mirror of
https://github.com/DrKLO/Telegram.git
synced 2025-01-11 04:21:23 +01:00
534 lines
15 KiB
C
534 lines
15 KiB
C
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.] */
|
|
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
|
|
#include <openssl/base64.h>
|
|
#include <openssl/bio.h>
|
|
#include <openssl/buffer.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/mem.h>
|
|
|
|
#include "../../crypto/internal.h"
|
|
|
|
|
|
#define B64_BLOCK_SIZE 1024
|
|
#define B64_BLOCK_SIZE2 768
|
|
#define B64_NONE 0
|
|
#define B64_ENCODE 1
|
|
#define B64_DECODE 2
|
|
#define EVP_ENCODE_LENGTH(l) (((l+2)/3*4)+(l/48+1)*2+80)
|
|
|
|
typedef struct b64_struct {
|
|
int buf_len;
|
|
int buf_off;
|
|
int tmp_len; // used to find the start when decoding
|
|
int tmp_nl; // If true, scan until '\n'
|
|
int encode;
|
|
int start; // have we started decoding yet?
|
|
int cont; // <= 0 when finished
|
|
EVP_ENCODE_CTX base64;
|
|
char buf[EVP_ENCODE_LENGTH(B64_BLOCK_SIZE) + 10];
|
|
char tmp[B64_BLOCK_SIZE];
|
|
} BIO_B64_CTX;
|
|
|
|
static int b64_new(BIO *bio) {
|
|
BIO_B64_CTX *ctx;
|
|
|
|
ctx = OPENSSL_malloc(sizeof(*ctx));
|
|
if (ctx == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
OPENSSL_memset(ctx, 0, sizeof(*ctx));
|
|
|
|
ctx->cont = 1;
|
|
ctx->start = 1;
|
|
|
|
bio->init = 1;
|
|
bio->ptr = (char *)ctx;
|
|
return 1;
|
|
}
|
|
|
|
static int b64_free(BIO *bio) {
|
|
if (bio == NULL) {
|
|
return 0;
|
|
}
|
|
OPENSSL_free(bio->ptr);
|
|
bio->ptr = NULL;
|
|
bio->init = 0;
|
|
bio->flags = 0;
|
|
return 1;
|
|
}
|
|
|
|
static int b64_read(BIO *b, char *out, int outl) {
|
|
int ret = 0, i, ii, j, k, x, n, num, ret_code = 0;
|
|
BIO_B64_CTX *ctx;
|
|
uint8_t *p, *q;
|
|
|
|
if (out == NULL) {
|
|
return 0;
|
|
}
|
|
ctx = (BIO_B64_CTX *) b->ptr;
|
|
|
|
if (ctx == NULL || b->next_bio == NULL) {
|
|
return 0;
|
|
}
|
|
|
|
BIO_clear_retry_flags(b);
|
|
|
|
if (ctx->encode != B64_DECODE) {
|
|
ctx->encode = B64_DECODE;
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
ctx->tmp_len = 0;
|
|
EVP_DecodeInit(&ctx->base64);
|
|
}
|
|
|
|
// First check if there are bytes decoded/encoded
|
|
if (ctx->buf_len > 0) {
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
i = ctx->buf_len - ctx->buf_off;
|
|
if (i > outl) {
|
|
i = outl;
|
|
}
|
|
assert(ctx->buf_off + i < (int)sizeof(ctx->buf));
|
|
OPENSSL_memcpy(out, &ctx->buf[ctx->buf_off], i);
|
|
ret = i;
|
|
out += i;
|
|
outl -= i;
|
|
ctx->buf_off += i;
|
|
if (ctx->buf_len == ctx->buf_off) {
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
}
|
|
}
|
|
|
|
// At this point, we have room of outl bytes and an empty buffer, so we
|
|
// should read in some more.
|
|
|
|
ret_code = 0;
|
|
while (outl > 0) {
|
|
if (ctx->cont <= 0) {
|
|
break;
|
|
}
|
|
|
|
i = BIO_read(b->next_bio, &(ctx->tmp[ctx->tmp_len]),
|
|
B64_BLOCK_SIZE - ctx->tmp_len);
|
|
|
|
if (i <= 0) {
|
|
ret_code = i;
|
|
|
|
// Should we continue next time we are called?
|
|
if (!BIO_should_retry(b->next_bio)) {
|
|
ctx->cont = i;
|
|
// If buffer empty break
|
|
if (ctx->tmp_len == 0) {
|
|
break;
|
|
} else {
|
|
// Fall through and process what we have
|
|
i = 0;
|
|
}
|
|
} else {
|
|
// else we retry and add more data to buffer
|
|
break;
|
|
}
|
|
}
|
|
i += ctx->tmp_len;
|
|
ctx->tmp_len = i;
|
|
|
|
// We need to scan, a line at a time until we have a valid line if we are
|
|
// starting.
|
|
if (ctx->start && (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL))) {
|
|
// ctx->start = 1;
|
|
ctx->tmp_len = 0;
|
|
} else if (ctx->start) {
|
|
q = p = (uint8_t *)ctx->tmp;
|
|
num = 0;
|
|
for (j = 0; j < i; j++) {
|
|
if (*(q++) != '\n') {
|
|
continue;
|
|
}
|
|
|
|
// due to a previous very long line, we need to keep on scanning for a
|
|
// '\n' before we even start looking for base64 encoded stuff.
|
|
if (ctx->tmp_nl) {
|
|
p = q;
|
|
ctx->tmp_nl = 0;
|
|
continue;
|
|
}
|
|
|
|
k = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &num, p,
|
|
q - p);
|
|
|
|
if (k <= 0 && num == 0 && ctx->start) {
|
|
EVP_DecodeInit(&ctx->base64);
|
|
} else {
|
|
if (p != (uint8_t *)&(ctx->tmp[0])) {
|
|
i -= (p - (uint8_t *)&(ctx->tmp[0]));
|
|
for (x = 0; x < i; x++) {
|
|
ctx->tmp[x] = p[x];
|
|
}
|
|
}
|
|
EVP_DecodeInit(&ctx->base64);
|
|
ctx->start = 0;
|
|
break;
|
|
}
|
|
p = q;
|
|
}
|
|
|
|
// we fell off the end without starting
|
|
if (j == i && num == 0) {
|
|
// Is this is one long chunk?, if so, keep on reading until a new
|
|
// line.
|
|
if (p == (uint8_t *)&(ctx->tmp[0])) {
|
|
// Check buffer full
|
|
if (i == B64_BLOCK_SIZE) {
|
|
ctx->tmp_nl = 1;
|
|
ctx->tmp_len = 0;
|
|
}
|
|
} else if (p != q) { // finished on a '\n'
|
|
n = q - p;
|
|
for (ii = 0; ii < n; ii++) {
|
|
ctx->tmp[ii] = p[ii];
|
|
}
|
|
ctx->tmp_len = n;
|
|
}
|
|
// else finished on a '\n'
|
|
continue;
|
|
} else {
|
|
ctx->tmp_len = 0;
|
|
}
|
|
} else if (i < B64_BLOCK_SIZE && ctx->cont > 0) {
|
|
// If buffer isn't full and we can retry then restart to read in more
|
|
// data.
|
|
continue;
|
|
}
|
|
|
|
if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) {
|
|
int z, jj;
|
|
|
|
jj = i & ~3; // process per 4
|
|
z = EVP_DecodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp, jj);
|
|
if (jj > 2) {
|
|
if (ctx->tmp[jj - 1] == '=') {
|
|
z--;
|
|
if (ctx->tmp[jj - 2] == '=') {
|
|
z--;
|
|
}
|
|
}
|
|
}
|
|
// z is now number of output bytes and jj is the number consumed.
|
|
if (jj != i) {
|
|
OPENSSL_memmove(ctx->tmp, &ctx->tmp[jj], i - jj);
|
|
ctx->tmp_len = i - jj;
|
|
}
|
|
ctx->buf_len = 0;
|
|
if (z > 0) {
|
|
ctx->buf_len = z;
|
|
}
|
|
i = z;
|
|
} else {
|
|
i = EVP_DecodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf,
|
|
&ctx->buf_len, (uint8_t *)ctx->tmp, i);
|
|
ctx->tmp_len = 0;
|
|
}
|
|
ctx->buf_off = 0;
|
|
if (i < 0) {
|
|
ret_code = 0;
|
|
ctx->buf_len = 0;
|
|
break;
|
|
}
|
|
|
|
if (ctx->buf_len <= outl) {
|
|
i = ctx->buf_len;
|
|
} else {
|
|
i = outl;
|
|
}
|
|
|
|
OPENSSL_memcpy(out, ctx->buf, i);
|
|
ret += i;
|
|
ctx->buf_off = i;
|
|
if (ctx->buf_off == ctx->buf_len) {
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
}
|
|
outl -= i;
|
|
out += i;
|
|
}
|
|
|
|
BIO_copy_next_retry(b);
|
|
return ret == 0 ? ret_code : ret;
|
|
}
|
|
|
|
static int b64_write(BIO *b, const char *in, int inl) {
|
|
int ret = 0, n, i;
|
|
BIO_B64_CTX *ctx;
|
|
|
|
ctx = (BIO_B64_CTX *)b->ptr;
|
|
BIO_clear_retry_flags(b);
|
|
|
|
if (ctx->encode != B64_ENCODE) {
|
|
ctx->encode = B64_ENCODE;
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
ctx->tmp_len = 0;
|
|
EVP_EncodeInit(&(ctx->base64));
|
|
}
|
|
|
|
assert(ctx->buf_off < (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
|
|
n = ctx->buf_len - ctx->buf_off;
|
|
while (n > 0) {
|
|
i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n);
|
|
if (i <= 0) {
|
|
BIO_copy_next_retry(b);
|
|
return i;
|
|
}
|
|
assert(i <= n);
|
|
ctx->buf_off += i;
|
|
assert(ctx->buf_off <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
n -= i;
|
|
}
|
|
|
|
// at this point all pending data has been written.
|
|
ctx->buf_off = 0;
|
|
ctx->buf_len = 0;
|
|
|
|
if (in == NULL || inl <= 0) {
|
|
return 0;
|
|
}
|
|
|
|
while (inl > 0) {
|
|
n = (inl > B64_BLOCK_SIZE) ? B64_BLOCK_SIZE : inl;
|
|
|
|
if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) {
|
|
if (ctx->tmp_len > 0) {
|
|
assert(ctx->tmp_len <= 3);
|
|
n = 3 - ctx->tmp_len;
|
|
// There's a theoretical possibility of this.
|
|
if (n > inl) {
|
|
n = inl;
|
|
}
|
|
OPENSSL_memcpy(&(ctx->tmp[ctx->tmp_len]), in, n);
|
|
ctx->tmp_len += n;
|
|
ret += n;
|
|
if (ctx->tmp_len < 3) {
|
|
break;
|
|
}
|
|
ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf, (uint8_t *)ctx->tmp,
|
|
ctx->tmp_len);
|
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
|
|
// Since we're now done using the temporary buffer, the length should
|
|
// be zeroed.
|
|
ctx->tmp_len = 0;
|
|
} else {
|
|
if (n < 3) {
|
|
OPENSSL_memcpy(ctx->tmp, in, n);
|
|
ctx->tmp_len = n;
|
|
ret += n;
|
|
break;
|
|
}
|
|
n -= n % 3;
|
|
ctx->buf_len =
|
|
EVP_EncodeBlock((uint8_t *)ctx->buf, (const uint8_t *)in, n);
|
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
ret += n;
|
|
}
|
|
} else {
|
|
EVP_EncodeUpdate(&(ctx->base64), (uint8_t *)ctx->buf, &ctx->buf_len,
|
|
(uint8_t *)in, n);
|
|
assert(ctx->buf_len <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
ret += n;
|
|
}
|
|
inl -= n;
|
|
in += n;
|
|
|
|
ctx->buf_off = 0;
|
|
n = ctx->buf_len;
|
|
|
|
while (n > 0) {
|
|
i = BIO_write(b->next_bio, &(ctx->buf[ctx->buf_off]), n);
|
|
if (i <= 0) {
|
|
BIO_copy_next_retry(b);
|
|
return ret == 0 ? i : ret;
|
|
}
|
|
assert(i <= n);
|
|
n -= i;
|
|
ctx->buf_off += i;
|
|
assert(ctx->buf_off <= (int)sizeof(ctx->buf));
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
}
|
|
ctx->buf_len = 0;
|
|
ctx->buf_off = 0;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static long b64_ctrl(BIO *b, int cmd, long num, void *ptr) {
|
|
BIO_B64_CTX *ctx;
|
|
long ret = 1;
|
|
int i;
|
|
|
|
ctx = (BIO_B64_CTX *)b->ptr;
|
|
|
|
switch (cmd) {
|
|
case BIO_CTRL_RESET:
|
|
ctx->cont = 1;
|
|
ctx->start = 1;
|
|
ctx->encode = B64_NONE;
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
|
|
case BIO_CTRL_EOF: // More to read
|
|
if (ctx->cont <= 0) {
|
|
ret = 1;
|
|
} else {
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
}
|
|
break;
|
|
|
|
case BIO_CTRL_WPENDING: // More to write in buffer
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
ret = ctx->buf_len - ctx->buf_off;
|
|
if ((ret == 0) && (ctx->encode != B64_NONE) && (ctx->base64.data_used != 0)) {
|
|
ret = 1;
|
|
} else if (ret <= 0) {
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
}
|
|
break;
|
|
|
|
case BIO_CTRL_PENDING: // More to read in buffer
|
|
assert(ctx->buf_len >= ctx->buf_off);
|
|
ret = ctx->buf_len - ctx->buf_off;
|
|
if (ret <= 0) {
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
}
|
|
break;
|
|
|
|
case BIO_CTRL_FLUSH:
|
|
// do a final write
|
|
again:
|
|
while (ctx->buf_len != ctx->buf_off) {
|
|
i = b64_write(b, NULL, 0);
|
|
if (i < 0) {
|
|
return i;
|
|
}
|
|
}
|
|
if (BIO_test_flags(b, BIO_FLAGS_BASE64_NO_NL)) {
|
|
if (ctx->tmp_len != 0) {
|
|
ctx->buf_len = EVP_EncodeBlock((uint8_t *)ctx->buf,
|
|
(uint8_t *)ctx->tmp, ctx->tmp_len);
|
|
ctx->buf_off = 0;
|
|
ctx->tmp_len = 0;
|
|
goto again;
|
|
}
|
|
} else if (ctx->encode != B64_NONE && ctx->base64.data_used != 0) {
|
|
ctx->buf_off = 0;
|
|
EVP_EncodeFinal(&(ctx->base64), (uint8_t *)ctx->buf, &(ctx->buf_len));
|
|
// push out the bytes
|
|
goto again;
|
|
}
|
|
// Finally flush the underlying BIO
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
|
|
case BIO_C_DO_STATE_MACHINE:
|
|
BIO_clear_retry_flags(b);
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
BIO_copy_next_retry(b);
|
|
break;
|
|
|
|
case BIO_CTRL_INFO:
|
|
case BIO_CTRL_GET:
|
|
case BIO_CTRL_SET:
|
|
default:
|
|
ret = BIO_ctrl(b->next_bio, cmd, num, ptr);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static long b64_callback_ctrl(BIO *b, int cmd, bio_info_cb fp) {
|
|
long ret = 1;
|
|
|
|
if (b->next_bio == NULL) {
|
|
return 0;
|
|
}
|
|
switch (cmd) {
|
|
default:
|
|
ret = BIO_callback_ctrl(b->next_bio, cmd, fp);
|
|
break;
|
|
}
|
|
return ret;
|
|
}
|
|
|
|
static const BIO_METHOD b64_method = {
|
|
BIO_TYPE_BASE64, "base64 encoding", b64_write, b64_read, NULL /* puts */,
|
|
NULL /* gets */, b64_ctrl, b64_new, b64_free, b64_callback_ctrl,
|
|
};
|
|
|
|
const BIO_METHOD *BIO_f_base64(void) { return &b64_method; }
|