = 2 * i; j < 32; j *= 2) {
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
|
bn_scatter5(tmp.d, top, powerbuf, j);
|
|
}
|
|
}
|
|
for (; i < 16; i += 2) {
|
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
|
|
bn_scatter5(tmp.d, top, powerbuf, i);
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
|
bn_scatter5(tmp.d, top, powerbuf, 2 * i);
|
|
}
|
|
for (; i < 32; i += 2) {
|
|
bn_mul_mont_gather5(tmp.d, am.d, powerbuf, np, n0, top, i - 1);
|
|
bn_scatter5(tmp.d, top, powerbuf, i);
|
|
}
|
|
|
|
bits--;
|
|
for (wvalue = 0, i = bits % 5; i >= 0; i--, bits--) {
|
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
|
|
}
|
|
bn_gather5(tmp.d, top, powerbuf, wvalue);
|
|
|
|
// At this point |bits| is 4 mod 5 and at least -1. (|bits| is the first bit
|
|
// that has not been read yet.)
|
|
assert(bits >= -1 && (bits == -1 || bits % 5 == 4));
|
|
|
|
// Scan the exponent one window at a time starting from the most
|
|
// significant bits.
|
|
if (top & 7) {
|
|
while (bits >= 0) {
|
|
for (wvalue = 0, i = 0; i < 5; i++, bits--) {
|
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
|
|
}
|
|
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
|
bn_mul_mont(tmp.d, tmp.d, tmp.d, np, n0, top);
|
|
bn_mul_mont_gather5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
|
|
}
|
|
} else {
|
|
const uint8_t *p_bytes = (const uint8_t *)p->d;
|
|
assert(bits < max_bits);
|
|
// |p = 0| has been handled as a special case, so |max_bits| is at least
|
|
// one word.
|
|
assert(max_bits >= 64);
|
|
|
|
// If the first bit to be read lands in the last byte, unroll the first
|
|
// iteration to avoid reading past the bounds of |p->d|. (After the first
|
|
// iteration, we are guaranteed to be past the last byte.) Note |bits|
|
|
// here is the top bit, inclusive.
|
|
if (bits - 4 >= max_bits - 8) {
|
|
// Read five bits from |bits-4| through |bits|, inclusive.
|
|
wvalue = p_bytes[p->width * BN_BYTES - 1];
|
|
wvalue >>= (bits - 4) & 7;
|
|
wvalue &= 0x1f;
|
|
bits -= 5;
|
|
bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, wvalue);
|
|
}
|
|
while (bits >= 0) {
|
|
// Read five bits from |bits-4| through |bits|, inclusive.
|
|
int first_bit = bits - 4;
|
|
uint16_t val;
|
|
OPENSSL_memcpy(&val, p_bytes + (first_bit >> 3), sizeof(val));
|
|
val >>= first_bit & 7;
|
|
val &= 0x1f;
|
|
bits -= 5;
|
|
bn_power5(tmp.d, tmp.d, powerbuf, np, n0, top, val);
|
|
}
|
|
}
|
|
|
|
ret = bn_from_montgomery(tmp.d, tmp.d, NULL, np, n0, top);
|
|
tmp.width = top;
|
|
if (ret) {
|
|
if (!BN_copy(rr, &tmp)) {
|
|
ret = 0;
|
|
}
|
|
goto err; // non-zero ret means it's not error
|
|
}
|
|
} else
|
|
#endif
|
|
{
|
|
copy_to_prebuf(&tmp, top, powerbuf, 0, window);
|
|
copy_to_prebuf(&am, top, powerbuf, 1, window);
|
|
|
|
// If the window size is greater than 1, then calculate
|
|
// val[i=2..2^winsize-1]. Powers are computed as a*a^(i-1)
|
|
// (even powers could instead be computed as (a^(i/2))^2
|
|
// to use the slight performance advantage of sqr over mul).
|
|
if (window > 1) {
|
|
if (!BN_mod_mul_montgomery(&tmp, &am, &am, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
copy_to_prebuf(&tmp, top, powerbuf, 2, window);
|
|
|
|
for (i = 3; i < numPowers; i++) {
|
|
// Calculate a^i = a^(i-1) * a
|
|
if (!BN_mod_mul_montgomery(&tmp, &am, &tmp, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
copy_to_prebuf(&tmp, top, powerbuf, i, window);
|
|
}
|
|
}
|
|
|
|
bits--;
|
|
for (wvalue = 0, i = bits % window; i >= 0; i--, bits--) {
|
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
|
|
}
|
|
if (!copy_from_prebuf(&tmp, top, powerbuf, wvalue, window)) {
|
|
goto err;
|
|
}
|
|
|
|
// Scan the exponent one window at a time starting from the most
|
|
// significant bits.
|
|
while (bits >= 0) {
|
|
wvalue = 0; // The 'value' of the window
|
|
|
|
// Scan the window, squaring the result as we go
|
|
for (i = 0; i < window; i++, bits--) {
|
|
if (!BN_mod_mul_montgomery(&tmp, &tmp, &tmp, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
wvalue = (wvalue << 1) + BN_is_bit_set(p, bits);
|
|
}
|
|
|
|
// Fetch the appropriate pre-computed value from the pre-buf
|
|
if (!copy_from_prebuf(&am, top, powerbuf, wvalue, window)) {
|
|
goto err;
|
|
}
|
|
|
|
// Multiply the result into the intermediate result
|
|
if (!BN_mod_mul_montgomery(&tmp, &tmp, &am, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Convert the final result from montgomery to standard format
|
|
if (!BN_from_montgomery(rr, &tmp, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_MONT_CTX_free(new_mont);
|
|
if (powerbuf != NULL && powerbufFree == NULL) {
|
|
OPENSSL_cleanse(powerbuf, powerbufLen);
|
|
}
|
|
OPENSSL_free(powerbufFree);
|
|
return (ret);
|
|
}
|
|
|
|
int BN_mod_exp_mont_word(BIGNUM *rr, BN_ULONG a, const BIGNUM *p,
|
|
const BIGNUM *m, BN_CTX *ctx,
|
|
const BN_MONT_CTX *mont) {
|
|
BIGNUM a_bignum;
|
|
BN_init(&a_bignum);
|
|
|
|
int ret = 0;
|
|
|
|
// BN_mod_exp_mont requires reduced inputs.
|
|
if (bn_minimal_width(m) == 1) {
|
|
a %= m->d[0];
|
|
}
|
|
|
|
if (!BN_set_word(&a_bignum, a)) {
|
|
OPENSSL_PUT_ERROR(BN, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
ret = BN_mod_exp_mont(rr, &a_bignum, p, m, ctx, mont);
|
|
|
|
err:
|
|
BN_free(&a_bignum);
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define TABLE_SIZE 32
|
|
|
|
int BN_mod_exp2_mont(BIGNUM *rr, const BIGNUM *a1, const BIGNUM *p1,
|
|
const BIGNUM *a2, const BIGNUM *p2, const BIGNUM *m,
|
|
BN_CTX *ctx, const BN_MONT_CTX *mont) {
|
|
BIGNUM tmp;
|
|
BN_init(&tmp);
|
|
|
|
int ret = 0;
|
|
BN_MONT_CTX *new_mont = NULL;
|
|
|
|
// Allocate a montgomery context if it was not supplied by the caller.
|
|
if (mont == NULL) {
|
|
new_mont = BN_MONT_CTX_new_for_modulus(m, ctx);
|
|
if (new_mont == NULL) {
|
|
goto err;
|
|
}
|
|
mont = new_mont;
|
|
}
|
|
|
|
// BN_mod_mul_montgomery removes one Montgomery factor, so passing one
|
|
// Montgomery-encoded and one non-Montgomery-encoded value gives a
|
|
// non-Montgomery-encoded result.
|
|
if (!BN_mod_exp_mont(rr, a1, p1, m, ctx, mont) ||
|
|
!BN_mod_exp_mont(&tmp, a2, p2, m, ctx, mont) ||
|
|
!BN_to_montgomery(rr, rr, mont, ctx) ||
|
|
!BN_mod_mul_montgomery(rr, rr, &tmp, mont, ctx)) {
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_MONT_CTX_free(new_mont);
|
|
BN_free(&tmp);
|
|
|
|
return ret;
|
|
}
|