🤖 An elegant Telegram bots framework for Rust https://docs.rs/teloxide
Find a file
2020-04-19 18:43:12 +03:00
.github/workflows Update ci.yml 2020-03-31 21:45:22 +06:00
examples Added heroku_ping_pong_bot example 2020-04-16 23:31:02 -03:00
media Create new screenshots from MacOS 2020-02-19 04:27:24 +03:00
src Refactor error logging if Update is failed to parse 2020-03-31 21:41:00 +06:00
.gitignore Simplify .gitignore 2020-03-05 11:23:20 +06:00
Cargo.toml Provide a webhook example instead of a library function 2020-03-31 00:57:19 +06:00
CHANGELOG.md Update CHANGELOG.md 2020-03-27 18:56:32 +06:00
CODE_STYLE.md Update CODE_STYLE.md 2020-02-19 21:50:49 +06:00
CONTRIBUTING.md Simpler form of using nightly rustfmt 2020-04-19 18:43:12 +03:00
ICON.png Improve the ICON.png quality 2019-10-15 16:16:56 +06:00
LICENSE Update LICENSE 2020-02-22 02:56:02 +06:00
logo.svg Make logo svg 2019-12-30 12:14:05 +03:00
README.md Update README.md 2020-04-17 16:16:57 +06:00
rustfmt.toml Fixes 2020-02-19 04:54:41 +06:00

teloxide

A full-featured framework that empowers you to easily build Telegram bots using the async/.await syntax in Rust. It handles all the difficult stuff so you can focus only on your business logic.

Table of contents

Features

Higher-order design

teloxide supports higher-order programming by making streams a first-class citizen: feel free to (de)multiplex them, apply arbitrary transformations, pass to/return from other functions, lazily evaluate them, concurrently process their items, and much more, thereby achieving extremely flexible design.


Type safety

All the API types and methods are implemented with heavy use of ADTs to enforce type safety and tight integration with IDEs. Bot's commands have precise types too, thereby serving as a self-documenting code and respecting the parse, don't validate programming idiom.


Persistency

By default, teloxide stores all user dialogues in RAM, but you can store them somewhere else (for example, in a database) just by implementing 2 functions.


Convenient dialogues management

Define a type-safe finite automaton and transition functions to drive a user dialogue with ease (see the guess-a-number example below).

Getting started

  1. Create a new bot using @Botfather to get a token in the format 123456789:blablabla.
  2. Initialise the TELOXIDE_TOKEN environmental variable to your token:
# Unix
$ export TELOXIDE_TOKEN=<Your token here>

# Windows
$ set TELOXIDE_TOKEN=<Your token here>
  1. Be sure that you are up to date:
# If you're using stable
$ rustup update stable
$ rustup override set stable

# If you're using nightly
$ rustup update nightly
$ rustup override set nightly
  1. Execute cargo new my_bot, enter the directory and put these lines into your Cargo.toml:
[dependencies]
teloxide = "0.2.0"
log = "0.4.8"
tokio = "0.2.11"
pretty_env_logger = "0.4.0"

The ping-pong bot

This bot has a single message handler, which answers "pong" to each incoming message:

(Full)

use teloxide::prelude::*;

#[tokio::main]
async fn main() {
    teloxide::enable_logging!();
    log::info!("Starting ping_pong_bot!");

    let bot = Bot::from_env();

    Dispatcher::new(bot)
        .messages_handler(|rx: DispatcherHandlerRx<Message>| {
            rx.for_each(|message| async move {
                message.answer("pong").send().await.log_on_error().await;
            })
        })
        .dispatch()
        .await;
}

Commands

Commands are defined similar to how we define CLI using structopt. This bot says "I am a cat! Meow!" on /meow, generates a random number within [0; 1) on /generate, and shows the usage guide on /help:

(Full)

// Imports are omitted...

#[derive(BotCommand)]
#[command(rename = "lowercase", description = "These commands are supported:")]
enum Command {
    #[command(description = "display this text.")]
    Help,
    #[command(description = "be a cat.")]
    Meow,
    #[command(description = "generate a random number within [0; 1).")]
    Generate,
}

fn generate() -> String {
    thread_rng().gen_range(0.0, 1.0).to_string()
}

async fn answer(
    cx: DispatcherHandlerCx<Message>,
    command: Command,
) -> ResponseResult<()> {
    match command {
        Command::Help => cx.answer(Command::descriptions()).send().await?,
        Command::Generate => cx.answer(generate()).send().await?,
        Command::Meow => cx.answer("I am a cat! Meow!").send().await?,
    };

    Ok(())
}

async fn handle_commands(rx: DispatcherHandlerRx<Message>) {
    // Only iterate through commands in a proper format:
    rx.commands::<Command, &str>(panic!("Insert here your bot's name"))
        // Execute all incoming commands concurrently:
        .for_each_concurrent(None, |(cx, command, _)| async move {
            answer(cx, command).await.log_on_error().await;
        })
        .await;
}

#[tokio::main]
async fn main() {
    // Setup is omitted...
}


See? The dispatcher gives us a stream of messages, so we can handle it as we want! Here we use our .commands::<Command>() and .for_each_concurrent(), but others are also available:

Guess a number

Wanna see more? This is a bot, which starts a game on each incoming message. You must guess a number from 1 to 10 (inclusively):

(Full)

// Imports are omitted...

#[derive(SmartDefault)]
enum Dialogue {
    #[default]
    Start,
    ReceiveAttempt(u8),
}

type Cx<State> = DialogueDispatcherHandlerCx<Message, State>;
type Res = ResponseResult<DialogueStage<Dialogue>>;

async fn start(cx: Cx<()>) -> Res {
    cx.answer("Let's play a game! Guess a number from 1 to 10 (inclusively).")
        .send()
        .await?;
    next(Dialogue::ReceiveAttempt(thread_rng().gen_range(1, 11)))
}

async fn receive_attempt(cx: Cx<u8>) -> Res {
    let secret = cx.dialogue;

    match cx.update.text() {
        None => {
            cx.answer("Oh, please, send me a text message!").send().await?;
            next(Dialogue::ReceiveAttempt(secret))
        }
        Some(text) => match text.parse::<u8>() {
            Ok(attempt) => {
                if attempt == secret {
                    cx.answer("Congratulations! You won!").send().await?;
                    exit()
                } else {
                    cx.answer("No.").send().await?;
                    next(Dialogue::ReceiveAttempt(secret))
                }
            }
            Err(_) => {
                cx.answer("Oh, please, send me a number in the range [1; 10]!")
                    .send()
                    .await?;
                next(Dialogue::ReceiveAttempt(secret))
            }
        },
    }
}

async fn handle_message(
    cx: DialogueDispatcherHandlerCx<Message, Dialogue>,
) -> Res {
    // Match is omitted...
}

#[tokio::main]
async fn main() {
    // Setup is omitted...
}


Our finite automaton, designating a user dialogue, cannot be in an invalid state, and this is why it is called "type-safe". We could use enum + Options instead, but it would lead us to lots of unpleasant .unwrap()s.

Remember that a classical finite automaton is defined by its initial state, a list of its possible states and a transition function? We can think that Dialogue is a finite automaton with a context type at each state (Dialogue::Start has (), Dialogue::ReceiveAttempt has u8).

See examples/dialogue_bot to see a bit more complicated bot with dialogues.

More examples!

Recommendations

  • Use this pattern:
#[tokio::main]
async fn main() {
    run().await;
}

async fn run() {
    // Your logic here...
}

Instead of this:

#[tokio::main]
async fn main() {
    // Your logic here...
}

The second one produces very strange compiler messages because of the #[tokio::main] macro. However, the examples in this README use the second variant for brevity.

FAQ

Where I can ask questions?

Issues is a good place for well-formed questions, for example, about the library design, enhancements, bug reports. But if you can't compile your bot due to compilation errors and need quick help, feel free to ask in our official group.

Why Rust?

Most programming languages have their own implementations of Telegram bots frameworks, so why not Rust? We think Rust provides enough good ecosystem and the language itself to be suitable for writing bots.

Can I use webhooks?

teloxide doesn't provide special API for working with webhooks due to their nature with lots of subtle settings. Instead, you setup your webhook by yourself, as shown in webhook_ping_pong_bot.

Associated links:

Community bots

Feel free to push your own bot into our collection: https://github.com/teloxide/community-bots. Later you will be able to play with them right in our official chat: https://t.me/teloxide.

Contributing

See CONRIBUTING.md.