/* * SPDX-FileCopyrightText: syuilo and other misskey contributors * SPDX-License-Identifier: AGPL-3.0-only */ import * as fs from 'node:fs'; import { fileURLToPath } from 'node:url'; import { dirname } from 'node:path'; import { Inject, Injectable } from '@nestjs/common'; import * as nsfw from 'nsfwjs'; import si from 'systeminformation'; import { Mutex } from 'async-mutex'; import type { Config } from '@/config.js'; import { DI } from '@/di-symbols.js'; import { bindThis } from '@/decorators.js'; const _filename = fileURLToPath(import.meta.url); const _dirname = dirname(_filename); const REQUIRED_CPU_FLAGS = ['avx2', 'fma']; let isSupportedCpu: undefined | boolean = undefined; @Injectable() export class AiService { private model: nsfw.NSFWJS; private modelLoadMutex: Mutex = new Mutex(); constructor( @Inject(DI.config) private config: Config, ) { } @bindThis public async detectSensitive(path: string): Promise<nsfw.predictionType[] | null> { try { if (isSupportedCpu === undefined) { const cpuFlags = await this.getCpuFlags(); isSupportedCpu = REQUIRED_CPU_FLAGS.every(required => cpuFlags.includes(required)); } if (!isSupportedCpu) { console.error('This CPU cannot use TensorFlow.'); return null; } const tf = await import('@tensorflow/tfjs-node'); if (this.model == null) { await this.modelLoadMutex.runExclusive(async () => { if (this.model == null) { this.model = await nsfw.load(`file://${_dirname}/../../nsfw-model/`, { size: 299 }); } }); } const buffer = await fs.promises.readFile(path); const image = await tf.node.decodeImage(buffer, 3) as any; try { const predictions = await this.model.classify(image); return predictions; } finally { image.dispose(); } } catch (err) { console.error(err); return null; } } @bindThis private async getCpuFlags(): Promise<string[]> { const str = await si.cpuFlags(); return str.split(/\s+/); } }