Updated websocket example to improve clarity and to be more distinct from chat example (#1637)

Co-authored-by: David Pedersen <david.pdrsn@gmail.com>
This commit is contained in:
Alex Pyattaev 2023-01-08 17:51:59 +02:00 committed by GitHub
parent d11af167ca
commit 8d92902c8e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
5 changed files with 352 additions and 31 deletions

View file

@ -6,8 +6,20 @@ publish = false
[dependencies]
axum = { path = "../../axum", features = ["ws", "headers"] }
futures = "0.3"
futures-util = { version = "0.3", default-features = false, features = ["sink", "std"] }
headers = "0.3"
tokio = { version = "1.0", features = ["full"] }
tokio-tungstenite = "0.18.0"
tower = { version = "0.4", features = ["util"] }
tower-http = { version = "0.3.0", features = ["fs", "trace"] }
tracing = "0.1"
tracing-subscriber = { version = "0.3", features = ["env-filter"] }
[[bin]]
name = "example-websockets"
path = "src/main.rs"
[[bin]]
name = "example-client"
path = "src/client.rs"

View file

@ -1 +1,2 @@
<a>Open the console to see stuff, then refresh to initiate exchange.</a>
<script src='script.js'></script>

View file

@ -7,3 +7,19 @@ socket.addEventListener('open', function (event) {
socket.addEventListener('message', function (event) {
console.log('Message from server ', event.data);
});
setTimeout(() => {
const obj = { hello: "world" };
const blob = new Blob([JSON.stringify(obj, null, 2)], {
type: "application/json",
});
console.log("Sending blob over websocket");
socket.send(blob);
}, 1000);
setTimeout(() => {
socket.send('About done here...');
console.log("Sending close over websocket");
socket.close(3000, "Crash and Burn!");
}, 3000);

View file

@ -0,0 +1,160 @@
//! Based on tokio-tungstenite example websocket client, but with multiple
//! concurrent websocket clients in one package
//!
//! This will connect to a server specified in the SERVER with N_CLIENTS
//! concurrent connections, and then flood some test messages over websocket.
//! This will also print whatever it gets into stdout.
//!
//! Note that this is not currently optimized for performance, especially around
//! stdout mutex management. Rather it's intended to show an example of working with axum's
//! websocket server and how the client-side and server-side code can be quite similar.
//!
use futures_util::stream::FuturesUnordered;
use futures_util::{SinkExt, StreamExt};
use std::borrow::Cow;
use std::ops::ControlFlow;
use std::time::Instant;
// we will use tungstenite for websocket client impl (same library as what axum is using)
use tokio_tungstenite::{
connect_async,
tungstenite::protocol::{frame::coding::CloseCode, CloseFrame, Message},
};
const N_CLIENTS: usize = 2; //set to desired number
const SERVER: &'static str = "ws://127.0.0.1:3000/ws";
#[tokio::main]
async fn main() {
let start_time = Instant::now();
//spawn several clients that will concurrently talk to the server
let mut clients = (0..N_CLIENTS)
.into_iter()
.map(|cli| tokio::spawn(spawn_client(cli)))
.collect::<FuturesUnordered<_>>();
//wait for all our clients to exit
while clients.next().await.is_some() {}
let end_time = Instant::now();
//total time should be the same no matter how many clients we spawn
println!(
"Total time taken {:#?} with {N_CLIENTS} concurrent clients, should be about 6.45 seconds.",
end_time - start_time
);
}
//creates a client. quietly exits on failure.
async fn spawn_client(who: usize) {
let ws_stream = match connect_async(SERVER).await {
Ok((stream, response)) => {
println!("Handshake for client {} has been completed", who);
// This will be the HTTP response, same as with server this is the last moment we
// can still access HTTP stuff.
println!("Server response was {:?}", response);
stream
}
Err(e) => {
println!("WebSocket handshake for client {who} failed with {e}!");
return;
}
};
let (mut sender, mut receiver) = ws_stream.split();
//we can ping the server for start
sender
.send(Message::Ping("Hello, Server!".into()))
.await
.expect("Can not send!");
//spawn an async sender to push some more messages into the server
let mut send_task = tokio::spawn(async move {
for i in 1..30 {
// In any websocket error, break loop.
if sender
.send(Message::Text(format!("Message number {}...", i)))
.await
.is_err()
{
//just as with server, if send fails there is nothing we can do but exit.
return;
}
tokio::time::sleep(std::time::Duration::from_millis(300)).await;
}
// When we are done we may want our client to close connection cleanly.
println!("Sending close to {}...", who);
if let Err(e) = sender
.send(Message::Close(Some(CloseFrame {
code: CloseCode::Normal,
reason: Cow::from("Goodbye"),
})))
.await
{
println!("Could not send Close due to {:?}, probably it is ok?", e);
};
});
//receiver just prints whatever it gets
let mut recv_task = tokio::spawn(async move {
while let Some(Ok(msg)) = receiver.next().await {
// print message and break if instructed to do so
if process_message(msg, who).is_break() {
break;
}
}
});
//wait for either task to finish and kill the other task
tokio::select! {
_ = (&mut send_task) => {
recv_task.abort();
},
_ = (&mut recv_task) => {
send_task.abort();
}
}
}
/// Function to handle messages we get (with a slight twist that Frame variant is visible
/// since we are working with the underlying tungstenite library directly without axum here).
fn process_message(msg: Message, who: usize) -> ControlFlow<(), ()> {
match msg {
Message::Text(t) => {
println!(">>> {} got str: {:?}", who, t);
}
Message::Binary(d) => {
println!(">>> {} got {} bytes: {:?}", who, d.len(), d);
}
Message::Close(c) => {
if let Some(cf) = c {
println!(
">>> {} got close with code {} and reason `{}`",
who, cf.code, cf.reason
);
} else {
println!(">>> {} somehow got close message without CloseFrame", who);
}
return ControlFlow::Break(());
}
Message::Pong(v) => {
println!(">>> {} got pong with {:?}", who, v);
}
// Just as with axum server, the underlying tungstenite websocket library
// will handle Ping for you automagically by replying with Pong and copying the
// v according to spec. But if you need the contents of the pings you can see them here.
Message::Ping(v) => {
println!(">>> {} got ping with {:?}", who, v);
}
Message::Frame(_) => {
unreachable!("This is never supposed to happen")
}
}
ControlFlow::Continue(())
}

View file

@ -1,9 +1,15 @@
//! Example websocket server.
//!
//! Run with
//! Run the server with
//!
//! ```not_rust
//! cd examples && cargo run -p example-websockets
//! cargo run -p example-websockets
//! firefox http://localhost:3000
//! ```
//!
//! Alternatively you can run the rust client with
//! ```not_rust
//! cargo run -p example-client
//! ```
use axum::{
@ -16,13 +22,24 @@ use axum::{
routing::{get, get_service},
Router,
};
use std::borrow::Cow;
use std::ops::ControlFlow;
use std::{net::SocketAddr, path::PathBuf};
use tower_http::{
services::ServeDir,
trace::{DefaultMakeSpan, TraceLayer},
};
use tracing_subscriber::{layer::SubscriberExt, util::SubscriberInitExt};
//allows to extract the IP of connecting user
use axum::extract::connect_info::ConnectInfo;
use axum::extract::ws::CloseFrame;
//allows to split the websocket stream into separate TX and RX branches
use futures::{sink::SinkExt, stream::StreamExt};
#[tokio::main]
async fn main() {
tracing_subscriber::registry()
@ -59,58 +76,173 @@ async fn main() {
let addr = SocketAddr::from(([127, 0, 0, 1], 3000));
tracing::debug!("listening on {}", addr);
axum::Server::bind(&addr)
.serve(app.into_make_service())
.serve(app.into_make_service_with_connect_info::<SocketAddr>())
.await
.unwrap();
}
/// The handler for the HTTP request (this gets called when the HTTP GET lands at the start
/// of websocket negotiation. After this completes, the actual switching from HTTP to
/// websocket protocol will occur.
/// This is the last point where we can extract TCP/IP metadata such as IP address of the client
/// as well as things from HTTP headers such as user-agent of the browser etc.
async fn ws_handler(
ws: WebSocketUpgrade,
user_agent: Option<TypedHeader<headers::UserAgent>>,
ConnectInfo(addr): ConnectInfo<SocketAddr>,
) -> impl IntoResponse {
if let Some(TypedHeader(user_agent)) = user_agent {
println!("`{}` connected", user_agent.as_str());
}
ws.on_upgrade(handle_socket)
let user_agent = if let Some(TypedHeader(user_agent)) = user_agent {
user_agent.to_string()
} else {
String::from("Unknown browser")
};
println!("`{}` at {} connected.", user_agent, addr.to_string());
// finalize the upgrade process by returning upgrade callback.
// we can customize the callback by sending additional info such as address.
ws.on_upgrade(move |socket| handle_socket(socket, addr))
}
async fn handle_socket(mut socket: WebSocket) {
/// Actual websocket statemachine (one will be spawned per connection)
async fn handle_socket(mut socket: WebSocket, who: SocketAddr) {
//send a ping (unsupported by some browsers) just to kick things off and get a response
if let Ok(_) = socket.send(Message::Ping(vec![1, 2, 3])).await {
println!("Pinged {}...", who);
} else {
println!("Could not send ping {}!", who);
// no Error here since the only thing we can do is to close the connection.
// If we can not send messages, there is no way to salvage the statemachine anyway.
return;
}
// receive single message form a client (we can either receive or send with socket).
// this will likely be the Pong for our Ping or a hello message from client.
// waiting for message from a client will block this task, but will not block other client's
// connections.
if let Some(msg) = socket.recv().await {
if let Ok(msg) = msg {
match msg {
Message::Text(t) => {
println!("client sent str: {:?}", t);
}
Message::Binary(_) => {
println!("client sent binary data");
}
Message::Ping(_) => {
println!("socket ping");
}
Message::Pong(_) => {
println!("socket pong");
}
Message::Close(_) => {
println!("client disconnected");
return;
}
if process_message(msg, who).is_break() {
return;
}
} else {
println!("client disconnected");
println!("client {} abruptly disconnected", who);
return;
}
}
loop {
// Since each client gets individual statemachine, we can pause handling
// when necessary to wait for some external event (in this case illustrated by sleeping).
// Waiting for this client to finish getting his greetings does not prevent other clients form
// connecting to server and receiving their greetings.
for i in 1..5 {
if socket
.send(Message::Text(String::from("Hi!")))
.send(Message::Text(String::from(format!("Hi {} times!", i))))
.await
.is_err()
{
println!("client disconnected");
println!("client {} abruptly disconnected", who);
return;
}
tokio::time::sleep(std::time::Duration::from_secs(3)).await;
tokio::time::sleep(std::time::Duration::from_millis(100)).await;
}
// By splitting socket we can send and receive at the same time. In this example we will send
// unsolicited messages to client based on some sort of server's internal event (i.e .timer).
let (mut sender, mut receiver) = socket.split();
// Spawn a task that will push several messages to the client (does not matter what client does)
let mut send_task = tokio::spawn(async move {
let n_msg = 20;
for i in 0..n_msg {
// In case of any websocket error, we exit.
if sender
.send(Message::Text(format!("Server message {} ...", i)))
.await
.is_err()
{
return i;
}
tokio::time::sleep(std::time::Duration::from_millis(300)).await;
}
println!("Sending close to {}...", who);
if let Err(e) = sender
.send(Message::Close(Some(CloseFrame {
code: axum::extract::ws::close_code::NORMAL,
reason: Cow::from("Goodbye"),
})))
.await
{
println!("Could not send Close due to {}, probably it is ok?", e);
}
n_msg
});
// This second task will receive messages from client and print them on server console
let mut recv_task = tokio::spawn(async move {
let mut cnt = 0;
while let Some(Ok(msg)) = receiver.next().await {
cnt += 1;
// print message and break if instructed to do so
if process_message(msg, who).is_break() {
break;
}
}
cnt
});
// If any one of the tasks exit, abort the other.
tokio::select! {
rv_a = (&mut send_task) => {
match rv_a {
Ok(a) => println!("{} messages sent to {}", a, who),
Err(a) => println!("Error sending messages {:?}", a)
}
recv_task.abort();
},
rv_b = (&mut recv_task) => {
match rv_b {
Ok(b) => println!("Received {} messages", b),
Err(b) => println!("Error receiving messages {:?}", b)
}
send_task.abort();
}
}
// returning from the handler closes the websocket connection
println!("Websocket context {} destroyed", who);
}
/// helper to print contents of messages to stdout. Has special treatment for Close.
fn process_message(msg: Message, who: SocketAddr) -> ControlFlow<(), ()> {
match msg {
Message::Text(t) => {
println!(">>> {} sent str: {:?}", who, t);
}
Message::Binary(d) => {
println!(">>> {} sent {} bytes: {:?}", who, d.len(), d);
}
Message::Close(c) => {
if let Some(cf) = c {
println!(
">>> {} sent close with code {} and reason `{}`",
who, cf.code, cf.reason
);
} else {
println!(">>> {} somehow sent close message without CloseFrame", who);
}
return ControlFlow::Break(());
}
Message::Pong(v) => {
println!(">>> {} sent pong with {:?}", who, v);
}
// You should never need to manually handle Message::Ping, as axum's websocket library
// will do so for you automagically by replying with Pong and copying the v according to
// spec. But if you need the contents of the pings you can see them here.
Message::Ping(v) => {
println!(">>> {} sent ping with {:?}", who, v);
}
}
ControlFlow::Continue(())
}